Sotiriou C, Piccart MJ: Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care?. Nat Rev Cancer. 2007, 7: 545-553.
Article
CAS
PubMed
Google Scholar
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752.
Article
CAS
PubMed
Google Scholar
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, de RM V, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lønning PE, Børresen-Dale AL: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001, 98: 10869-10874.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li SX, Sjolund A, Harris L, Sweasy JB: DNA repair and personalized breast cancer therapy. Environ Mol Mutagen. 2010, 51: 897-908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiebig HH, Burger AM: Human tumor xenografts and explants. Tumor Models in Cancer Research. Edited by: Teicher BA. 2002, Totowa: Humana Press Inc, 167-193.
Google Scholar
Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, de Plater L, Guyader C, De Pinieux G, Judde JG, Rebucci M, Tran-Perennou C, Sastre-Garau X, Sigal-Zafrani B, Delattre O, Diéras V, Poupon MF: A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res. 2007, 13: 3989-3998.
Article
CAS
PubMed
Google Scholar
Reyal F, Guyader C, Decraene C, Lucchesi C, Auger N, Assayag F, De Plater L, Gentien D, Poupon MF, Cottu P, De Cremoux P, Gestraud P, Vincent-Salomon A, Fontaine JJ, Roman-Roman S, Delattre O, Decaudin D, Marangoni E: Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 2012, 14: R11-
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergamaschi A, Hjortland GO, Triulzi T, Sorlie T, Johnsen H, Ree AH, Russnes HG, Tronnes S, Maelandsmo GM, Fodstad O, Borresen-Dale AL, Engebraaten O: Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models. Mol Oncol. 2009, 3: 469-482.
Article
CAS
PubMed
Google Scholar
DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE, Welm AL: Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011, 17: 1514-1520.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelland LR: "Of mice and men": values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer. 2004, 40: 827-836.
Article
CAS
PubMed
Google Scholar
Jin K, Teng L, Shen Y, He K, Xu Z, Li G: Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol. 2010, 12: 473-480.
Article
PubMed
Google Scholar
Sardanelli F, Fausto A, Di Leo G, de Nijs R, Vorbuchner M, Podo F: In vivo proton MR spectroscopy of the breast using the total choline peak integral as a marker of malignancy. AJR Am J Roentgenol. 2009, 192: 1608-1617.
Article
PubMed
Google Scholar
Jagannathan NR, Kumar M, Seenu V, Coshic O, Dwivedi SN, Julka PK, Srivastava A, Rath GK: Evaluation of total choline from in-vivo volume localized proton MR spectroscopy and its response to neoadjuvant chemotherapy in locally advanced breast cancer. Br J Cancer. 2001, 84: 1016-1022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aboagye EO, Bhujwalla ZM: Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res. 1999, 59: 80-84.
CAS
PubMed
Google Scholar
Singer S, Souza K, Thilly WG: Pyruvate utilization, phosphocholine and adenosine triphosphate (ATP) are markers of human breast tumor progression: a 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy study. Cancer Res. 1995, 55: 5140-5145.
CAS
PubMed
Google Scholar
Eliyahu G, Maril N, Margalit RH: Choline Metabolism in breast cancer; the influence of the microenvironmental conditions: [abstract]. Proc Intl Soc Mag Reson Med. 2007, 2007: 15-
Google Scholar
Giskeødegård GF, Grinde MT, Sitter B, Axelson DE, Lundgren S, Fjøsne HE, Dahl S, Gribbestad IS, Bathen TF: Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res. 2010, 9: 972-979.
Article
PubMed
Google Scholar
Sitter B, Lundgren S, Bathen TF, Halgunset J, Fjosne HE, Gribbestad IS: Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed. 2006, 19: 30-40.
Article
CAS
PubMed
Google Scholar
Jensen LR, Huuse EM, Bathen TF, Goa PE, Bofin AM, Pedersen TB, Lundgren S, Gribbestad IS: Assessment of early docetaxel response in an experimental model of human breast cancer using DCE-MRI, ex vivo HR MAS, and in vivo1H MRS. NMR Biomed. 2010, 23: 56-65.
Article
CAS
PubMed
Google Scholar
Glunde K, Jie C, Bhujwalla ZM: Mechanisms of indomethacin-induced alterations in the choline phospholipid metabolism of breast cancer cells. Neoplasia. 2006, 8: 758-771.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao MD, Sitter B, Bathen TF, Bofin A, Lønning PE, Lundgren S, Gribbestad IS: Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed. 2011, 25: 269-278.
Google Scholar
Gallego-Ortega D, Sarmentero J, Bañez-Coronel M, Martín-Cantalejo Y, Lacal JC, Ramírez De Molina A: Choline kinase is a novel oncogene that potentiates RhoA-induced carcinogenesis. Cancer Res. 2005, 65: 5647-5653.
Article
PubMed
Google Scholar
Glunde K, Bhujwalla ZM, Ronen SM: Choline metabolism in malignant transformation. Nat Rev Cancer. 2011, 11: 835-848.
CAS
PubMed
PubMed Central
Google Scholar
Cottu P, Marangoni E, Assayag F, de Cremoux P, Vincent-Salomon A, Guyader C, de Plater L, Elbaz C, Karboul N, Fontaine J, Chateau-Joubert S, Boudou-Rouquette P, Alran S, Dangles-Marie V, Gentien D, Poupon MF, Decaudin D: Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res Treat. 2012, 133: 595-606.
Article
CAS
PubMed
Google Scholar
Vincent-Salomon A, MacGrogan G, Couturier J, Arnould L, Denoux Y, Fiche M, Jacquemier J, Mathieu MC, Penault-Llorca F, Rigaud C, Roger P, Treilleux I, Vilain MO, Mathoulin-Pélissier S, Le Doussal V: Calibration of immunohistochemistry for assessment of HER2 in breast cancer: results of the French Multicentre GEFPICS Study. Histopathology. 2003, 42: 337-347.
Article
CAS
PubMed
Google Scholar
Navon R, Rødland E, Enerly E, Steinfeld I, Kleivi K, Leivonen S, Aure M, Russnes H, Rønneberg JH, Johnsen H, Navon R, Rødland E, Mäkelä R, Naume B, Perälä M, Kallioniemi O, Kristensen VN, Yakhini Z, Børresen-Dale AL: miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One. 2011, 22: e16915-
Google Scholar
Naume B, Zhao X, Synnestvedt M, Borgen E, Russnes HG, Lingjærde OC, Strømberg M, Wiedswang G, Kvalheim G, Kåresen R, Nesland JM, Børresen-Dale AL, Sørlie T: Presence of bone marrow micrometastasis is associated with different recurrence risk within molecular subtypes of breast cancer. Mol Oncol. 2007, 1: 160-171.
Article
PubMed
Google Scholar
Diehn M, Sherlock G, Binkley G, Jin H, Matese JC, Hernandez-Boussard T, Rees CA, Cherry JM, Botstein D, Brown PO, Alizadeh AA: SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res. 2003, 31: 219-223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lønning PE, Brown PO, Børresen-Dale AL, Botstein D: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003, 100: 8418-8423.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wider G, Dreier L: Measuring protein concentrations by NMR spectroscopy. J Am Chem Soc. 2006, 128: 2571-2576.
Article
CAS
PubMed
Google Scholar
Eilers PH: Parametric time warping. Anal Chem. 2003, 76: 404-411.
Article
Google Scholar
Savorani F, Tomasi G, Engelsen SB: icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson. 2010, 202: 190-202.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28: 27-30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michel V, Yuan ZM, Ramsubir S, Bakovic M: Choline transport for phospholipid synthesis. Exp Biol Med. 2006, 231: 490-504.
CAS
Google Scholar
Gallazzini M, Ferraris JD, Burg MB: GDPD5 is a glycerophosphocholine phosphodiesterase that osmotically regulates the osmoprotective organic osmolyte GPC. Proc Natl Acad Sci USA. 2008, 105: 11026-11031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosner B: Percentage points for a generalized ESD many-outlier procedure. Technometrics. 1983, 25: 165-172.
Article
Google Scholar
Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H, van de Vijver MJ: Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res. 2007, 9: R65-
Article
PubMed
PubMed Central
Google Scholar
Sorlie T: Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer. 2004, 40: 2667-2675.
Article
CAS
PubMed
Google Scholar
Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET: Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA. 2003, 100: 10393-10398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moestue SA, Borgan E, Huuse EM, Lindholm EM, Sitter B, Borresen-Dale AL, Engebraaten O, Maelandsmo GM, Gribbestad IS: Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models. BMC Cancer. 2010, 10: 433-
Article
CAS
PubMed
PubMed Central
Google Scholar
Galons JP, Job C, Gillies RJ: Increase of GPC levels in cultured mammalian cells during acidosis. A 31P MR spectroscopy study using a continuous bioreactor system. Magn Reson Med. 1995, 33: 422-426.
Article
CAS
PubMed
Google Scholar
Mori N, Glunde K, Takagi T, Bhujwalla ZM: The tumor microenvironment alters choline phospholipid metabolism detected by comparing cancer cells with tumors: [abstract]. Proc Intl Soc Mag Reson Med. 2008, 2008: 16-
Google Scholar
Contractor K, Kenny L, Stebbing J, Challapalli A, Al-Nahhas A, Palmieri C, Shousha S, Lewis J, Hogben K, De Nguyen Q, Coombes RC, Aboagye EO: Biological basis of [11C] choline-positron emission tomography in patients with breast cancer: comparison with [11 F] fluorothymidine positron emission tomography. Nucl Med Commun. 2011, 32: 997-1004.
Article
CAS
PubMed
Google Scholar
Ebenhan T, Honer M, Ametamey SM, Schubiger PA, Becquet M, Ferretti S, Cannet C, Rausch M, McSheehy PJ: Comparison of [18 F]-tracers in various experimental tumor models by PET imaging and identification of an early response biomarker for the novel microtubule stabilizer patupilone. Mol Imaging Biol. 2009, 11: 308-321.
Article
CAS
PubMed
Google Scholar
Eliyahu G, Kreizman T, Degani H: Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer. 2007, 120: 1721-1730.
Article
CAS
PubMed
Google Scholar
Kouji H, Inazu M, Yamada T, Tajima H, Aoki T, Matsumiya T: Molecular and functional characterization of choline transporter in human colon carcinoma HT-29 cells. Arch Biochem Biophys. 2009, 483: 90-98.
Article
CAS
PubMed
Google Scholar
Ramírez de Molina A, Gutiérrez R, Ramos MA, Silva JM, Silva J, Bonilla F, Sánchez JJ, Lacal JC: Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene. 2002, 21: 4317-4322.
Article
PubMed
Google Scholar
Moestue SA, Giskeødegård GF, Cao MD, Bathen TF, Gribbestad IS: Glycerophosphocholine (GPC) is a poorly understood biomarker in breast cancer. Proc Natl Acad Sci USA. 2012, 109: E2506-
Article
CAS
PubMed
PubMed Central
Google Scholar
Delikatny EJ, Chawla S, Leung DJ, Poptani H: MR-visible lipids and the tumor microenvironment. NMR Biomed. 2011, 24: 592-611.
CAS
PubMed
PubMed Central
Google Scholar
Milkevitch M, Beardsley NJ, Delikatny EJ: Phenylbutyrate induces apoptosis and lipid accumulations via a peroxisome proliferator-activated receptor gamma-dependent pathway. NMR Biomed. 2010, 23: 473-479.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milkevitch M, Shim H, Pilatus U, Pickup S, Wehrle JP, Samid D, Poptani H, Glickson JD, Delikatny EJ: Increases in NMR-visible lipid and glycerophosphocholine during phenylbutyrate-induced apoptosis in human prostate cancer cells. Biochim Biophys Acta. 2005, 1734: 1-12.
Article
CAS
PubMed
Google Scholar
Morse DL, Raghunand N, Sadarangani P, Murthi S, Job C, Day S, Howison C, Gillies RJ: Response of choline metabolites to docetaxel therapy is quantified in vivo by localized 31P MRS of human breast cancer xenografts and in vitro by high-resolution 31P NMR spectroscopy of cell extracts. Magn Reson Imaging. 2007, 58: 270-280.
CAS
Google Scholar
Cao MD, Döpkens M, Krishnamachary B, Vesuna F, Gadiya MM, Lønning PE, Bhujwalla ZM, Gribbestad IS, Glunde K: Glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) expression correlates with malignant choline phospholipid metabolite profiles in human breast cancer. NMR Biomed. 2012, 25: 1033-1042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guthridge CJ, Stampfer MR, Clark MA, Steiner MR: Phospholipases A2 in ras-transformed and immortalized human mammary epithelial cells. Cancer Lett. 1994, 86: 11-21.
Article
CAS
PubMed
Google Scholar
Morse DL, Carroll D, Day S, Gray H, Sadarangani P, Murthi S, Job C, Baggett B, Raghunand N, Gillies RJ: Characterization of breast cancers and therapy response by MRS and quantitative gene expression profiling in the choline pathway. NMR Biomed. 2009, 22: 114-127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noh DY, Ahn SJ, Lee RA, Park IA, Kim JH, Suh PG, Ryu SH, Lee KH, Han JS: Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Lett. 2000, 161: 207-214.
Article
CAS
PubMed
Google Scholar
Rebecchi MJ, Raghubir A, Scarlata S, Hartenstine MJ, Brown T, Stallings JD: Expression and function of phospholipase C in breast carcinoma. Adv Enzyme Regul. 2009, 49: 59-73.
Article
CAS
PubMed
Google Scholar
Farooqui AA, Horrocks LA: Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod Nutr Dev. 2005, 45: 613-631.
Article
CAS
PubMed
Google Scholar
Macara IG: Elevated phosphocholine concentration in ras-transformed NIH 3 T3 cells arises from increased choline kinase activity, not from phosphatidylcholine breakdown. Mol Cell Biol. 1989, 9: 325-328.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratnam S, Kent C: Early increase in choline kinase activity upon induction of the H-ras oncogene in mouse fibroblast cell lines. Arch Biochem Biophys. 1995, 323: 313-322.
Article
CAS
PubMed
Google Scholar
Mori N, Glunde K, Takagi T, Raman V, Bhujwalla ZM: Choline kinase down-regulation increases the effect of 5-fluorouracil in breast cancer cells. Cancer Res. 2007, 67: 11284-11290.
Article
CAS
PubMed
Google Scholar
Dawson SJ, Rueda OM, Aparicio S, Caldas C: A new genome-driven integrated classification of breast cancer and its implications. EMBO J. 2013, 32: 617-628.
Article
CAS
PubMed
PubMed Central
Google Scholar
Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Gräf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Langerød A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Børresen-Dale AL, Brenton JD, Tavaré S, METABRIC Group, et al: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012, 486: 346-352.
CAS
PubMed
PubMed Central
Google Scholar