Baer HJ, Tworoger SS, Hankinson SE, Willett WC. Body fatness at young ages and risk of breast cancer throughout life. Am J Epidemiol. 2010;171(11):1183–94.
Article
Google Scholar
Bandera EV, Chandran U, Zirpoli G, Ciupak G, Bovbjerg DH, Jandorf L, et al. Body size in early life and breast cancer risk in African American and European American women. Cancer Causes Control. 2013;24(12):2231–43.
Article
Google Scholar
Bardia A, Vachon CM, Olson JE, Vierkant RA, Wang AH, Hartmann LC, et al. Relative weight at age 12 and risk of postmenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2008;17(2):374–8.
Article
Google Scholar
Berkey CS, Frazier AL, Gardner JD, Colditz GA. Adolescence and breast carcinoma risk. Cancer. 1999;85(11):2400–9.
Article
CAS
Google Scholar
Bodicoat DH, Schoemaker MJ, Jones ME, McFadden E, Griffin J, Ashworth A, et al. Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. Breast Cancer Res. 2014;16(1):R18.
Article
Google Scholar
Robinson WR, Tse CK, Olshan AF, Troester MA. Body size across the life course and risk of premenopausal and postmenopausal breast cancer in Black women, the Carolina Breast Cancer Study, 1993-2001. Cancer Causes Control. 2014;25(9):1101–17.
Article
Google Scholar
Rosner B, Eliassen AH, Toriola AT, Chen WY, Hankinson SE, Willett WC, et al. Weight and weight changes in early adulthood and later breast cancer risk. Int J Cancer. 2017;140(9):2003–14.
Article
CAS
Google Scholar
Shawon SR, Eriksson M, Li J. Body size in early life and risk of breast cancer. Breast Cancer Res. 2017;19(1):84.
Article
Google Scholar
Terry MB. Consistency, now what? Breast Cancer Res. 2017;19(1):85.
Article
Google Scholar
Baer HJ, Colditz GA, Rosner B, Michels KB, Rich-Edwards JW, Hunter DJ, et al. Body fatness during childhood and adolescence and incidence of breast cancer in premenopausal women: a prospective cohort study. Breast Cancer Res. 2005;7(3):R314–25.
Article
Google Scholar
Coates RJ, Uhler RJ, Hall HI, Potischman N, Brinton LA, Ballard-Barbash R, et al. Risk of breast cancer in young women in relation to body size and weight gain in adolescence and early adulthood. Br J Cancer. 1999;81(1):167–74.
Article
CAS
Google Scholar
Michels KB, Terry KL, Willett WC. Longitudinal study on the role of body size in premenopausal breast cancer. Arch Intern Med. 2006;166(21):2395–402.
Article
Google Scholar
Weiderpass E, Braaten T, Magnusson C, Kumle M, Vainio H, Lund E, et al. A prospective study of body size in different periods of life and risk of premenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2004;13(7):1121–7.
Google Scholar
John EM, Sangaramoorthy M, Hines LM, Stern MC, Baumgartner KB, Giuliano AR, et al. Body size throughout adult life influences postmenopausal breast cancer risk among hispanic women: the breast cancer health disparities study. Cancer Epidemiol Biomark Prev. 2015;24(1):128–37.
Article
Google Scholar
Bandera EV, Maskarinec G, Romieu I, John EM. Racial and ethnic disparities in the impact of obesity on breast cancer risk and survival: a global perspective. Adv Nutr. 2015;6(6):803–19.
Article
CAS
Google Scholar
MacInnis RJ, English DR, Gertig DM, Hopper JL, Giles GG. Body size and composition and risk of postmenopausal breast cancer. Cancer Epidemiol Biomark Prev. 2004;13(12):2117–25.
CAS
Google Scholar
John EM, Phipps AI, Sangaramoorthy M. Body size, modifying factors, and postmenopausal breast cancer risk in a multiethnic population: the San Francisco Bay Area Breast Cancer Study. Springerplus. 2013;24(1):239.
Article
Google Scholar
Gao C, Patel CJ, Michailidou K, Peters U, Gong J, Schildkraut J, et al. Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer. Int J Epidemiol. 2016;45(3):896–908.
Article
Google Scholar
Guo Y, Warren Andersen S, Shu XO, Michailidou K, Bolla MK, Wang Q, et al. Genetically predicted body mass index and breast cancer risk: Mendelian randomization analyses of data from 145,000 women of European descent. PLoS Med. 2016;13(8):e1002105.
Article
Google Scholar
Hopper JL, Carlin JB. Familial aggregation of a disease consequent upon correlation between relatives in a risk factor measured on a continuous scale. Am J Epidemiol. 1992;136(9):1138–47.
Article
CAS
Google Scholar
Mavaddat N, Pharoah PD, Michailidou K, Tyrer J, Brook MN, Bolla MK, et al. Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst. 2015;107(5):djv036.
Article
Google Scholar
Dite GS, Macinnis RJ, Bickerstaffe A, Dowty JG, Allman R, Apicella C, et al. Breast cancer risk prediction using clinical models and 77 independent risk-associated SNPs for women aged under 50 years: Australian Breast Cancer Family Registry. Cancer Epidemiol Biomark Prev. 2016;25(2):359–65.
Article
Google Scholar
Easton DF, Pharoah PD, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372(23):2243–57.
Article
CAS
Google Scholar
Nguyen-Dumont T, Teo ZL, Pope BJ, Hammet F, Mahmoodi M, Tsimiklis H, et al. Hi-Plex for high-throughput mutation screening: application to the breast cancer susceptibility gene PALB2. BMC Med Genet. 2013;6:48.
Google Scholar
Nguyen-Dumont T, Mahmoodi M, Hammet F, Tran T, Tsimiklis H, Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, et al. Hi-Plex targeted sequencing is effective using DNA derived from archival dried blood spots. Anal Biochem. 2015;470:48–51.
Article
CAS
Google Scholar
Hopper JL. Genetics for population and public health. Int J Epidemiol. 2017;46(1):8–11.
Article
Google Scholar
Rothman KJ, Greenland S, Lash TL. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Winkins; 2013.
Google Scholar
Terry MB, Phillips KA, Daly MB, John EM, Andrulis IL, Buys SS, et al. Cohort profile: The Breast Cancer Prospective Family Study Cohort (ProF-SC). Int J Epidemiol. 2016;45(3):683–92.
Article
Google Scholar
John EM, Hopper JL, Beck JC, Knight JA, Neuhausen SL, Senie RT, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375–89.
Article
Google Scholar
Mann GJ, Thorne H, Balleine RL, Butow PN, Clarke CL, Edkins E, et al. Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res. 2006;8(1):R12.
Article
Google Scholar
Phillips KA, Butow PN, Stewart AE, Chang JH, Weideman PC, Price MA, et al. Predictors of participation in clinical and psychosocial follow-up of the kConFab breast cancer family cohort. Familial Cancer. 2005;4(2):105–13.
Article
Google Scholar
Neuhausen SL, Ozcelik H, Southey MC, John EM, Godwin AK, Chung W, et al. BRCA1 and BRCA2 mutation carriers in the Breast Cancer Family Registry: an open resource for collaborative research. Breast Cancer Res Treat. 2009;116(2):379–86.
Article
CAS
Google Scholar
McCredie MR, Dite GS, Giles GG, Hopper JL. Breast cancer in Australian women under the age of 40. Cancer Causes Control. 1998;9(2):189–98.
Article
CAS
Google Scholar
Hopper JL, Giles GG, McCredie MRE, Boyle P. Background, rationale and protocol for a case-control-family study of breast cancer. Breast. 1994;3(2):79–86.
Article
Google Scholar
Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98(8):1457–66.
Article
CAS
Google Scholar
Antoniou AC, Pharoah PP, Smith P, Easton DF. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91(8):1580–90.
Article
CAS
Google Scholar
Breast cancer information core. National Human Genome Research Institute. 2017 https://research.nhgri.nih.gov/bic/. Accessed 20 May 2018.
Google Scholar
Dite GS, Whittemore AS, Knight JA, John EM, Milne RL, Andrulis IL, et al. Increased cancer risks for relatives of very early-onset breast cancer cases with and without BRCA1 and BRCA2 mutations. Br J Cancer. 2010;103(7):1103–8.
Article
CAS
Google Scholar
StataCorp. Stata Statistical Software, Release 14. College Station: StataCorp LP; 2015.
Google Scholar
Surveillance Epidemiology and End Results (SEER) Program. SEER*stat database: incidence - SEER 13 regs research data, Nov 2011 Sub (1992–2009) <Katrina/Rita Population Adjustment> − Linked To County Attributes - Total U.S.; 2011.
Google Scholar
Surveillance Epidemiology and End Results (SEER) Program. SEER*stat database: incidence - SEER 18 regs research data, Nov 2011 Sub (2000–2009) <Katrina/Rita Population Adjustment> − Linked To County Attributes - Total U.S.; 2011.
Google Scholar
Surveillance Epidemiology and End Results (SEER) Program. SEER*stat database: incidence - SEER 9 regs research data, Nov 2011 Sub (1973–2009) <Katrina/Rita Population Adjustment> − Linked To County Attributes - Total U.S.; 2011.
Google Scholar
Lee AJ, Cunningham AP, Kuchenbaecker KB, Mavaddat N, Easton DF, Antoniou AC, et al. BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface. Br J Cancer. 2014;110(2):535–45.
Article
CAS
Google Scholar
Amadou A, Ferrari P, Muwonge R, Moskal A, Biessy C, Romieu I, et al. Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: a systematic review and dose-response meta-analysis. Obes Rev. 2013;14(8):665–78.
Article
CAS
Google Scholar
Dite GS, MacInnis RJ, Bickerstaffe A, Dowty JG, Milne RL, Antoniou AC, et al. Testing for gene-environment interactions using a prospective family cohort design: body mass index in early and later adulthood and risk of breast cancer. Am J Epidemiol. 2017;185(6):487–500.
Article
Google Scholar
Shen J, Liao Y, Hopper JL, Goldberg M, Santella RM, Terry MB. Dependence of cancer risk from environmental exposures on underlying genetic susceptibility: an illustration with polycyclic aromatic hydrocarbons and breast cancer. Br J Cancer. 2017;116(9):1229–33.
Article
CAS
Google Scholar
Quante AS, Herz J, Whittemore AS, Fischer C, Strauch K, Terry MB. Assessing absolute changes in breast cancer risk due to modifiable risk factors. Breast Cancer Res Treat. 2015;152(1):193–7.
Article
CAS
Google Scholar
Quante AS, Whittemore AS, Shriver T, Hopper JL, Strauch K, Terry MB. Practical problems with clinical guidelines for breast cancer prevention based on remaining lifetime risk. J Natl Cancer Inst. 2015;107(7):djv124.
Article
Google Scholar
Milne RL, Gaudet MM, Spurdle AB, Fasching PA, Couch FJ, Benitez J, et al. Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Res. 2010;12(6):R110.
Article
Google Scholar
Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–78.
Article
Google Scholar
Munsell MF, Sprague BL, Berry DA, Chisholm G, Trentham-Dietz A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev. 2014;36:114–36.
Article
Google Scholar
Ma H, Ursin G, Xu X, Lee E, Togawa K, Malone KE, et al. Body mass index at age 18 years and recent body mass index in relation to risk of breast cancer overall and ER/PR/HER2-defined subtypes in white women and African-American women: a pooled analysis. Breast Cancer Res. 2018;20(1):5.
Article
Google Scholar
Di LJ, Byun JS, Wong MM, Wakano C, Taylor T, Bilke S, et al. Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer. Nat Commun. 2013;4:1449.
Article
Google Scholar
Cabanes A, Wang M, Olivo S, DeAssis S, Gustafsson JA, Khan G, et al. Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis. 2004;25(5):741–8.
Article
CAS
Google Scholar
Sherratt MJ, McConnell JC, Streuli CH. Raised mammographic density: causative mechanisms and biological consequences. Breast Cancer Res. 2016;18(1):45.
Article
Google Scholar
Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J Clin. 2017;67(5):378–97.
Google Scholar
Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr. 1987;45(1 Suppl):277–82.
Article
CAS
Google Scholar
Hudis C, Dannenberg A. Obesity and breast cancer: narrowing the focus. JAMA Oncol. 2015;1(5):622–3.
Article
Google Scholar
Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol. 2016;34(35):4270–6.
Article
CAS
Google Scholar
Ester WA, Houghton LC, Lumey LH, Michels KB, Hoek HW, Wei Y, et al. Maternal and early childhood determinants of women's body size in midlife: overall cohort and sibling analyses. Am J Epidemiol. 2017;185(5):1–10.
Article
Google Scholar