Kraus WL, Montano MM, Katzenellenbogen BS: Cloning of the rat progesterone receptor gene 5′-region and identification of two functionally distinct promoters. Mol Endocrinol. 1993, 7: 1603-1616.
CAS
PubMed
Google Scholar
Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P: Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990, 9: 1603-1614.
CAS
PubMed
PubMed Central
Google Scholar
Beato M, Vicent GP: Impact of chromatin structure and dynamics on PR signaling. The initial steps in hormonal gene regulation. Mol Cell Endocrinol. 2012, 357: 37-42. 10.1016/j.mce.2011.09.004.
Article
CAS
PubMed
Google Scholar
Owen GI, Richer JK, Tung L, Takimoto G, Horwitz KB: Progesterone regulates transcription of the p21(WAF1) cyclin- dependent kinase inhibitor gene through Sp1 and CBP/p300. J Biol Chem. 1998, 273: 10696-10701. 10.1074/jbc.273.17.10696.
Article
CAS
PubMed
Google Scholar
Diaz Flaque MC, Galigniana NM, Beguelin W, Vicario R, Proietti CJ, Russo RC, Rivas MA, Tkach M, Guzman P, Roa JC, Maronna E, Pineda V, Munoz S, Mercogliano MF, Charreau EH, Yankilevich P, Schillaci R, Elizalde PV: Progesterone receptor assembly of a transcriptional complex along with activator protein 1, signal transducer and activator of transcription 3 and ErbB-2 governs breast cancer growth and predicts response to endocrine therapy. Breast Cancer Res. 2013, 15: R118-10.1186/bcr3587.
Article
PubMed
PubMed Central
Google Scholar
Beguelin W, Diaz Flaque MC, Proietti CJ, Cayrol F, Rivas MA, Tkach M, Rosemblit C, Tocci JM, Charreau EH, Schillaci R, Elizalde PV: Progesterone receptor induces ErbB-2 nuclear translocation to promote breast cancer growth via a novel transcriptional effect: ErbB-2 function as a coactivator of Stat3. Mol Cell Biol. 2010, 30: 5456-5472. 10.1128/MCB.00012-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Proietti CJ, Beguelin W, Flaque MC, Cayrol F, Rivas MA, Tkach M, Charreau EH, Schillaci R, Elizalde PV: Novel role of signal transducer and activator of transcription 3 as a progesterone receptor coactivator in breast cancer. Steroids. 2011, 76: 381-392. 10.1016/j.steroids.2010.12.008.
Article
CAS
PubMed
Google Scholar
Clarke CL, Graham JD: Non-overlapping progesterone receptor cistromes contribute to cell-specific transcriptional outcomes. PLoS One. 2012, 7: e35859-10.1371/journal.pone.0035859.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kouros-Mehr H, Kim JW, Bechis SK, Werb Z: GATA-3 and the regulation of the mammary luminal cell fate. Curr Opin Cell Biol. 2008, 20: 164-170. 10.1016/j.ceb.2008.02.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E, Grosveld FG, Engel JD, Lindenbaum MH: Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet. 1995, 11: 40-44. 10.1038/ng0995-40.
Article
CAS
PubMed
Google Scholar
Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z: GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell. 2006, 127: 1041-1055. 10.1016/j.cell.2006.09.048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L, Robb L, Grosveld FG, van der Wees J, Lindeman GJ, Visvader JE: Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol. 2007, 9: 201-209. 10.1038/ncb1530.
Article
CAS
PubMed
Google Scholar
Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, Pai SY, Ho IC, Werb Z: GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell. 2008, 13: 141-152. 10.1016/j.ccr.2008.01.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asselin-Labat ML, Sutherland KD, Vaillant F, Gyorki DE, Wu D, Holroyd S, Breslin K, Ward T, Shi W, Bath ML, Deb S, Fox SB, Smyth GK, Lindeman GJ, Visvader JE: Gata-3 negatively regulates the tumor-initiating capacity of mammary luminal progenitor cells and targets the putative tumor suppressor caspase-14. Mol Cell Biol. 2011, 31: 4609-4622. 10.1128/MCB.05766-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon NK, Maresh EL, Shen D, Elshimali Y, Apple S, Horvath S, Mah V, Bose S, Chia D, Chang HR, Goodglick L: Higher levels of GATA3 predict better survival in women with breast cancer. Hum Pathol. 2010, 41: 1794-1801. 10.1016/j.humpath.2010.06.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenssen TK, Kuo WP, Stokke T, Hovig E: Associations between gene expressions in breast cancer and patient survival. Hum Genet. 2002, 111: 411-420. 10.1007/s00439-002-0804-5.
Article
PubMed
Google Scholar
Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D, Chinnaiyan AM, Kleer CG: Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res. 2005, 65: 11259-11264. 10.1158/0008-5472.CAN-05-2495.
Article
CAS
PubMed
Google Scholar
Albergaria A, Paredes J, Sousa B, Milanezi F, Carneiro V, Bastos J, Costa S, Vieira D, Lopes N, Lam EW, Lunet N, Schmitt F: Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours. Breast Cancer Res. 2009, 11: R40-10.1186/bcr2327.
Article
PubMed
PubMed Central
Google Scholar
Ciocca V, Daskalakis C, Ciocca RM, Ruiz-Orrico A, Palazzo JP: The significance of GATA3 expression in breast cancer: a 10-year follow-up study. Hum Pathol. 2009, 40: 489-495. 10.1016/j.humpath.2008.09.010.
Article
CAS
PubMed
Google Scholar
Network CGA: Comprehensive molecular portraits of human breast tumours. Nature. 2012, 490: 61-70. 10.1038/nature11453.
Article
Google Scholar
Granit RZ, Gabai Y, Hadar T, Karamansha Y, Liberman L, Waldhorn I, Gat-Viks I, Regev A, Maly B, Darash-Yahana M, Peretz T, Ben-Porath I: EZH2 promotes a bi-lineage identity in basal-like breast cancer cells. Oncogene. 2013, 32: 3886-3895. 10.1038/onc.2012.390.
Article
CAS
PubMed
Google Scholar
Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y: Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002, 298: 1039-1043. 10.1126/science.1076997.
Article
CAS
PubMed
Google Scholar
Francis NJ, Kingston RE, Woodcock CL: Chromatin compaction by a polycomb group protein complex. Science. 2004, 306: 1574-1577. 10.1126/science.1100576.
Article
CAS
PubMed
Google Scholar
Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006, 20: 1123-1136. 10.1101/gad.381706.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pal B, Bouras T, Shi W, Vaillant F, Sheridan JM, Fu N, Breslin K, Jiang K, Ritchie ME, Young M, Lindeman GJ, Smyth GK, Visvader JE: Global changes in the mammary epigenome are induced by hormonal cues and coordinated by Ezh2. Cell Rep. 2013, 3: 411-426. 10.1016/j.celrep.2012.12.020.
Article
CAS
PubMed
Google Scholar
Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, Salvesen HB, Otte AP, Akslen LA: EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006, 24: 268-273. 10.1200/JCO.2005.01.5180.
Article
CAS
PubMed
Google Scholar
Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, Sabel MS, Livant D, Weiss SJ, Rubin MA, Chinnaiyan AM: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A. 2003, 100: 11606-11611. 10.1073/pnas.1933744100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Girard F, Strausfeld U, Fernandez A, Lamb NJ: Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell. 1991, 67: 1169-1179. 10.1016/0092-8674(91)90293-8.
Article
CAS
PubMed
Google Scholar
Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G: Cyclin A is required at two points in the human cell cycle. EMBO J. 1992, 11: 961-971.
CAS
PubMed
PubMed Central
Google Scholar
Bortner DM, Rosenberg MP: Overexpression of cyclin A in the mammary glands of transgenic mice results in the induction of nuclear abnormalities and increased apoptosis. Cell Growth Differ. 1995, 6: 1579-1589.
CAS
PubMed
Google Scholar
Klintman M, Strand C, Ahlin C, Beglerbegovic S, Fjallskog ML, Grabau D, Gudlaugsson E, Janssen EA, Lovgren K, Skaland I, Bendahl PO, Malmstrom P, Baak JP, Ferno M: The prognostic value of mitotic activity index (MAI), phosphohistone H3 (PPH3), cyclin B1, cyclin A, and Ki67, alone and in combinations, in node-negative premenopausal breast cancer. PLoS One. 2013, 8: e81902-10.1371/journal.pone.0081902.
Article
PubMed
PubMed Central
Google Scholar
Chu IM, Michalowski AM, Hoenerhoff M, Szauter KM, Luger D, Sato M, Flanders K, Oshima A, Csiszar K, Green JE: GATA3 inhibits lysyl oxidase-mediated metastases of human basal triple-negative breast cancer cells. Oncogene. 2012, 31: 2017-2027. 10.1038/onc.2011.382.
Article
CAS
PubMed
Google Scholar
Proietti C, Salatino M, Rosemblit C, Carnevale R, Pecci A, Kornblihtt AR, Molinolo AA, Frahm I, Charreau EH, Schillaci R, Elizalde PV: Progestins induce transcriptional activation of signal transducer and activator of transcription 3 (Stat3) via a Jak- and Src-dependent mechanism in breast cancer cells. Mol Cell Biol. 2005, 25: 4826-4840. 10.1128/MCB.25.12.4826-4840.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guide for the care and use of laboratory animals. [http://grants.nih.gov/grants/olaw/Guide-for-the-care-and-use-of-laboratory-animals.pdf]
Kordon E, Lanari C, Meiss R, Elizalde P, Charreau E, Dosne Pasqualini C: Hormone dependence of a mouse mammary tumor line induced in vivo by medroxyprogesterone acetate. Breast Cancer Res Treat. 1990, 17: 33-43. 10.1007/BF01812682.
Article
CAS
PubMed
Google Scholar
Proietti CJ, Rosemblit C, Beguelin W, Rivas MA, Diaz Flaque MC, Charreau EH, Schillaci R, Elizalde PV: Activation of Stat3 by heregulin/ErbB-2 through the co-option of progesterone receptor signaling drives breast cancer growth. Mol Cell Biol. 2009, 29: 1249-1265. 10.1128/MCB.00853-08.
Article
CAS
PubMed
Google Scholar
Richer JK, Lange CA, Manning NG, Owen G, Powell R, Horwitz KB: Convergence of progesterone with growth factor and cytokine signaling in breast cancer. Progesterone receptors regulate signal transducers and activators of transcription expression and activity. J Biol Chem. 1998, 273: 31317-31326. 10.1074/jbc.273.47.31317.
Article
CAS
PubMed
Google Scholar
Brayman MJ, Julian J, Mulac-Jericevic B, Conneely OM, Edwards DP, Carson DD: Progesterone receptor isoforms A and B differentially regulate MUC1 expression in uterine epithelial cells. Mol Endocrinol. 2006, 20: 2278-2291. 10.1210/me.2005-0343.
Article
CAS
PubMed
Google Scholar
Labriola L, Salatino M, Proietti CJ, Pecci A, Coso OA, Kornblihtt AR, Charreau EH, Elizalde PV: Heregulin induces transcriptional activation of the progesterone receptor by a mechanism that requires functional ErbB-2 and mitogen-activated protein kinase activation in breast cancer cells. Mol Cell Biol. 2003, 23: 1095-1111. 10.1128/MCB.23.3.1095-1111.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schillaci R, Guzman P, Cayrol F, Beguelin W, Diaz Flaque MC, Proietti CJ, Pineda V, Palazzi J, Frahm I, Charreau EH, Maronna E, Roa JC, Elizalde PV: Clinical relevance of ErbB-2/HER2 nuclear expression in breast cancer. BMC Cancer. 2012, 12: 74-10.1186/1471-2407-12-74.
Article
PubMed
PubMed Central
Google Scholar
Keydar I, Chen L, Karby S, Weiss FR, Delarea J, Radu M, Chaitcik S, Brenner HJ: Establishment and characterization of a cell line of human breast carcinoma origin. Eur J Cancer. 1979, 15: 659-670. 10.1016/0014-2964(79)90139-7.
Article
CAS
PubMed
Google Scholar
Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T: MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 2005, 21: 2933-2942. 10.1093/bioinformatics/bti473.
Article
CAS
PubMed
Google Scholar
Boonyaratanakornkit V, Scott MP, Ribon V, Sherman L, Anderson SM, Maller JL, Miller WT, Edwards DP: Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol Cell. 2001, 8: 269-280. 10.1016/S1097-2765(01)00304-5.
Article
CAS
PubMed
Google Scholar
Licata LA, Hostetter CL, Crismale J, Sheth A, Keen JC: The RNA-binding protein HuR regulates GATA3 mRNA stability in human breast cancer cell lines. Breast Cancer Res Treat. 2010, 122: 55-63. 10.1007/s10549-009-0517-8.
Article
CAS
PubMed
Google Scholar
Adomas AB, Grimm SA, Malone C, Takaku M, Sims JK, Wade PA: Breast tumor specific mutation in GATA3 affects physiological mechanisms regulating transcription factor turnover. BMC Cancer. 2014, 14: 278-10.1186/1471-2407-14-278.
Article
PubMed
PubMed Central
Google Scholar
Yamashita M, Shinnakasu R, Asou H, Kimura M, Hasegawa A, Hashimoto K, Hatano N, Ogata M, Nakayama T: Ras-ERK MAPK cascade regulates GATA3 stability and Th2 differentiation through ubiquitin-proteasome pathway. J Biol Chem. 2005, 280: 29409-29419. 10.1074/jbc.M502333200.
Article
CAS
PubMed
Google Scholar
Dennis AP, Lonard DM, Nawaz Z, O’Malley BW: Inhibition of the 26S proteasome blocks progesterone receptor-dependent transcription through failed recruitment of RNA polymerase II. J Steroid Biochem Mol Biol. 2005, 94: 337-346. 10.1016/j.jsbmb.2004.11.009.
Article
CAS
PubMed
Google Scholar
Bouchard MF, Taniguchi H, Viger RS: Protein kinase A-dependent synergism between GATA factors and the nuclear receptor, liver receptor homolog-1, regulates human aromatase (CYP19) PII promoter activity in breast cancer cells. Endocrinology. 2005, 146: 4905-4916. 10.1210/en.2005-0187.
Article
CAS
PubMed
Google Scholar
Shen T, Horwitz KB, Lange CA: Transcriptional hyperactivity of human progesterone receptors is coupled to their ligand-dependent down-regulation by mitogen-activated protein kinase-dependent phosphorylation of serine 294. Mol Cell Biol. 2001, 21: 6122-6131. 10.1128/MCB.21.18.6122-6131.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groshong SD, Owen GI, Grimison B, Schauer IE, Todd MC, Langan TA, Sclafani RA, Lange CA, Horwitz KB: Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin-dependent kinase inhibitors, p21 and p27(Kip1). Mol Endocrinol. 1997, 11: 1593-1607. 10.1210/mend.11.11.0006.
Article
CAS
PubMed
Google Scholar
Pei XH, Bai F, Smith MD, Usary J, Fan C, Pai SY, Ho IC, Perou CM, Xiong Y: CDK inhibitor p18(INK4c) is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis. Cancer Cell. 2009, 15: 389-401. 10.1016/j.ccr.2009.03.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hosokawa H, Tanaka T, Kato M, Shinoda K, Tohyama H, Hanazawa A, Tamaki Y, Hirahara K, Yagi R, Sakikawa I, Morita A, Nagira M, Poyurovsky MV, Suzuki Y, Motohashi S, Nakayama T: Gata3/Ruvbl2 complex regulates T helper 2 cell proliferation via repression of Cdkn2c expression. Proc Natl Acad Sci U S A. 2013, 110: 18626-18631. 10.1073/pnas.1311100110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molenaar JJ, Ebus ME, Koster J, Santo E, Geerts D, Versteeg R, Caron HN: Cyclin D1 is a direct transcriptional target of GATA3 in neuroblastoma tumor cells. Oncogene. 2010, 29: 2739-2745. 10.1038/onc.2010.21.
Article
CAS
PubMed
Google Scholar
Shan L, Li X, Liu L, Ding X, Wang Q, Zheng Y, Duan Y, Xuan C, Wang Y, Yang F, Shang Y, Shi L: GATA3 cooperates with PARP1 to regulate CCND1 transcription through modulating histone H1 incorporation. Oncogene. 2013, 33: 3205-3216. 10.1038/onc.2013.270.
Article
PubMed
Google Scholar