Rahman N, Stratton MR: The genetics of breast cancer susceptibility. Annu Rev Genet. 1998, 32: 95-121. 10.1146/annurev.genet.32.1.95.
Article
CAS
PubMed
Google Scholar
Bertwistle D, Ashworth A: Functions of the BRCA1 and BRCA2 genes. Curr Opin Genet Dev. 1998, 8: 14-20. 10.1016/S0959-437X(98)80056-7.
Article
CAS
PubMed
Google Scholar
Easton D: Breast cancer genes: what are the real risks? . Nature Genet. 1997, 16: 210-211.
Article
CAS
PubMed
Google Scholar
Miki Y, Swensen J, Shattuck-Eidens D, et al: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994, 266: 66-71.
Article
CAS
PubMed
Google Scholar
Wooster R, Bignell G, Lancaster J, et al: Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995, 378: 789-791. 10.1038/378789a0.
Article
CAS
PubMed
Google Scholar
Bork P, Blomberg N, Nilges M: Internal repeats in the BRCA2 protein sequence. Nature Genet. 1996, 13: 22-23.
Article
CAS
PubMed
Google Scholar
Bignell G, Micklem G, Stratton MR, Ashworth A, Wooster R: The BRC repeats are conserved in mammalian BRCA2 proteins. Hum Mol Genet. 1997, 6: 53-58. 10.1093/hmg/6.1.53.
Article
CAS
PubMed
Google Scholar
Chen PL, Chen CF, Chen Y, et al: The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci USA. 1998, 95: 5287-5292. 10.1073/pnas.95.9.5287.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong AKC, Pero R, Ormonde PA, Tavtigian SV, Bartel PL: RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene BRC. J Biol Chem. 1997, 272: 31941-31944. 10.1074/jbc.272.51.31941.
Article
CAS
PubMed
Google Scholar
,: Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Lancet. 1997, 349: 1505-1510. 10.1016/S0140-6736(96)10109-4.
Chapman MS, Verma IM: Transcriptional activation by BRCA1. Nature. 1996, 382: 678-679. 10.1038/382678a0.
Article
CAS
PubMed
Google Scholar
Monteiro ANA, August A, Hanafusa H: Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc Natl Acad Sci USA. 1996, 93: 13595-13599. 10.1073/pnas.93.24.13595.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haile DT, Parvin JD: Activation of transcription in vitro by the BRCA1 carboxyl-terminal domain. J Biol Chem. 1999, 274: 2113-2117. 10.1074/jbc.274.4.2113.
Article
CAS
PubMed
Google Scholar
Scully R, Anderson SF, Chao DM, et al: BRCA1 is a component of the RNA polymerase II holoenzyme. Proc Natl Acad Sci USA. 1997, 94: 5605-5610. 10.1073/pnas.94.11.5605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson SF, Schlegel BP, Nakajima T, Wolpin ES, Parvin JD: BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nature Genet. 1998, 19: 254-256. 10.1038/930.
Article
CAS
PubMed
Google Scholar
Neish AS, Anderson SF, Schlegel BP, Wei W, Parvin JD: Factors associated with the mammalian RNA polymerase II holoenzyme. Nucleic Acids Res. 1998, 26: 847-853. 10.1093/nar/26.3.847.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maldonado E, Shiekhattar R, Sheldon M, et al: A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature. 1996, 381: 86-89. 10.1038/381086a0.
Article
CAS
PubMed
Google Scholar
Niculescu AB, Chen X, Smeets M, et al: Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol. 1998, 18: 629-643.
Article
CAS
PubMed
PubMed Central
Google Scholar
Somasundaram K, Zhang H, Zeng YX, et al: Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1. Nature. 1997, 389: 187-190. 10.1038/38291.
Article
CAS
PubMed
Google Scholar
Zhang H, Somasundaram K, Peng Y, et al: BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene. 1998, 16: 1713-1721. 10.1038/sj.onc.1201932.
Article
CAS
PubMed
Google Scholar
Ouchi T, Monteiro AN, August A, Aaronson SA, Hanafusa H: BRCA1 regulates p53-dependent gene expression. Proc Natl Acad Sci USA . 1998, 95: 2302-2306. 10.1073/pnas.95.5.2302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chai YL, Cui J, Shao N, et al: The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene. 1999, 18: 263-268. 10.1038/sj.onc.1202323.
Article
CAS
PubMed
Google Scholar
Harkin DP, Bean JM, Miklos D, et al: Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell. 1999, 97: 575-586. 10.1016/S0092-8674(00)80769-2.
Article
CAS
PubMed
Google Scholar
Wang Q, Zhang H, Kajino K, Greene MI: BRCA1 binds c-Myc and inhibits its transcriptional and transforming activity in cells. Oncogene. 1998, 17: 1939-1948. 10.1038/sj.onc.1202403.
Article
CAS
PubMed
Google Scholar
Fan S, Wang J, Yuan R, et al: BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science. 1999, 284: 1354-1356. 10.1126/science.284.5418.1354.
Article
CAS
PubMed
Google Scholar
Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R: The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem. 1998, 273: 25388-25392. 10.1074/jbc.273.39.25388.
Article
CAS
PubMed
Google Scholar
Li S, Chen PL, Subramanian T, et al: Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J Biol Chem. 1999, 274: 11334-11338. 10.1074/jbc.274.16.11334.
Article
CAS
PubMed
Google Scholar
Yarden RI, Brody LC: BRCA1 interacts with components of the histone deacetylase complex. Proc Natl Acad Sci USA. 1999, 96: 4983-1988. 10.1073/pnas.96.9.4983.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hakem R, de la Pompa JL, Sirard C, et al: The tumor suppressorgene Brca1 is required for embryonic cellular proliferation in the mouse. Cell. 1996, 85: 1009-1023. 10.1016/S0092-8674(00)81302-1.
Article
CAS
PubMed
Google Scholar
Milner J, Ponder B, Hughes-Davies L, Seltmann M, Kouzarides T: Transcriptional activation functions in BRCA2. Nature . 1997, 386: 772-773. 10.1038/386772a0.
Article
CAS
PubMed
Google Scholar
Siddique H, Zou JP, Rao VN, Reddy ES: The BRCA2 is a histoneacetyltransferase. Oncogene. 1998, 16: 2283-2285. 10.1038/sj.onc.1202003.
Article
CAS
PubMed
Google Scholar
Fuks F, Milner J, Kouzarides T: BRCA2 associates with acetyltransferase activity when bound to P/CAF. Oncogene. 1998, 17: 2531-2534. 10.1038/sj.onc.1202475.
Article
CAS
PubMed
Google Scholar
Robson M, Rajan P, Rosen PP, et al: BRCA-associated breast cancer: absence of a characteristic immunophenotype. Cancer Res. 1998, 58: 1839-1842.
CAS
PubMed
Google Scholar
Osin P, Crook T, Powles T, Peto J, Gusterson B: Hormone status of in-situ cancer in BRCA1 and BRCA2 mutation carriers. Lancet. 1998, 351: 1487-. 10.1016/S0140-6736(98)24020-7.
Article
CAS
PubMed
Google Scholar
Sharan SK, Morimatsu M, Albrecht U, et al: Embryonic lethality andradiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature. 1997, 386: 804-810. 10.1038/386804a0.
Article
CAS
PubMed
Google Scholar
Shen SX, Weaver Z, Xu X, et al: A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene. 1998, 17: 3115-3124. 10.1038/sj.onc.1202243.
Article
CAS
PubMed
Google Scholar
Connor F, Bertwistle D, Mee PJ, et al: Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nature Genet. 1997, 17: 423-430.
Article
CAS
PubMed
Google Scholar
Patel KJ, Vu VP, Lee H, et al: Involvement of Brca2 in DNA repair. Mol Cell. 1998, 1: 347-357.
Article
CAS
PubMed
Google Scholar
Takata M, Sasaki MS, Sonoda E, et al: Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 1998, 17: 5497-508. 10.1093/emboj/17.18.5497.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Farmer AA, Chen CF, et al: BRCA1 is a 220-kDa nuclearphosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res. 1996, 56: 3168-3172.
CAS
PubMed
Google Scholar
Bertwistle D, Swift S, Marston NJ, et al: Nuclear location and cell cycle regulation of the BRCA2 protein. Cancer Res. 1997, 57: 5485-5488.
CAS
PubMed
Google Scholar
Liang F, Han M, Romanienko PJ, Jasin M: Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA. 1998, 95: 5172-5177. 10.1073/pnas.95.9.5172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baumann P, West SC: Role of the human Rad51 protein in homologous recombination and double-strand break repair. Trends Biochem Sci. 1998, 23: 247-251. 10.1016/S0968-0004(98)01232-8.
Article
CAS
PubMed
Google Scholar
Scully R, Chen J, Plug A, et al: Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997, 88: 265-275.
Article
CAS
PubMed
Google Scholar
Zhong Q, Chen CF, Li S, et al: Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science. 1999, 285: 747-750. 10.1126/science.285.5428.747.
Article
CAS
PubMed
Google Scholar
Gowen LC, Avrutskaya AV, Latour AM, Koller BH, Leadon SA: BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science. 1998, 281: 1009-1012. 10.1126/science.281.5379.1009.
Article
CAS
PubMed
Google Scholar
Sonoda E, Sasaki MS, Buerstedde JM, et al: Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 1998, 17: 598-608. 10.1093/emboj/17.2.598.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michel B, Ehrlich SD, Uzest M: DNA double-strand breaks caused by replication arrest. EMBO J. 1997, 16: 430-438. 10.1093/emboj/16.2.430.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou H, Rothstein R: Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell. 1997, 90: 87-96.
Article
CAS
PubMed
Google Scholar
Lim DS, Hasty P: A mutation in mouse Rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol. 1996, 16: 7133-7143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee H, Trainer AH, Friedman LS, et al: Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol Cell. 1999, 4: 1-10. 10.1023/A:1007059806016.
Article
CAS
PubMed
Google Scholar
Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A: Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53 and Brca2/p53 nullizygous embryos. Genes Dev. 1997, 11: 1226-1241.
Article
CAS
PubMed
Google Scholar
Crook T, Crossland S, Crompton MR, Osin P, Gusterson BA: p53 mutations in BRCA1-associated familial breast cancer. Lancet. 1997, 350: 638-639.
Article
CAS
PubMed
Google Scholar
Crook T, Brooks LA, Crossland S, et al: p53 mutation with frequent novel condons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumours. Oncogene. 1998, 17: 1681-1689. 10.1038/sj.onc.1202106.
Article
CAS
PubMed
Google Scholar
Xu X, Weaver Z, Linke SP, et al: Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell. 1999, 3: 389-395.
Article
CAS
PubMed
Google Scholar
Larson JS, Tonkinson JL, Lai MT: A BRCA1 mutant alters G2-M cell cycle control in human mammary epithelial cells. Cancer Res. 1997, 57: 3351-3355.
CAS
PubMed
Google Scholar
Hardwick KG: The spindle checkpoint. Trends Genet . 1998, 14: 1-4. 10.1016/S0168-9525(97)01340-1.
Article
CAS
PubMed
Google Scholar
Zimmerman W, Sparks CA, Doxsey SJ: Amorphous no longer: the centrosome comes into focus. Curr Opin Cell Biol. 1999, 11: 122-128. 10.1016/S0955-0674(99)80015-5.
Article
CAS
PubMed
Google Scholar
Tutt A, Gabriel A, Bertwistle D, et al: Absence of BRCA2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol. 1999, 9: 1107-1110. 10.1016/S0960-9822(99)80479-5.
Article
CAS
PubMed
Google Scholar
Sluder G, Thompson EA, Miller FJ, Hayes J, Rieder CL: The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J Cell Sci. 1997, 110: 421-429.
CAS
PubMed
Google Scholar
Doxsey S: The centrosome: a tiny organelle with big potential. Nature Genet. 1998, 20: 104-106. 10.1038/2392.
Article
CAS
PubMed
Google Scholar
Hsu LC, White RL: BRCA1 is associated with the centrosome during mitosis. Proc Natl Acad Sci USA. 1998, 95: 12983-12988. 10.1073/pnas.95.22.12983.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G: Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science. 1999, 283: 851-854. 10.1126/science.283.5403.851.
Article
CAS
PubMed
Google Scholar
Tirkkonen M, Johannsson O, Agnarsson BA, et al: Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations. Cancer Res. 1997, 57: 1222-1227.
CAS
PubMed
Google Scholar
Holt JT: Breast cancer genes: therapeutic strategies. Ann N Y Acad Sci. 1997, 833: 34-41.
Article
CAS
PubMed
Google Scholar