Vaidya Y, Vaidya P, Vaidya T. Ductal carcinoma in situ of the breast. Indian J Surg. 2015;77(2):141–6. https://doi.org/10.1007/s12262-013-0987-0 (Epub 2013 Oct 12. PMID: 26139969; PMCID: PMC4484537).
Article
PubMed
Google Scholar
Allred DC. Ductal carcinoma in situ: terminology, classification, and natural history. J Natl Cancer Inst Monogr. 2010;41:134–8.
Article
Google Scholar
Ward WH, DeMora L, Handorf E, et al. Preoperative delays in the treatment of DCIS and the associated incidence of invasive breast cancer. Ann Surg Oncol. 2020;27:386–96. https://doi.org/10.1245/s10434-019-07844-4.
Article
PubMed
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442 (Epub 2018 Jan 4 PMID: 29313949).
Article
PubMed
Google Scholar
Kong J, Liu X, Zhang X, Zou Y. The predictive value of calcification for the grading of ductal carcinoma in situ in Chinese patients. Medicine (Baltimore). 2020;99(28):e20847. https://doi.org/10.1097/MD.0000000000020847 (PMID:32664078;PMCID:PMC7360308).
Article
Google Scholar
Sundara Rajan S, Verma R, Shaaban AM, Sharma N, Dall B, Lansdown M. Palpable ductal carcinoma in situ: analysis of radiological and histological features of a large series with 5-year follow-up. Clin Breast Cancer. 2013;13(6):486–91. https://doi.org/10.1016/j.clbc.2013.08.002 (PMID: 24267733).
Article
PubMed
Google Scholar
Gooch JC, Chun J, Kaplowitz E, Kurz E, Guth A, Lee J, Schnabel F. Breast density in a contemporary cohort of women with ductal carcinoma in situ (DCIS). Ann Surg Oncol. 2019;26(11):3472–7. https://doi.org/10.1245/s10434-019-07479-5 (Epub 2019 May 30 PMID: 31147991).
Article
PubMed
Google Scholar
Erbas B, Provenzano E, Armes J, Gertig D. The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res Treat. 2006;97(2):135–44.
Article
Google Scholar
Wang LC, Sullivan M, Du H, Feldman MI, Mendelson EB. US appearance of ductal carcinoma in situ. Radiographics. 2013;33(1):213–28. https://doi.org/10.1148/rg.331125092.
Article
PubMed
Google Scholar
Parikh U, Chhor CM, Mercado CL. Ductal carcinoma in situ: the whole truth. AJR Am J Roentgenol. 2018;210(2):246–55. https://doi.org/10.2214/AJR.17.18778.
Article
PubMed
Google Scholar
Li CI, Daling JR, Malone KE. Age-specific incidence rates of in situ breast carcinomas by histologic type, 1980 to 2001. Cancer Epidemiol biomark prev publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2005;14(4):1008–11. https://doi.org/10.1158/1055-9965.EPI-04-0849.
Article
Google Scholar
Virnig BA, Tuttle TM, Shamliyan T, Kane RL. Ductal carcinoma in situ of the breast: a systematic review of incidence, treatment, and outcomes. J Natl Cancer Inst. 2010;102(3):170–8. https://doi.org/10.1093/jnci/djp482 (Epub 2010 Jan 13 PMID: 20071685).
Article
PubMed
Google Scholar
Page DL, Dupont WD, Rogers LW, Jensen RA, Schuyler PA. Continued local recurrence of carcinoma 15–25 years after a diagnosis of low grade ductal carcinoma in situ of the breast treated only by biopsy. Cancer. 1995;76(7):1197–200 (PMID: 8630897).
Article
CAS
Google Scholar
Collins LC, Tamimi RM, Baer HJ, Connolly JL, Colditz GA, Schnitt SJ. Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: results from the Nurses’ Health Study. Cancer. 2005;103(9):1778–84. https://doi.org/10.1002/cncr.20979 (PMID: 15770688).
Article
PubMed
Google Scholar
Williams KE, Barnes NLP, Cramer A, Johnson R, Cheema K, Morris J, Howe M, Bundred NJ. Molecular phenotypes of DCIS predict overall and invasive recurrence. Ann Oncol. 2015;26(5):1019–25. https://doi.org/10.1093/annonc/mdv062 (Epub 2015 Feb 12 PMID: 25678586).
Article
CAS
PubMed
Google Scholar
Giannakeas V, Sopik V, Narod SA. A comparison of two models for breast cancer mortality for women with ductal carcinoma in situ: an SEER-based analysis. Breast Cancer Res Treat. 2018;169(3):587–94. https://doi.org/10.1007/s10549-018-4716-z.
Article
PubMed
Google Scholar
Giannakeas V, Sopik V, Narod SA. Association of a diagnosis of ductal carcinoma in situ with death from breast cancer. JAMA Netw Open. 2020;3(9):e2017124. https://doi.org/10.1001/jamanetworkopen.2020.17124.
Article
PubMed
PubMed Central
Google Scholar
Tavassoli FA. Breast pathology: rationale for adopting the ductal intraepithelial neoplasia (DIN) classification. Nat Clin Pract Oncol. 2005;2(3):116–7. https://doi.org/10.1038/ncponc0109 (PMID: 16264885).
Article
PubMed
Google Scholar
Pinder SE. Ductal carcinoma in situ (DCIS): pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod Pathol. 2010;23(Suppl 2):S8-13. https://doi.org/10.1038/modpathol.2010.40 (PMID: 20436505).
Article
PubMed
Google Scholar
Zhang X, Dai H, Liu B, Song F, Chen K. Predictors for local invasive recurrence of ductal carcinoma in situ of the breast: a meta-analysis. Eur J Cancer Prev. 2016;25(1):19–28. https://doi.org/10.1097/CEJ.0000000000000131 (PMID:25714649;PMCID:PMC4885540).
Article
CAS
PubMed
Google Scholar
Sanders ME, Schuyler PA, Dupont WD, Page DL. The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer. 2005;103(12):2481–4. https://doi.org/10.1002/cncr.21069 (PMID: 15884091).
Article
PubMed
Google Scholar
Yeong J, Thike AA, Tan PH, Iqbal J. Identifying progression predictors of breast ductal carcinoma in situ. J Clin Pathol. 2017;70(2):102–8. https://doi.org/10.1136/jclinpath-2016-204154 (Epub 2016 Nov 18 PMID: 27864452).
Article
CAS
PubMed
Google Scholar
Correa C, McGale P, et al. Overview of the randomized trials of radiotherapy in ductal carcinoma in situ of the breast. J Natl Cancer Inst Monogr. 2010;41:162–77.
Google Scholar
Giannakeas V, Sopik V, Narod SA. Association of radiotherapy with survival in women treated for ductal carcinoma in situ with lumpectomy or mastectomy. JAMA Netw Open. 2018;1(4):e181100.
Article
Google Scholar
Rudloff U, Jacks LM, Goldberg JI, et al. Nomogram for predicting the risk of local recurrence after breast-conserving surgery for ductal carcinoma in situ. J Clin Oncol. 2010;28:3762–9.
Article
Google Scholar
Kerlikowske K, Molinaro AM, Gauthier ML, Berman HK, Waldman F, Bennington J, Sanchez H, Jimenez C, Stewart K, Chew K, Ljung BM, Tlsty TD. Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J Natl Cancer Inst. 2010;102(9):627–37. https://doi.org/10.1093/jnci/djq101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solin LJ, et al. A Multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst. 2013;105(10):701–10.
Article
CAS
Google Scholar
Whitney J, Corredor G, Janowczyk A, Ganesan S, Doyle S, Tomaszewski J, Feldman M, Gilmore H, Madabhushi A. Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER+ breast cancer. BMC Cancer. 2018;18(1):610. https://doi.org/10.1186/s12885-018-4448-9 (PMID:29848291;PMCID:PMC5977541).
Article
PubMed
PubMed Central
Google Scholar
Durrani S, Al-Mushawa F, Heena H, Wani T, Al-Qahtani A. Relationship of oncotype Dx score with tumor grade, size, nodal status, proliferative marker Ki67 and nottingham prognostic index in early breast cancer tumors in Saudi population. Ann Diagn Pathol. 2021;51:151674. https://doi.org/10.1016/j.anndiagpath.2020.151674.
Article
PubMed
Google Scholar
Huang Z, Qin Q, Xia L, Lian B, Tan Q, Yu Y, Mo Q. significance of oncotype DX 21-gene test and expression of long non-coding RNA MALAT1 in early and estrogen receptor-positive breast cancer patients. Cancer Manag Res. 2021;22(13):587–93. https://doi.org/10.2147/CMAR.S276795 (PMID:33519238;PMCID:PMC7837574).
Article
Google Scholar
Baehner FL. The analytical validation of the oncotype DX Recurrence Score assay. Ecancermedicalscience. 2016;26(10):675. https://doi.org/10.3332/ecancer.2016.675 (PMID:27729940;PMCID:PMC5045300).
Article
Google Scholar
Pennock ND, Jindal S, Horton W, Sun D, Narasimhan J, Carbone L, Fei SS, Searles R, Harrington CA, Burchard J, Weinmann S, Schedin P, Xia Z. RNA-seq from archival FFPE breast cancer samples: molecular pathway fidelity and novel discovery. BMC Med Genomics. 2019;12(1):195. https://doi.org/10.1186/s12920-019-0643-z (PMID:31856832;PMCID:PMC6924022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen PA, Loudig O, Liu C, Albanese J, Fineberg S. The ZNF217 biomarker predicts low- and high-risk oncotype DX® recurrence score in ER-positive invasive breast cancers. Front Pharmacol. 2019;28(10):524. https://doi.org/10.3389/fphar.2019.00524 (PMID:31191299;PMCID:PMC6546897).
Article
CAS
Google Scholar
Nofech-Mozes S, Hanna W, Rakovitch E. Molecular evaluation of breast ductal carcinoma in situ with oncotype DX DCIS. Am J Pathol. 2019;189(5):975–80. https://doi.org/10.1016/j.ajpath.2018.12.003.
Article
CAS
PubMed
Google Scholar
Paszat L, Sutradhar R, Zhou L, Nofech-Mozes S, Rakovitch E. Including the ductal carcinoma in situ (DCIS) Score in the development of a multivariable prediction model for recurrence after excision of DCIS. Clin Breast Cancer. 2018;19:35–46.
Article
Google Scholar
Rakovitch E, Gray R, Baehner FL, et al. Refined estimates of local recurrence risks by DCIS score adjusting for clinicopathological features: a combined analysis of ECOG-ACRIN E5194 and Ontario DCIS cohort studies. Breast Cancer Res Treat. 2018;169:359–69.
Article
CAS
Google Scholar
Bartel D. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell Press. 2004;116:281–97.
CAS
Google Scholar
Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans. 2008;36(Pt 6):1224–31. https://doi.org/10.1042/BST0361224 (PMID: 19021530).
Article
CAS
PubMed
Google Scholar
Hobert O. Gene regulation by transcription factors and microRNAs. Science. 2008;319(5871):1785–6. https://doi.org/10.1126/science.1151651 (PMID: 18369135).
Article
CAS
PubMed
Google Scholar
Gong X, Sun J, Zhao Z. Gene regulation in glioblastoma: a combinatorial analysis of microRNAs and transcription factors. Int J Comput Biol Drug Des. 2011;4(2):111–26. https://doi.org/10.1504/IJCBDD.2011.041006 (Epub 2011 Jun 28 PMID: 21712563).
Article
PubMed
Google Scholar
Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58–63. https://doi.org/10.1038/nature07228 (Epub 2008 Jul 30 PMID: 18668040).
Article
CAS
PubMed
Google Scholar
Uhlmann S, Mannsperger H, Zhang JD, Horvat EÁ, Schmidt C, Küblbeck M, Henjes F, Ward A, Tschulena U, Zweig K, Korf U, Wiemann S, Sahin O. Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Mol Syst Biol. 2012;14(8):570. https://doi.org/10.1038/msb.2011.100 (PMID:22333974;PMCID:PMC3293631).
Article
CAS
Google Scholar
York A, Teo T, et al. Tiny MiRNAs play a big role in the treatment of breast cancer metastasis. Cancers. 2021;13(2):337.
Article
Google Scholar
Hannafon BN, Ding WQ. MiRNAs as biomarkers for predicting the progression of ductal carcinoma in situ. Am J Pathol. 2018;188(3):542–9. https://doi.org/10.1016/j.ajpath.2017.11.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12.
Article
CAS
Google Scholar
Loudig O, Milova E, Brandwein-Gensler M, Massimi A, Belbin TJ, Childs G, Singer RH, Rohan T, Prystowsky MB. Molecular restoration of archived transcriptional profiles by complementary-template reverse-transcription (CT-RT). Nucleic Acids Res. 2007;35(15):e94. https://doi.org/10.1093/nar/gkm510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loudig O, Brandwein-Gensler M, Kim RS, Lin J, Isayeva T, Liu C, Segall JE, Kenny PA, Prystowsky MB. Illumina whole-genome complementary DNA-mediated annealing, selection, extension and ligation platform: assessing its performance in formalin-fixed, paraffin-embedded samples and identifying invasion pattern-related genes in oral squamous cell carcinoma. Hum Pathol. 2011;42(12):1911–22. https://doi.org/10.1016/j.humpath.2011.02.011.
Article
CAS
PubMed
Google Scholar
Loudig Ol, et al. Evaluation and adaptation of a laboratory-based CDNA library preparation protocol for retrospective sequencing of archived MicroRNAs from up to 35-year-old clinical FFPE specimens. Int J Mol Sci. 2017;18(3):627.
Article
Google Scholar
Loudig O, Liu C, Rohan T, Ben-Dov IZ. Retrospective MicroRNA sequencing: complementary DNA library preparation protocol using formalin-fixed paraffin-embedded RNA specimens. J Vis Exp JoVE. 2018;135:57471. https://doi.org/10.3791/57471.
Article
CAS
Google Scholar
Kotorashvili A, Ramnauth A, Liu C, Lin J, Ye K, Kim R, Hazan R, Rohan T, Fineberg S, Loudig O. Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens. PLoS One. 2012;7(4):e34683. https://doi.org/10.1371/journal.pone.0034683.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazeh H, Deutch T, Karas A, Bogardus KA, Mizrahi I, Gur-Wahnon D, Ben-Dov IZ. Next-generation sequencing identifies a highly accurate miRNA Panel that distinguishes well-differentiated thyroid cancer from benign thyroid nodules. Cancer Epidemiol Biomarkers Prev. 2018;27(8):858–63. https://doi.org/10.1158/1055-9965 (EPI-18-400055 PMID: 30049841).
Article
CAS
PubMed
Google Scholar
Ryser MD, Hendrix LH, Worni M, Liu Y, Hyslop T, Hwang ES. Incidence of ductal carcinoma in situ in the United States, 2000–2014. Cancer Epidemiol Biomark Prev. 2019;28(8):1316–23. https://doi.org/10.1158/1055-9965 (EPI-18-1262 Epub 2019 Jun 11. PMID: 31186262; PMCID: PMC6679771).
Article
Google Scholar
Sanders ME, Schuyler PA, Dupont WD, Page DL. The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer. 2005;103:2481–4.
Article
Google Scholar
Bremer T, Whitworth PW, Patel R, Savala J, Barry T, Lyle S, Leesman G, Linke SP, Jirström K, Zhou W, Amini RM, Wärnberg F. A biological signature for breast ductal carcinoma in situ to predict radiotherapy benefit and assess recurrence risk. Clin Cancer Res. 2018;24(23):5895–901. https://doi.org/10.1158/1078-0432.CCR-18-0842 (Epub 2018 Jul 27 PMID: 30054280).
Article
PubMed
Google Scholar
Bergholtz H, Lien TG, Swanson DM, et al. Contrasting DCIS and invasive breast cancer by subtype suggests basal-like DCIS as distinct lesions. npj Breast Cancer. 2020;6:26. https://doi.org/10.1038/s41523-020-0167-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siow ZR, De Boer RH, Lindeman GJ, Mann GB. Spotlight on the utility of the oncotype DX® breast cancer assay. Int J Womens Health. 2018;21(10):89–100. https://doi.org/10.2147/IJWH.S124520 (PMID:29503586;PMCID:PMC5827461).
Article
Google Scholar
Valeri N, Braconi C, Gasparini P, Murgia C, Lampis A, Paulus-Hock V, Hart JR, Ueno L, Grivennikov SI, Lovat F, Paone A, Cascione L, Sumani KM, Veronese A, Fabbri M, Carasi S, Alder H, Lanza G, Gafa’ R, Moyer MP, Ridgway RA, Cordero J, Nuovo GJ, Frankel WL, Rugge M, Fassan M, Groden J, Vogt PK, Karin M, Sansom OJ, Croce CM. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell. 2014;25(4):469–83. https://doi.org/10.1016/j.ccr.2014.03.006 (PMID:24735923;PMCID:PMC3995091).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang YJ, Ma YS, Xia Q, Yu F, Lv ZW, Jia CY, Jiang XX, Zhang L, Shao YC, Xie WT, Lu GX, Yv XQ, Zhong P, Fu D, Wang XF. MicroRNA-mRNA integrated analysis based on a case of well-differentiated thyroid cancer with both metastasis and metastatic recurrence. Oncol Rep. 2018;40(6):3803–11. https://doi.org/10.3892/or.2018.6739 (Epub 2018 Sep 26 PMID: 30272320).
Article
CAS
PubMed
Google Scholar
Zuberi M, Mir R, Khan I, Javid J, Guru SA, Bhat M, Sumi MP, Ahmad I, Masroor M, Yadav P, Vishnubhatla S, Saxena A. The promising signatures of circulating microRNA-145 in epithelial ovarian cancer patients. Microrna. 2020;9(1):49–57. https://doi.org/10.2174/2211536608666190225111234 (PMID: 30799804).
Article
CAS
PubMed
Google Scholar
Zou MX, Huang W, Wang XB, Lv GH, Li J, Deng YW. Identification of miR-140-3p as a marker associated with poor prognosis in spinal chordoma. Int J Clin Exp Pathol. 2014;7(8):4877–85.
CAS
PubMed
PubMed Central
Google Scholar
Halvorsen AR, Helland Å, Gromov P, Wielenga VT, Talman MM, Brunner N, Sandhu V, Børresen-Dale AL, Gromova I, Haakensen VD. Profiling of microRNAs in tumor interstitial fluid of breast tumors - a novel resource to identify biomarkers for prognostic classification and detection of cancer. Mol Oncol. 2017;11(2):220–34. https://doi.org/10.1002/1878-0261.12025.
Article
CAS
PubMed
Google Scholar
Quan Y, Huang X, Quan X. Expression of miRNA-206 and miRNA-145 in breast cancer and correlation with prognosis. Oncol Lett. 2018;16(5):6638–42. https://doi.org/10.3892/ol.2018.9440 (Epub 2018 Sep 17. PMID: 30405803; PMCID: PMC6202535).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou X, Lu Z, Wang T, Huang Z, Zhu W, Miao Y. Plasma miRNAs in diagnosis and prognosis of pancreatic cancer: a miRNA expression analysis. Gene. 2018;5(673):181–93. https://doi.org/10.1016/j.gene.2018.06.037 (Epub 2018 Jun 18 PMID: 29913239).
Article
CAS
Google Scholar
Zhang YH, Jin M, Li J, Kong X. Identifying circulating miRNA biomarkers for early diagnosis and monitoring of lung cancer. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165847. https://doi.org/10.1016/j.bbadis.2020.165847 (Epub 2020 May 27. PMID: 32473385).
Article
CAS
PubMed
Google Scholar
Cao Z, Qiu J, Yang G, Liu Y, Luo W, You L, Zheng L, Zhang T. MiR-135a biogenesis and regulation in malignancy: a new hope for cancer research and therapy. Cancer Biol Med. 2020;17(3):569–82. https://doi.org/10.20892/j.issn.2095-3941.2020.0033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Li Y, Fu Y, Peng J, Mo MH, Stamatakos M, Teal CB, Brem RF, Stojadinovic A, Grinkemeyer M, McCaffrey TA, Man YG, Fu SW. Role of deregulated microRNAs in breast cancer progression using FFPE tissue. PLoS One. 2013;8(1):e54213. https://doi.org/10.1371/journal.pone.0054213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi L, Bart J, Tan LP, Platteel I, Sluis TV, Huitema S, Harms G, Fu L, Hollema H, Berg AV. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer. 2009;9:163. https://doi.org/10.1186/1471-2407-9-163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Pu T, Xiao L, Gao H, Li L, Ye F, Liu Y, Bu H. Screening of recurrence related MicroRNA in ductal carcinoma in situ and functional study of MicroRNA-654-5p. J Breast Cancer. 2019;22(1):52–66. https://doi.org/10.4048/jbc.2019.22.e4.
Article
PubMed
PubMed Central
Google Scholar
Hannafon BN, Sebastiani P, de las Morenas A, Lu J, Rosenberg CL. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer. Breast Cancer Res BCR. 2011;13(2):R24. https://doi.org/10.1186/bcr2839.
Article
CAS
PubMed
Google Scholar
Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Can Res. 2007;67(24):11612–20.
Article
CAS
Google Scholar
Cizeron-Clairac G, Lallemand F, Vacher S, Lidereau R, Bieche I, Callens C. MiR-190b, the highest up-regulated miRNA in ERα-positive compared to ERα-negative breast tumors, a new biomarker in breast cancers? BMC Cancer. 2015;15:499. https://doi.org/10.1186/s12885-015-1505-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodríguez-González FG, Sieuwerts AM, Smid M, Look MP, Meijer-van Gelder ME, de Weerd V, Sleijfer S, Martens JW, Foekens JA. MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res Treat. 2011;127(1):43–51. https://doi.org/10.1007/s10549-010-0940-x.
Article
CAS
PubMed
Google Scholar
Rohan TE, Wang T, Weinmann S, Wang Y, Lin J, Ginsberg M, Loudig O. A miRNA expression signature in breast tumor tissue is associated with risk of distant metastasis. Cancer Res. 2019;79(7):1705–13. https://doi.org/10.1158/0008-5472.CAN-18-2779 (Epub 2019 Feb 13 PMID: 30760517).
Article
CAS
PubMed
Google Scholar
Zhang P, Wang L, Rodriguez-Aguayo C, Yuan Y, Debeb BG, Chen D, Sun Y, You MJ, Liu Y, Dean DC, Woodward WA, Liang H, Yang X, Lopez-Berestein G, Sood AK, Hu Y, Ang KK, Chen J, Ma L. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun. 2014;5:5671. https://doi.org/10.1038/ncomms6671.
Article
CAS
PubMed
Google Scholar
Vislovukh A, Kratassiouk G, Porto E, Gralievska N, Beldiman C, Pinna G, El’skaya A, Harel-Bellan A, Negrutskii B, Groisman I. Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744. Br J Cancer. 2013;108(11):2304–11. https://doi.org/10.1038/bjc.2013.243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tribollet V, Barenton B, Kroiss A, Vincent S, Zhang L, Forcet C, Cerutti C, Périan S, Allioli N, Samarut J, Vanacker JM. miR-135a inhibits the invasion of cancer cells via suppression of ERRα. PLoS One. 2016;11(5):e0156445. https://doi.org/10.1371/journal.pone.0156445.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang D, Zhou B, Xiong Y, Cai H. miR-135 regulated breast cancer proliferation and epithelial-mesenchymal transition acts by the Wnt/β-catenin signaling pathway. Int J Mol Med. 2019;43(4):1623–34. https://doi.org/10.3892/ijmm.2019.4081.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Lu P, Wang DD, Yang SJ, Wu Y, Shen HY, Zhong SL, Zhao JH, Tang JH. The role of miRNAs in drug resistance and prognosis of breast cancer formalin-fixed paraffin-embedded tissues. Gene. 2016;595(2):221–6. https://doi.org/10.1016/j.gene.2016.10.015.
Article
CAS
PubMed
Google Scholar
Piovan C, Palmieri D, Di Leva G, Braccioli L, Casalini P, Nuovo G, Tortoreto M, Sasso M, Plantamura I, Triulzi T, Taccioli C, Tagliabue E, Iorio MV, Croce CM. Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol Oncol. 2012;6(4):458–72. https://doi.org/10.1016/j.molonc.2012.03.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iorio MV, Casalini P, Piovan C, Di Leva G, Merlo A, Triulzi T, Ménard S, Croce CM, Tagliabue E. microRNA-205 regulates HER3 in human breast cancer. Can Res. 2009;69(6):2195–200. https://doi.org/10.1158/0008-5472.CAN-08-2920.
Article
CAS
Google Scholar
Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10(5):593–601. https://doi.org/10.1038/ncb1722.
Article
CAS
PubMed
Google Scholar