Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 2009, 119: 1420-1428. 10.1172/JCI39104.
CAS
PubMed
PubMed Central
Google Scholar
Moustakas A, Heldin C: Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007, 98: 1512-1520. 10.1111/j.1349-7006.2007.00550.x.
CAS
PubMed
Google Scholar
Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002, 2: 442-454. 10.1038/nrc822.
CAS
PubMed
Google Scholar
Huber MA, Kraut N, Beug H: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005, 17: 548-558. 10.1016/j.ceb.2005.08.001.
CAS
PubMed
Google Scholar
Yang J, Weinberg RA: Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008, 14: 818-829. 10.1016/j.devcel.2008.05.009.
CAS
PubMed
Google Scholar
Peinado H, Olmeda D, Cano A: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nat Rev Cancer. 2007, 7: 415-428. 10.1038/nrc2131.
CAS
PubMed
Google Scholar
Hurteau GJ, Carlson JA, Spivack SD, Brock GJ: Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 2007, 67: 7972-7976. 10.1158/0008-5472.CAN-07-1058.
CAS
PubMed
Google Scholar
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008, 10: 593-601. 10.1038/ncb1722.
CAS
PubMed
Google Scholar
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008, 9: 582-89. 10.1038/embor.2008.74.
CAS
PubMed
PubMed Central
Google Scholar
Park S, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 22: 894-907. 10.1101/gad.1640608.
CAS
PubMed
PubMed Central
Google Scholar
Cochrane DR, Howe EN, Spoelstra NS, Richer JK: Loss of miR-200c: A marker of aggressiveness and chemoresistance in female reproductive cancers. J Oncol. 2010, 2010: 821717-
PubMed
Google Scholar
Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK: MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther. 2009, 8: 1055-1066.
CAS
PubMed
PubMed Central
Google Scholar
Korpal M, Lee ES, Hu G, Kang Y: The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008, 283: 14910-14914. 10.1074/jbc.C800074200.
CAS
PubMed
PubMed Central
Google Scholar
Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 2005, 24: 2375-2385. 10.1038/sj.onc.1208429.
CAS
PubMed
Google Scholar
Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A: The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene. 2007, 26: 6979-6988. 10.1038/sj.onc.1210508.
CAS
PubMed
PubMed Central
Google Scholar
Hao J, Liu Y, Kruhlak M, Debell KE, Rellahan BL, Shaw S: Phospholipase C-mediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane. J Cell Biol. 2009, 184: 451-462. 10.1083/jcb.200807047.
CAS
PubMed
PubMed Central
Google Scholar
TargetScanHuman 5.1. [http://www.targetscan.org/]
microRNA.org. [http://www.microrna.org/microrna/home.do]
PicTar. [http://pictar.mdc-berlin.de/]
Microcosm Targets. [http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/]
Sossey-Alaoui K, Bialkowska K, Plow EF: The miR200 family of microRNAs regulates WAVE3-dependent cancer cell invasion. J Biol Chem. 2009, 284: 33019-33029. 10.1074/jbc.M109.034553.
CAS
PubMed
PubMed Central
Google Scholar
Fiévet B, Louvard D, Arpin M: ERM proteins in epithelial cell organization and functions. Biochim Biophy Acta. 2007, 1773: 653-660. 10.1016/j.bbamcr.2006.06.013.
Google Scholar
Charafe-Jauffret E, Monville F, Bertucci F, Esterni B, Ginestier C, Finetti P, Cervera N, Geneix J, Hassanein M, Rabayrol L, Sobol H, Taranger-Charpin C, Xerri L, Viens P, Birnbaum D, Jacquemier J: Moesin expression is a marker of basal breast carcinomas. Int J Cancer. 2007, 121: 1779-1785. 10.1002/ijc.22923.
CAS
PubMed
Google Scholar
Kobayashi H, Sagara J, Kurita H, Morifuji M, Ohishi M, Kurashina K, Taniguchi S: Clinical significance of cellular distribution of moesin in patients with oral squamous cell carcinoma. Clin Cancer Res. 2004, 10: 572-580. 10.1158/1078-0432.CCR-1323-03.
CAS
PubMed
Google Scholar
Estecha A, Sánchez-Martín L, Puig-Kröger A, Bartolomé RA, Teixidó J, Samaniego R, Sánchez-Mateos P: Moesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion. J Cell Sci. 2009, 122: 3492-3501. 10.1242/jcs.053157.
CAS
PubMed
Google Scholar
He M, Cheng Y, Li W, Liu Q, Liu J, Huang J, Fu X: Vascular endothelial growth factor C promotes cervical cancer metastasis via up-regulation and activation of RhoA/ROCK-2/moesin cascade. BMC Cancer. 2010, 10: 170-10.1186/1471-2407-10-170.
PubMed
PubMed Central
Google Scholar
Meng XN, Jin Y, Yu Y, Bai J, Liu GY, Zhu J, Zhao YZ, Wang Z, Chen F, Lee K, Fu SB: Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. Br J Cancer. 2009, 101: 327-334. 10.1038/sj.bjc.6605154.
CAS
PubMed
PubMed Central
Google Scholar
Ding J, Li D, Wang X, Wang C, Wu T: Fibronectin promotes invasiveness and focal adhesion kinase tyrosine phosphorylation of human colon cancer cell. Hepatogastroenterology. 2008, 55: 2072-2076.
CAS
PubMed
Google Scholar
Michael KE, Dumbauld DW, Burns KL, Hanks SK, García AJ: Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol Biol Cell. 2009, 20: 2508-2519. 10.1091/mbc.E08-01-0076.
CAS
PubMed
PubMed Central
Google Scholar
Tcherkezian J, Lamarche-Vane N: Current knowledge of the large RhoGAP family of proteins. Biol Cell. 2007, 99: 67-86. 10.1042/BC20060086.
CAS
PubMed
Google Scholar
Schulz LC, Widmaier EP: The effect of leptin on mouse trophoblast cell invasion. Biol Reprod. 2004, 71: 1963-1967. 10.1095/biolreprod.104.032722.
CAS
PubMed
Google Scholar
Klurfeld DM, Lloyd LM, Welch CB, Davis MJ, Tulp OL, Kritchevsky D: Reduction of enhanced mammary carcinogenesis in LA/N-cp (corpulent) rats by energy restriction. Proc Soc Exp Biol Med. 1991, 196: 381-384.
CAS
PubMed
Google Scholar
Waxler SH, Brecher G, Beal SL: The effect of fat-enriched diet on the incidence of spontaneous mammary tumors in obese mice. Pro Soc Exp Biol Med. 1979, 162: 365-368.
CAS
Google Scholar
Wolff GL, Kodell RL, Cameron AM, Medina D: Accelerated appearance of chemically induced mammary carcinomas in obese yellow (Avy/A) (BALB/c × VY) F1 hybrid mice. J Toxicol Environ Health. 1982, 10: 131-142. 10.1080/15287398209530237.
CAS
PubMed
Google Scholar
Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS: Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004, 430: 1034-1039. 10.1038/nature02765.
CAS
PubMed
Google Scholar
Geiger TR, Peeper DS: Critical role for TrkB kinase function in anoikis suppression, tumorigenesis, and metastasis. Cancer Res. 2007, 67: 6221-6229. 10.1158/0008-5472.CAN-07-0121.
CAS
PubMed
Google Scholar
Yu X, Liu L, Cai B, He Y, Wan X: Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci. 2008, 99: 543-552. 10.1111/j.1349-7006.2007.00722.x.
CAS
PubMed
Google Scholar
Kupferman ME, Jiffar T, El-Naggar A, Yilmaz T, Zhou G, Xie T, Feng L, Wang J, Holsinger FC, Yu D, Myers JN: TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. Oncogene. 2010, 29: 2047-2059. 10.1038/onc.2009.486.
CAS
PubMed
PubMed Central
Google Scholar
Ruoslahti E: Fibronectin and its integrin receptors in cancer. Adv Cancer Res. 1999, 76: 1-20.
CAS
PubMed
Google Scholar
Johnstone CN, Castellví-Bel S, Chang LM, Bessa X, Nakagawa H, Harada H, Sung RK, Piqué JM, Castells A, Rustgi AK: ARHGAP8 is a novel member of the RHOGAP family related to ARHGAP1/CDC42GAP/p50RHOGAP: mutation and expression analyses in colorectal and breast cancers. Gene. 2004, 336: 59-71. 10.1016/j.gene.2004.01.025.
CAS
PubMed
Google Scholar
Gentile A, D'Alessandro L, Lazzari L, Martinoglio B, Bertotti A, Mira A, Lanzetti L, Comoglio PM, Medico E: Met-driven invasive growth involves transcriptional regulation of Arhgap12. Oncogene. 2008, 27: 5590-5598. 10.1038/onc.2008.173.
CAS
PubMed
Google Scholar
Seoh ML, Ng CH, Yong J, Lim L, Leung T: ArhGAP15, a novel human RacGAP protein with GTPase binding property. FEBS Lett. 2003, 539: 131-137. 10.1016/S0014-5793(03)00213-8.
CAS
PubMed
Google Scholar
Zhang Z, Wu C, Wang S, Huang W, Zhou Z, Ying K, Xie Y, Mao Y: Cloning and characterization of ARHGAP12, a novel human rhoGAP gene. Int J Biochem Cell Biol. 2002, 34: 325-331. 10.1016/S1357-2725(01)00134-0.
CAS
PubMed
Google Scholar
Thiele CJ, Li Z, McKee AE: On Trk--the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res. 2009, 15: 5962-5967. 10.1158/1078-0432.CCR-08-0651.
CAS
PubMed
PubMed Central
Google Scholar
Smit MA, Geiger TR, Song J, Gitelman I, Peeper DS: A Twist-Snail axis critical for TrkB-induced epithelial-mesenchymal transition-like transformation, anoikis resistance, and metastasis. Mol Cell Biol. 2009, 29: 3722-3737. 10.1128/MCB.01164-08.
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, He Y, Ding J, Wu K, Hu B, Liu Y, Wu Y, Guo B, Shen Y, Landi D, Landi S, Zhou Y, Liu H: An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1alpha 3' untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis. 2009, 30: 2064-2069. 10.1093/carcin/bgp283.
CAS
PubMed
Google Scholar
Mayr C, Bartel DP: Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009, 138: 673-684. 10.1016/j.cell.2009.06.016.
CAS
PubMed
PubMed Central
Google Scholar
Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, Wojcik SE, Ferdin J, Kunej T, Xiao L, Manoukian S, Secreto G, Ravagnani F, Wang X, Radice P, Croce CM, Davuluri RV, Calin GA: Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010, 70: 2789-2798. 10.1158/0008-5472.CAN-09-3541.
CAS
PubMed
PubMed Central
Google Scholar
Ratner E, Lu L, Boeke M, Barnett R, Nallur S, Chin LJ, Pelletier C, Blitzblau R, Tassi R, Paranjape T, Hui P, Godwin AK, Yu H, Risch H, Rutherford T, Schwartz P, Santin A, Matloff E, Zelterman D, Slack FJ, Weidhaas JB: A KRAS-Variant in Ovarian Cancer Acts as a Genetic Marker of Cancer Risk. Cancer Res. 2010, 70: 6509-6515. 10.1158/0008-5472.CAN-10-0689.
CAS
PubMed
PubMed Central
Google Scholar
Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JAF, Slanchev K, le Sage C, Nagel R, Voorhoeve PM, van Duijse J, Ørom UA, Lund AH, Perrakis A, Raz E, Agami R: RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell. 2007, 131: 1273-1286. 10.1016/j.cell.2007.11.034.
CAS
PubMed
Google Scholar
Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, Dirbas FM, Somlo G, Pera RAR, Lao K, Clarke MF: Down-regulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009, 138: 592-603. 10.1016/j.cell.2009.07.011.
CAS
PubMed
PubMed Central
Google Scholar
Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, Brunton VG, Morton J, Sansom O, Schüler J, Stemmler MP, Herzberger C, Hopt U, Keck T, Brabletz S, Brabletz T: The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009, 11: 1487-1495. 10.1038/ncb1998.
CAS
PubMed
Google Scholar
Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K: Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 2010, 39: 761-772. 10.1016/j.molcel.2010.08.013.
CAS
PubMed
PubMed Central
Google Scholar