Tsirigotis M, Thurig S, Dube M, Vanderhyden BC, Zhang M, Gray DA: Analysis of ubiquitination in vivo using a transgenic mouse model. Biotechniques. 2001, 31: 120-130.
CAS
PubMed
Google Scholar
Slingerland J, Pagano M: Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol. 2000, 183: 10-17. 10.1002/(SICI)1097-4652(200004)183:1<10::AID-JCP2>3.3.CO;2-9.
Article
CAS
PubMed
Google Scholar
Zhang H, Kobayashi R, Galactionov K, Beach D: p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell. 1995, 82: 915-925.
Article
CAS
PubMed
Google Scholar
Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H: p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol. 1999, 9: 661-664. 10.1016/S0960-9822(99)80290-5.
Article
CAS
PubMed
Google Scholar
Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, Krek W: p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol. 1999, 1: 207-214. 10.1038/12027.
Article
CAS
PubMed
Google Scholar
Carrano AC, Eytan E, Hershko A, Pagano M: SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999, 1: 193-199. 10.1038/12013.
Article
CAS
PubMed
Google Scholar
Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY: Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell. 1996, 85: 707-720.
Article
CAS
PubMed
Google Scholar
Kiyokawa H, Kineman R, Manova-Todorova K, Soares V, Hoffman E, Onoi M, Hayday A, Frohman D, Koff A: Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell. 1996, 85: 721-732.
Article
CAS
PubMed
Google Scholar
Fero M, Rivkin M, Tasch M, Porter P, Carow C, Firpo E, Tsai L, Broudy V, Permutter R, Kaushansky K, Roberts J: A syndrome of muti-organ hyperplasia with features of gigantism, tumorigenesis and female sterility in p27Kip1-deficient mice. Cell. 1996, 85: 733-744.
Article
CAS
PubMed
Google Scholar
Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamici I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N, Kigagawa M, Hatakeyama S: Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. Embo J. 2000, 19: 2069-2081. 10.1093/emboj/19.9.2069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G, Pagano M: Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci USA. 2001, 98: 2515-2520. 10.1073/pnas.041475098.
Article
CAS
PubMed
PubMed Central
Google Scholar
Signoretti S, di Marcotullio L, Richardson A, Ramaswamy S, Carrano A, Isaac B, Rue M, Monti F, Ravaioli A, Loda M, Pagano M: Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest. 2002, 110: 633-641. 10.1172/JCI200215795.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malek NP, Sundberg H, McGrew S, Nakayama K, Kyriakides TR, Roberts JM, Kyriakidis TR: A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature. 2001, 413: 323-327. 10.1038/35095083.
Article
CAS
PubMed
Google Scholar
Hara T, Kamura T, Nakayama K, Oshikawa K, Hatakeyama S: Degradation of p27(Kip1) at the G(0)-G(1) transition mediated by a Skp2-independent ubiquitination pathway. J Biol Chem. 2001, 276: 48937-48943. 10.1074/jbc.M107274200.
Article
CAS
PubMed
Google Scholar
Waltregny D, Leav I, Signoretti S, Soung P, Lin D, Merk F, Adams JY, Bhattacharya N, Cirenei N, Loda M: Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol Endocrinol. 2001, 15: 765-782. 10.1210/me.15.5.765.
Article
CAS
PubMed
Google Scholar
Peifer M: Beta-catenin as oncogene: the smoking gun. Science. 1997, 275: 1752-1753. 10.1126/science.275.5307.1752.
Article
CAS
PubMed
Google Scholar
Rubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munemitsu S, Polakis P: Association of the APC gene product with beta-catenin. Science. 1993, 262: 1731-1734.
Article
CAS
PubMed
Google Scholar
Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W: Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996, 382: 638-642. 10.1038/382638a0.
Article
CAS
PubMed
Google Scholar
Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H: XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 1996, 86: 391-399.
Article
CAS
PubMed
Google Scholar
He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW: Identification of c-MYC as a target of the APC pathway. Science. 1998, 281: 1509-1512. 10.1126/science.281.5382.1509.
Article
CAS
PubMed
Google Scholar
Tetsu O, McCormick F: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999, 398: 422-426. 10.1038/18884.
Article
CAS
PubMed
Google Scholar
Pennisi E: How a growth control path takes a wrong turn to cancer. Science. 1998, 281: 1438-1439. 10.1126/science.281.5382.1438.
Article
CAS
PubMed
Google Scholar
Polakis P: Wnt signaling and cancer. Genes Dev. 2000, 14: 1837-1851.
CAS
PubMed
Google Scholar
Peifer M, Polakis P: Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science. 2000, 287: 1606-1609. 10.1126/science.287.5458.1606.
Article
CAS
PubMed
Google Scholar
Latres E, Chiaur DS, Pagano M: The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene. 1999, 18: 849-854. 10.1038/sj.onc.1202653.
Article
CAS
PubMed
Google Scholar
Gat U, DasGupta R, Degenstein L, Fuchs E: De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell. 1998, 95: 605-614. 10.1016/S0092-8674(00)81631-1.
Article
CAS
PubMed
Google Scholar
Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, Taketo MM: Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. Embo J. 1999, 18: 5931-5942. 10.1093/emboj/18.21.5931.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P: Delta N89 beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J Cell Biol. 2001, 153: 555-568. 10.1083/jcb.153.3.555.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Hively WP, Varmus HE: Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene. 2000, 19: 1002-1009. 10.1038/sj.onc.1203273.
Article
CAS
PubMed
Google Scholar
Fantl V, Edwards PA, Steel JH, Vonderhaar BK, Dickson C: Impaired mammary gland development in Cyl-1(-/-) mice during pregnancy and lactation is epithelial cell autonomous. Dev Biol. 1999, 212: 1-11. 10.1006/dbio.1999.9329.
Article
CAS
PubMed
Google Scholar
Stepanova L, Finegold M, DeMayo F, Schmidt EV, Harper J: The oncoprotein kinase chaperone CDC37 functions as an oncogene in mice and collaborates with both c-myc and cyclin D1 in transformation of multiple tissues. Mol Cell Biol. 2000, 20: 4462-4473. 10.1128/MCB.20.12.4462-4473.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN: ApcMin, a mutation in the murine Apc gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. Proc Natl Acad Sci USA. 1993, 90: 8977-8981.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song DH, Sussman DJ, Seldin DC: Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells. J Biol Chem. 2000, 275: 23790-23797. 10.1074/jbc.M909107199.
Article
CAS
PubMed
Google Scholar
Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC: Protein kinase CK2 in mammary gland tumorigenesis. Oncogene. 2001, 20: 3247-3257. 10.1038/sj.onc.1204411.
Article
CAS
PubMed
Google Scholar
Fakharzadeh SS, Trusko SP, George DL: Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. Embo J. 1991, 10: 1565-1569.
CAS
PubMed
PubMed Central
Google Scholar
Alarcon-Vargas D, Ronai Z: p53-Mdm2-the affair that never ends. Carcinogenesis. 2002, 23: 541-547. 10.1093/carcin/23.4.541.
Article
CAS
PubMed
Google Scholar
Toi M, Saji S, Suzuki A, Yamamoto Y, Tominaga T: MDM2 in breast cancer. Breast Cancer. 1997, 4: 264-268.
Article
CAS
PubMed
Google Scholar
Finlay CA: The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol Cell Biol. 1993, 13: 301-306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherr CJ: The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol. 2001, 2: 731-737. 10.1038/35096061.
Article
CAS
PubMed
Google Scholar
Leach FS, Tokino T, Meltzer P, Burrell M, Oliner JD, Smith S, Hill DE, Sidransky D, Kinzler KW, Vogelstein B: p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res. 1993, 53 (suppl): 2231-2234.
CAS
PubMed
Google Scholar
Sigalas I, Calvert AH, Anderson JJ, Neal DE, Lunec J: Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med. 1996, 2: 912-917.
Article
CAS
PubMed
Google Scholar
Jones SN, Roe AE, Donehower LA, Bradley A: Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature. 1995, 378: 206-208. 10.1038/378206a0.
Article
CAS
PubMed
Google Scholar
Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A: Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA. 1998, 95: 15608-15612. 10.1073/pnas.95.26.15608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lundgren K, Montes de Oca Luna R, McNeill YB, Emerick EP, Spencer B, Barfield CR, Lozano G, Rosenberg MP, Finlay CA: Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev. 1997, 11: 714-725.
Article
CAS
PubMed
Google Scholar
Reinke V, Bortner DM, Amelse LL, Lundgren K, Rosenberg MP, Finlay CA, Lozano G: Overproduction of MDM2 in vivo disrupts S phase independent of E2F1. Cell Growth Differ. 1999, 10: 147-154.
CAS
PubMed
Google Scholar
Ganguli G, Abecassis J, Wasylyk B: MDM2 induces hyperplasia and premalignant lesions when expressed in the basal layer of the epidermis. Embo J. 2000, 19: 5135-5147. 10.1093/emboj/19.19.5135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Nan L, Yu D, Agrawal S, Zhang R: Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer: in vitro and in vivo activities and mechanisms. Clin Cancer Res. 2001, 7: 3613-3624.
CAS
PubMed
Google Scholar
Huibregtse JM, Scheffner M, Howley PM: Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol. 1993, 13: 775-784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai MJ, O'Malley BW: The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol. 1999, 19: 1182-1189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kishino T, Lalande M, Wagstaff J: UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997, 15: 70-73.
Article
CAS
PubMed
Google Scholar
Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL: Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998, 21: 799-811. 10.1016/S0896-6273(00)80596-6.
Article
CAS
PubMed
Google Scholar
Sivaraman L, Nawaz Z, Medina D, Conneely OM, O'Malley BW: The dual function steroid receptor coactivator/ubiquitin protein-ligase integrator E6-AP is overexpressed in mouse mammary tumorigenesis. Breast Cancer Res Treat. 2000, 62: 185-195. 10.1023/A:1006410111706.
Article
CAS
PubMed
Google Scholar
Smith CL, DeVera DG, Lamb DJ, Nawaz Z, Jiang YH, Beaudet AL, O'Malley BW: Genetic ablation of the steroid receptor coactivator-ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and defects in reproduction. Mol Cell Biol. 2002, 22: 525-535. 10.1128/MCB.22.2.525-535.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar