Skip to main content

Estrogen receptor transcription and transactivation Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer


Estrogens display intriguing tissue-selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer, for menopausal hormone replacement, and for fertility regulation. Certain compounds that act through the estrogen receptor (ER), now referred to as selective estrogen receptor modulators (SERMs), can demonstrate remarkable differences in activity in the various estrogen target tissues, functioning as agonists in some tissues but as antagonists in others. Recent advances elucidating the tripartite nature of the biochemical and molecular actions of estrogens provide a good basis for understanding these tissue-selective actions. As discussed in this thematic review, the development of optimal SERMs should now be viewed in the context of two estrogen receptor subtypes, ERα and ERβ, that have differing affinities and responsiveness to various SERMs, and differing tissue distribution and effectiveness at various gene regulatory sites. Cellular, biochemical, and structural approaches have also shown that the nature of the ligand affects the conformation assumed by the ER-ligand complex, thereby regulating its state of phosphorylation and the recruitment of different coregulator proteins. Growth factors and protein kinases that control the phosphorylation state of the complex also regulate the bioactivity of the ER. These interactions and changes determine the magnitude of the transcriptional response and the potency of different SERMs. As these critical components are becoming increasingly well defined, they provide a sound basis for the development of novel SERMs with optimal profiles of tissue selectivity as medical therapeutic agents.


The pharmacology of various estrogens is intriguing. While many compounds are able to bind to the estrogen receptor (ER), they can differ markedly in their stimulatory and/or inhibitory effects. In addition, certain compounds, now referred to as selective estrogen receptor modulators (SERMs) [1, 2], can demonstrate remarkable differences in efficacy in the various tissues in which estrogens act, functioning as agonists in some tissues but as antagonists in others. Such tissue-selective action is of great biomedical importance in the prevention and treatment of breast cancer, in menopausal hormone replacement, and in fertility regulation.

Originally termed an antiestrogen but now more properly designated as a SERM, tamoxifen is the most widely used agent in the treatment of breast cancer. In addition to its well documented effectiveness in the treatment of hormone-responsive breast cancer, there has been great excitement generated by the findings that tamoxifen [3**], as well as the related SERM raloxifene [4], are effective in preventing breast cancer in women at high risk for the disease. Despite these exciting new findings, it was also noted in the National Cancer Institute-sponsored Prevention Trial [3**] that tamoxifen was not a perfect SERM because there was increased incidence of endometrial cancer and venous thromboembolism. These findings highlight the importance of developing more optimal SERMs, particularly if these agents are to be used for breast cancer prevention and menopausal hormone replacement, where large numbers of healthy women would receive treatment for an extended period of time. An ideal SERM for these applications would be one that has no stimulatory action in the breast and uterus, and one that would block estrogen action at these sites, yet would act as an estrogen agonist in bone, liver, and the cardiovascular and central nervous systems.

Tripartite receptor pharmacology: a framework for understanding the tissue-selective actions of estrogens

Classical concepts in pharmacology cannot readily explain tissue selectivity in the actions of estrogens. However, recent advances in the molecular and cellular interactions of nuclear hormone receptors provide, for the first time, a view of many of the critical components that mediate the action of estrogens at the molecular level. These new findings provide a rich context within which one can begin to understand the unique properties of SERMs and to devise strategies for enhancing their desirable selective action.

As these findings were emerging a few years ago, we advanced the concept of `tripartite receptor pharmacology' to provide a conceptual framework for understanding the tissue-selective actions of estrogens and other hormones for nuclear receptors (eg androgens, progestins, corticosteroids, etc), and the underlying molecular pharmacology [5]. The action of a particular estrogen, according to the tripartite receptor pharmacology scheme, is determined by three principal components: first, the structure of the ligand itself; second, the ER subtype or isoform with which the ligand binds to form a ligand-receptor complex of a particular conformation; and, finally, the interaction of this complex with an array of effector components through which the action of the hormone-receptor complex is linked to transcriptional regulation. The most critical effector components include the gene-regulatory DNA site to which the receptor binds (either directly or indirectly), as well as an array of coregulator proteins that determine the magnitude of the transcriptional response and its sensitivity to hormonal regulation (see Fig. 1). The hormone-receptor complex then recruits these coregulators, thereby linking the complex physically and/or functionally to the basal transcription complex and affecting the local chromatin structure.

Figure 1
figure 1

Estrogen receptor tripartite pharmacology. The diagram outlines the three components (ligands, receptors, and effectors) that together determine the magnitude and character of transcriptional and other responses to estrogens in target tissues.

Estrogen receptor alpha and estrogen receptor beta: receptor subtypes that underlie the diversity of responses to estrogens and provide opportunities for the development of novel SERMs

In thinking about the actions of SERMs, the discovery of a second ER gene, estrogen receptor-beta (ERβ), now distinguished from the classical ER (denoted ERα), is of particular importance [6**, 7**]. ERα and ERβ differ significantly in their tissue distribution and ligand binding characteristics, as shown in this thematic review [8], thereby affording interesting potential for tissue-selective estrogen action.

While ERα and ERβ have nearly identical DNA-binding domains, these receptor subtypes have only 56% amino acid identity in their hormone binding domains, and they differ even more markedly (only 21% amino acid identity) in their N-terminal activation function 1 regions. These differences suggest that it should be possible to identify ligands that will have different levels of potency or efficacy through the two ER subtypes, which would allow selective stimulation of diverse estrogen-regulated genes. Indeed, initial screening of known ER ligands showed that certain steroidal compounds exhibited moderate affinity and potency preference for ERα, whereas certain phytoestrogens and androgen-derived diols had moderate preference for ERβ [9*]. In vivo studies have indeed shown that, compared with estradiol, the soy phytoestrogen genestein is more effective in providing vascular protection, presumably mediated through ERβ, than uterine stimulation, presumably mediated through ERα [10*]. SERMs such as hydroxytamoxifen and raloxifene that are partial agonists on ERα [11*] were found to be complete antagonists on ERβ [12, 13]. Studies utilizing chimeric ER subtypes, in which the activation function 1 regions were exchanged, indicate that the agonism of these SERMs tracks with the activation function 1 of ERα [12].

We have shown that it is possible to develop compounds of novel structure that can show remarkably high potency and/or efficacy selectivity on ERα and ERβ. For example, we found that a triaryl pyrazole, which had nearly a 500-fold binding affinity preference for ERα, could fully activate genes through ERα at 1nM, whereas there was no gene activation through ERβ, even at 1 μM [14**,15]. We have also developed a series of substituted tetrahydrochrysenes that were full agonists on ERα but were complete antagonists on ERβ (see Fig. 2) [14**,16*]. Examinations with these compounds demonstrated that minor changes in the size and stereochemistry of the ligand substituents dramatically affected their activity as ERβ agonists or antagonists [16*]. These compounds are used to help define the respective biological roles of ERα and ERβ in the actions of estrogens in different target tissues. They are also being used to study, by X-ray crystallography, the ligand-induced conformation of the ER subtypes that mediate agonist versus antagonist activity. Genistein, which is more potent in activation of ERβ than ERα, curiously induces a conformation of helix-12 in ERβ that is considered to resemble an antagonist complex more than an agonist complex [17**]. These investigations further substantiate the observation that all agonists (or antagonists) do not contact the identical set of amino acids within the binding pocket of the receptor, nor induce identical receptor conformations [18,19*]. This is consistent with prior observations of differences in ligand-receptor proteolysis profiles [20*, 21, 22], as well as more recent studies using phage display of peptide probes, through which differences in the conformation of ERα and ERβ complexes with agonists and antagonists can be distinguished [23**, 24*, 25].

There have been several active programs directed at the development of new SERMs, and a number of analogs of tamoxifen, raloxifene and other nonsteroidal ER ligands [2, 26, 27] that appear to have favorable tissue-selective character have been described in the recent literature. The extent to which these new-generation SERMs act through ERα and ERβ, and the degree to which they provide substantial improvements over estrogens and antiestrogens currently in use in hormone replacement and in breast cancer prevention and treatment, will require careful evaluation. Likewise, studies on steroidal estrogens used in hormone replacement have shown that some B-ring unsaturated compounds have distinct tissue-selective actions, being more efficacious in vasomotor, neuroendocrine and bone preservation parameters than in other peripheral actions of estrogens [28*]. The underlying bases for the tissue selectivity of these agents may be multifactorial, as discussed in this thematic review.

Figure 2
figure 2

Transcription activation assays demonstrating that a tetrahydrochrysene (THC) ligand is an agonist on ERα and an antagonist on ERβ. Transfection assays were conducted in human endometrial cancer cells using an estrogen-responsive reporter gene and either ERα or ERβ [14**].

Effector components I: the nature of the gene DNA response element through which the estrogen receptor regulates transcription

Although the DNA binding domains of ERα and ERβ are nearly identical, there is considerable documentation that these receptor subtypes differ markedly in their abilities to activate different estrogen-responsive genes. This clearly highlights the fact that multiple regions of the receptor protein determine the specificity of gene activation [11*]. The fact that there are distinctly different modes of ER interaction with gene regulatory sites is of note in this regard. These different modes include direct binding of the receptor to estrogen response elements (EREs). These elements may be consensus or, more commonly, nonconsensus and may exist as single or multiple full or half sites; they may also be composite sites, consisting of EREs flanked by response elements for other transcription factors (such as Sp1), which themselves may or may not be occupied by their respective transactivating factors. It is interesting to note that there are differences in the affinities with which ERα and ERβ bind to the various EREs present in several estrogen-responsive genes (c-fos, c-jun, pS2, cathepsin D, choline acetyltransferase), measured by electrophoretic mobility gel shift assays, despite the near identity of the DNA-binding domains of the two receptors [29]. Studies showing that the DNA gene site itself also has an allosteric effect on the conformation of the ER monitored by protease digestion and immunoreactivity are relevant to this fact [30, 31].

In an alternate manner, ER may interact with DNA indirectly through tethering to other DNA-bound transcription factors, as appears to be the case with the interaction of the ERs at AP1 sites, where the receptor is tethered through the Fos/Jun complex [23**, 33]. Interestingly, the ERs also activate the quinone reductase gene [34**, 35] and the transforming growth factor β3 (TGFβ3) gene [36*] through regulatory regions at which they work along with other protein factors.

There are intriguing differences in the pharmacological character of estrogens acting through ERα versus ERβ at these various gene sites. Compounds that are normally agonists or antagonists at ERE sites showed similar agonist or antagonist behavior through ERα at AP1 sites. When acting through ERβ at AP1 sites, however, compounds such as estradiol and diethylstilbestrol were curiously antagonistic, whereas antiestrogens such as hydroxytamoxifen and raloxifene showed strong stimulatory activity [23**]. Antiestrogens also activate the gene for quinone reductase, an antioxidant, detoxifying enzyme, with this stimulation being reversed by estrogens. This behavior is observed through both ERα and ERβ, but the magnitude of stimulation appears to be somewhat greater through ERβ [34**, 35]. The upregulation of the quinone reductase gene by antiestrogens may contribute to the beneficial effects of antiestrogens in breast cancer prevention as well as treatment. The TGFβ3 gene in bone cells is also better stimulated by antiestrogen ligands, such as raloxifene, and by some equilin-type estrogens than by estradiol, although the respective roles of ERα and ERβ in this response have not been elucidated [36*].

These and other studies highlight not only the importance of the nature of the gene promoter site itself, but also the cell background (ie whether uterine, breast cancer, bone, or another type of cell) in determining the pharmacology of the hormone-receptor complex. This is due, at least in part, to differences in activity of the receptor activation functions in different cell backgrounds, reflecting differences in the balance and spectrum of coregulator proteins present in different types of cells [37**, 38, 39*, 40]. It is also relevant to note that there is interaction between the two major (N- and C-terminal) activation function-containing regions of the ER, allowing for the synergistic regulation of transcription of many genes [41*, 42].

Effector components II: coregulator proteins

The ER works with many other proteins in the regulation of gene expression. These coregulators play several critical roles: they affect the magnitude of gene stimulation or repression ([43, 44, 45, 46, 47] and references cited therein); they influence ligand dissociation kinetics [48]; and they alter the dose-response profile to hormone [48, 49]. The magnitude of stimulation or repression of receptor transcriptional activity can be considered as first determined by the nature of the ligand, which controls the recruitment of coregulators to the ligand-receptor complex [50**, 51**]. The agonist-receptor complex, most notably, recruits the p160 family of coactivators and other proteins, some of which possess histone acetyltransferase activity. Of interest in this regard in breast cancer is the report that AIB1/SRC-3/ACTR is amplified and upregulated in a significant number of breast tumors [52]. Such a change might indicate that these tumors show enhanced sensitivity to estrogens that may have affected tumorigenesis and/or progression of the disease.

The antagonist-receptor complex recruits other coregulators, including an ER-selective repressor of estrogen receptor activity (denoted REA) that enhances the inhibitory potency of antiestrogens [51**], as well as N-CoR and SMRT [53, 54**]. The balance between coactivators and corepressors in breast cancers is considered to be an important determinant of the agonist/antagonist activity of SERMs. There is already evidence that the level of N-CoR is correlated with tamoxifen sensitivity or resistance [54**], and L7/SPA is recruited by the ERα-tamoxifen complex and acts specifically to enhance the agonism by antiestrogen, an effect that is reversed by N-CoR [55*]. There is clear evidence for transcription factor specific requirements for coregulators [56], and mounting evidence for differential recruitment of coregulators by the occupied ERα-receptor and ERβ-receptor complexes, with the nature of the ligand and the nature of the receptor subtype determining the preference for different coregulators [57].

Since ERα and ERβ can also form heterodimers when both are present in the same cell [58, 59], these heterodimers could potentially also differ from either homodimer complex in the profile of coregulators that are recruited to a hormone-receptor complex. This may be of importance in some breast cancers. Both ERα and ERβ are present in most breast cancers, although ERα is usually the predominant form [60, 61, 62*]. There is also evidence for several splice variants and other isoforms of both ERα and ERβ that might also differ in their bioactivity from the wild-type receptor forms [60, 63]. Since there is evidence that ERβ can modulate the activity of ERα under some circumstances [64], it is possible that normal breast development as well as breast cancer progression may be accompanied by changes in the ratios of these two receptors [8]. Whether the onset of tamoxifen resistance might be explained by changes in either the levels or bioactivity of these two receptors or changes in its coregulator partners (such as SRCs or REA) is equally important. In the case of ERα, there is evidence for changes in cell signaling pathways that impact on the ER in tamoxifen-resistant breast cancer [65], as well as evidence for the presence of mutations in ERα in a small proportion of tamoxifen-resistant breast cancers [66, 67, 68]. The role of ERβ (wild type and variant) in breast cancer and in tamoxifen resistance needs to be investigated further.

The development of tamoxifen resistance limits the effective treatment of hormone-responsive breast cancer with this drug. This has placed a premium on understanding the mechanism by which tamoxifen resistance develops [69, 70, 71]. Although many hypotheses have been advanced, it now appears likely that the resistance to antiestrogen therapy most frequently results from a cellular adaptation process. One such process may involve a change in the cellular milieu of coactivators and corepressors (as well as changes in cell signaling pathways; see later) such that they abrogate the tumor growth inhibitory activity of the ER-tamoxifen complex, and/or may even make this complex a growth stimulator (see, for example, [54**, 65]).

Very relevant in this regard are the recent studies using phage-displayed peptides in which certain peptides that specifically recognized ER complexes with the active tamoxifen metabolite, hydroxytamoxifen, were found to block selectively the partial agonistic activity of this ligand, without affecting the agonism of estradiol [24*]. This suggests that specific coregulator proteins, distinct from those involved in mediating the agonism of estrogens such as estradiol, are responsible for mediating the agonistic actions of antiestrogens such as tamoxifen. Learning how such factors are regulated in the cell, particularly with prolonged tamoxifen exposure, may lead to a greater understanding of the mechanism of tamoxifen resistance and may open up new approaches for preventing the development of this therapy-limiting cellular adaptation.

Crosstalk between the estrogen receptor and other cell signaling pathways

A considerable number of studies have documented the fact that growth factors (eg epidermal growth factor [EGF], insulin-like growth factor), cAMP and other agents (eg dopamine) can stimulate activity of the ER and also alter the agonist/antagonist balance of SERMs [72, 73, 74*, 75, 76*, 77]. There is mounting evidence for changes in growth factor and protein kinase pathways in hormone resistance in breast cancer ([69] and references cited therein). Stimulation of the protein kinase A signaling pathway, in particular, enhanced the agonistic activity of tamoxifen-like antiestrogens, and reduced the antagonistic effectiveness of this and related SERMs; observations that may in part account for the development of tamoxifen resistance by some ER-containing breast cancers [73]. Tamoxifen-resistant breast cancer cells also showed complete insensitivity to growth inhibition by TGFβ and reduced sensitivity to the growth inhibitory effects of retinoic acid, supporting interrelationships among the cell regulatory pathways utilized by these three growth-suppressive agents [65]. The effects of many of these agents are believed to reflect their ability to change the phosphorylation state of ER, as well as that of coregulators and other proteins with which the ER interacts to modulate gene expression. Interestingly, there is considerable evidence for interactions between cAMP and estrogen in regulating growth of the mammary gland and breast cancer cells [78, 79].

Several groups have documented enhanced phosphorylation of ER on serine residues upon hormone occupancy as well as upon cell exposure to cAMP and some growth factors. Insulin-like growth factor and EGF stimulation, as well as estrogen stimulation, of ER transcriptional activity are associated with phosphorylation of several serine residues present in the N-terminal activation function 1 region of ERα and ERβ [76*, 80, 81, 82, 83, 84]. These include, most notably, Ser-118 in ERα (and the equivalent serine in ERβ), a mitogen-activated protein (MAP) kinase site, and Ser 167 in ERα, which appears to be a pp90rsk1 site [85]. While growth factor-induced phosphorylation of Ser-118 by MAP kinase is well documented, there is evidence that another kinase may be involved in estrogen-induced phosphorylation of Ser-118. The cAMP-stimulated phosphorylation of ER probably occurs on different residues of the ER [82]. Mutational analyses indicate that these sites play an important role in the transactivation ability of the ER [76*, 82, 83, 85, 86].

Crosstalk between the ER and EGF signaling systems has been nicely documented more recently in the ERα knockout mouse, where the mice lose responsiveness to the EGF, as well as to estrogen, in the uterus [87]. Our observations that the sodium-hydrogen exchanger regulatory factor (NHE-RF, also known as EBP50) is upregulated by estrogen suggests that this protein may serve as a link between the ER and some cell signaling pathways [88]. NHE-RF has been shown to interact with ezrin-radixin-moesin cytoskeletal proteins that link actin filaments to the cell membrane, an interaction that may mediate the estrogen-induced changes in cellular architecture ([88] and references cited therein). NHE-RF also interacts through its two PDZ domains with several important receptors, including the beta-adrenergic receptor, the platelet-derived growth factor receptor, and the cystic fibrosis transporter receptor, and may thereby provide a link between ER and these other regulatory pathways.

The issue of whether hormone-dependent phosphorylation of the ER involves tyrosine residues and whether this affects receptor activity has been controversial. Several articles have reported phosphorylation of ERα on tyrosine 537 and provided evidence for the role of this site in regulating hormone binding and DNA binding of the receptor [89, 90]. However, other studies involving replacement of this residue with amino acids incapable of being phosphorylated, indicate that phosphorylation at this site is not required for hormone or DNA binding, nor for transcriptional activity of the receptor [21, 91, 92,93,94]. The amino acid substitution studies revealed that substitution of certain amino acids for tyrosine 537 in ERα (and at the corresponding tyrosine in ERβ [95]) produced constitutively active ERs (ie ERs fully active in the absence of hormone). These findings suggest that the nature of the residue at this position, which is at the start of helix-12, may facilitate the shift of this helix into an active conformation and/or allow stabilization of the receptor in its active form [21, 91, 92, 93].

Aside from the well documented synergistic effects of estrogens and some protein kinase activators and growth factors on gene transcription (see, for example, [96*]), estrogens also exert rapid membrane-initiated effects that are known to impact importantly on cell signaling and may also influence nuclear gene transcription. For example, estrogens increase the overall levels of tyrosine phosphorylation in cells [97], increase intracellular calcium concentration in some cells [98, 99], increase the phosphorylation of CREB [100], activate G protein-coupled signaling [101], and rapidly increase MAP kinase activity associated with estrogen stimulation of cell proliferation [99,102**]. Several studies suggest that these effects may be due to ERs present in the membrane that are similar to those that mediate gene transcription in the nucleus [101,103,104*], although other studies indicate a receptor pharmacology and ligand selectivity different from that of the classical nuclear ERs [98,105]. This remains an area of great importance and active investigation.


There have been great advances in our understanding of the biochemical and molecular basis for biomedically important tissue selective actions of estrogens. The development of optimal SERMs for the prevention and treatment of breast cancer, and for hormone replacement therapy and fertility regulation, can now be viewed in the context of two estrogen receptor subtypes, ERα and ERβ, that have differing affinities and responsiveness to various SERMs, and differing tissue distribution and effectiveness at different gene regulatory sites. Cellular, biochemical, and structural approaches have revealed that the nature of the ligand affects the conformation assumed by the ER-ligand complex, thereby regulating its state of phosphorylation and the recruitment of different coactivators and corepressors that determine the magnitude of the transcriptional response and its sensitivity to the SERM. The ER and its ligands do not work in isolation in various estrogen target tissues; the ER also has its bioactivity regulated by growth factors and various protein kinases that regulate its phosphorylation, as well as the state of phosphorylation of coregulator proteins with which it interacts. As these critical components are becoming increasingly well defined, they provide a sound basis for the development of novel SERMs with optimal profiles of tissue selectivity as medical therapeutic agents.


  1. 1.

    McDonnell DP: The molecular pharmacology of SERMs. Trends Endocrinol Metab. 1999, 10: 301-311. 10.1016/S1043-2760(99)00177-0.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Grese TA, Dodge JA: Selective estrogen receptor modulators (SERMS). Curr Pharmacol Design. 1998, 4: 71-92.

    CAS  Google Scholar 

  3. 3.

    Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N: Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst. 1998, 90: 1371-1388.This is an important summary of the findings of the large tamoxifen breastcancer prevention clinical trial, 10.1093/jnci/90.18.1371.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Cummings SR, Eckert S, Krueger KA, Grady D, Powles TJ, Cauley JA, Norton L, Nickelsen T, Bjarnason NH, Morrow M, Lippman ME, Black D, Glusman JE, Costa A, Jordan VC: The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA. 1999, 281: 2189-2197. 10.1001/jama.281.23.2189.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Katzenellenbogen JA, O'Malley BW, Katzenellenbogen BS: Tripartite steroid hormone receptor pharmacology: interaction with multiple effector sites as a basis for the cell- and promoter-specific action of these hormones. Mol Endocrinol. 1996, 10: 119-131. 10.1210/me.10.2.119.

    CAS  PubMed  Google Scholar 

  6. 6.

    Kuiper GJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA: Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA. 1996, 93: 5925-5930. 10.1073/pnas.93.12.5925, This is the first publication on the cloning of estrogen receptor beta in therat and indication of its high expression in ovary and prostate.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Mosselman S, Polman J, Dijkema R: ERβ : identification and characterization of a novel human estrogen receptor. FEBS Lett. 1996, 392: 49-53. 10.1016/0014-5793(96)00782-X, The first publication on the cloning of human estrogen receptor beta fromthe testis.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Nilsson S, Gustafsson J-A: Basic aspects of estrogen action. Breast Cancer Res. 2000.

    Google Scholar 

  9. 9.

    Kuiper GGJM, Carlsson B, Grandien J, Enmark E, Haggblad J, Nilsson S, Gustafsson JA: Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology. 1997, 138: 863-870. 10.1210/en.138.3.863, An important study demonstrating the differences in affinity of some ligandsfor estrogen receptors alpha and beta, and the overlapping, but also distinct,tissue distribution of these receptor subtypes

    CAS  PubMed  Google Scholar 

  10. 10.

    Makela S, Savolainen H, Aavik E, Myllarniemi M, Strauss L, Taskinen E, Gustafsson JA, Hayry P: Differentiation between vasculoprotective and uterotrophic effects of ligands with different binding affinities to estrogen receptors alpha and beta. Proc Natl Acad Sci USA. 1999, 96: 7077-7082. 10.1073/pnas.96.12.7077, A comparison of genistein versus estradiol, demonstrating target tissueselectivity of genistein in its vasculoprotective activity with minimal uterinestimulatory activity.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    McInerney EM, Katzenellenbogen BS: Different regions in activation function-1 of the human estrogen receptor required for antiestrogen- and estradiol-dependent transcription activation. J Biol Chem. 1996, 271: 24172-24178. 10.1074/jbc.271.39.24172,An analysis of ERa demonstrating that different regions of activation function1 support the agonistic activity of tamoxifen and estradiol

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    McInerney EM, Weis KE, Sun J, Mosselman S, Katzenellenbogen BS: Transcription activation by the human estrogen receptor subtypeβ (ERβ) studied with ERβ and ERα receptor chimeras. Endocrinology. 1998, 139: 4513-4522. 10.1210/en.139.11.4513.

    CAS  PubMed  Google Scholar 

  13. 13.

    Tremblay GB, Tremblay A, Copeland NG, Gilbert DJ, Jenkins NA, Labrie F, Giguere V: Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor β. Mol Endocrinol. 1997, 11: 353-365. 10.1210/me.11.3.353.

    CAS  PubMed  Google Scholar 

  14. 14.

    Sun J, Meyers MJ, Fink BE, Rajendran R, Katzenellenbogen JA, Katzenellenbogen BS: Novel ligands that function as selective estrogens or anti-estrogens for estrogen receptor-α or estrogen receptor-β. Endocrinology. 1999, 140: 800-804. 10.1210/en.140.2.800, This is the first report on ligands that are highly selective for one of the twoestrogen receptor subtypes, and the identification of a selective ERbantagonist ligand.

    CAS  PubMed  Google Scholar 

  15. 15.

    Stauffer SR, Sun J, Katzenellenbogen BS, Katzenellenbogen JA: Acyclic amides as estrogen receptor ligands. Bioorg Med Chem. 2000.

    Google Scholar 

  16. 16.

    Meyers MJ, Sun J, Carlson KE, Katzenellenbogen BS, Katzenellenbogen JA: Estrogen receptor subtype-selective ligands: asymmetric synthesis and biological evaluation of cis- and trans-5,11-dialkyl-5,6,11,12-tetrahydrochrysenes. J Med Chem. 1999, 42: 2456-2468. 10.1021/jm990101b, A study of structure–activity relationships in a novel nonsteroidal ligandsystem, demonstrating that substituent size and stereochemistry regulateERb antagonist activity.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engstrom O, Ljunggren J, Gustafsson J, Carlquist M: Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J. 1999, 18: 4608-4618. 10.1093/emboj/18.17.4608, The first X-ray crystal structure of the hormone binding domain of ERb.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Ekena KE, Weis KE, Katzenellenbogen JA, Katzenellenbogen BS: Identification of amino acids in the hormone binding domain of the human estrogen receptor important in estrogen binding. J Biol Chem . 1996, 271: 20053-20059. 10.1074/jbc.271.33.20053.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Ekena K, Weis KE, Katzenellenbogen JA, Katzenellenbogen BS: Different residues of the human estrogen receptor are involved in the recognition of structurally diverse estrogens and antiestrogens. J Biol Chem. 1997, 272: 5069-5075. 10.1074/jbc.272.8.5069,A study using alanine scanning mutagenesis demonstrating that differentestrogens have a different pattern of contact residues in helix-11 of ERa.This report also defined the orientation of estrogens in the ligand bindingpocket, with the steroid D-ring contacting helix-11.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    McDonnell DP, Clemm DL, Hermann T, Goldman ME, Pike JW: Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol Endocrinol. 1995, 9: 659-669. 10.1210/me.9.6.659,A study showing a spectrum in degree of estrogen antagonism of differentantiestrogens that reflected conformational changes in the ERa–antiestrogencomplex.

    CAS  PubMed  Google Scholar 

  21. 21.

    Lazennec G, Ediger TR, Petz LN, Nardulli AM, Katzenellenbogen BS: Mechanistic aspects of estrogen receptor activation probed with constitutively active estrogen receptors: correlations with DNA and coregulator interactions and receptor conformational changes. Mol Endocrinol. 1997, 11: 1375-1386. 10.1210/me.11.9.1375.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Allan GF, Leng X, Tsai SY, Weigel NL, Edwards DP, Tsai MJ, O'Malley GW: Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem. 1992, 267: 19513-19520.

    CAS  PubMed  Google Scholar 

  23. 23.

    Paige LA, Christensen DJ, Gron H, Norris JD, Gottlin EB, Padilla KM, Chang C, Ballas LM, Hamilton PT, McDonnell DP, Fowlkes DM: Estrogen receptor (ER) modulators each induce distinct conformational changes in ER alpha and ER beta. Proc Natl Acad Sci USA. 1999, 96: 3999-4004. 10.1073/pnas.96.7.3999, A novel study that used a peptide phage display library approach to identifydifferences in the conformation of ERa and ERb when complexed with differentagonist and antagonist ligands.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Norris JD, Paige LA, Christensen DJ, Chang CY, Huacani MR, Fan D, Hamilton PT, Fowlkes DM, McDonnell DP: Peptide antagonists of the human estrogen receptor. Science. 1999, 285: 744-746. 10.1126/science.285.5428.744, An interesting application of conformation-selective peptides to block the agonisticactivity of tamoxifen, without affecting the agonistic activity of estradiol.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Chang C, Norris JD, Gron H, Paige LA, Hamilton PT, Kenan DJ, Fowlkes D, McDonnell DP: Dissection of the LXXLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors alpha and beta. Mol Cell Biol. 1999, 19: 8226-8239.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Rosati RL, Jardine PD, Cameron KO, Thompson DD, Ke HZ, Toler SM, Brown TA, Pan LC, Ebbinghaus CF, Reinhold AR, Elliott NC, Newhouse BN, Tjoa CM, Sweetnam PM, Cole MJ, Arriola MW, Gauthier JW, Crawford DT, Nickerson DF, Pirie CM, Qi H, Simmons HA, Tkalcevic GT: Discovery and preclinical pharmacology of a novel, potent, nonsteroidal estrogen receptor agonist/antagonist, Cp-336156 a diaryltetrahydronaphthalene. J Med Chem. 1998, 41: 2928-2931. 10.1021/jm980048b.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Willson TM, Norris JD, Wagner BL, Asplin I, Baer P, Brown HR, Jones SA, Henke B, Sauls H, Wolfe S, Morris DC, McDonnell DP: Dissection of the molecular mechanism of action of GW, a novel estrogen receptor ligand, provides insights into the role of estrogen receptor in bone. Endocrinology. 1997, 138: 3901-3911. 10.1210/en.138.9.3901.

    CAS  PubMed  Google Scholar 

  28. 28.

    Baracat E, Haidar M, Lopez FJ, Pickar J, Dey M, Negro-Vilar A: Estrogen activity and novel tissue selectivity of Δ8,9dehydroestrone sulfate in postmenopausal women. J Clin Endocrinol Metab. 1999, 84: 2020-2027. 10.1210/jc.84.6.2020, An interesting study in women demonstrating that B-ring modified estrogenshave distinct tissue-selective actions.

    CAS  PubMed  Google Scholar 

  29. 29.

    Hyder SM, Chiappetta C, Stancel GM: Interaction of human estrogen receptors alpha and beta with the same naturally occurring estrogen response elements. Biochem Pharmacol. 1999, 57: 597-601. 10.1016/S0006-2952(98)00355-4.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Lefstin JA, Yamamoto KR: Allosteric effects of DNA on transcriptional regulators. Nature. 1998, 392: 885-888. 10.1038/31860.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Wood JR, Greene GL, Nardulli AM: Estrogen response elements function as allosteric modulators of estrogen receptor conformation. Mol Cell Biol. 1998, 18: 1927-1934.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Paech K, Webb P, Kuiper GGJM, Nilsson S, Gustafsson J-A, Kushner PJ, Scanlan TS: Differential ligand activation of estrogen receptors ERα and ERβ at AP1 sites. Science. 1997, 277: 1508-1510. 10.1126/science.277.5331.1508, A study demonstrating that estrogens and antiestrogens show differentlevels of agonist versus antagonist activity at different gene sites, throughERa and ERb.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Webb P, Nguyen P, Valentine C, Lopez GN, Kwok GR, McInerney E, Katzenellenbogen BS, Enmark E, Gustafsson JA, Nilsson S, Kushner PJ: The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol Endocrinol. 1999, 13: 1672-1685. 10.1210/me.13.10.1672.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Montano MM, Katzenellenbogen BS: The quinone reductase gene: a unique estrogen receptor-regulated gene that is activated by antiestrogens. Proc Natl Acad Sci USA. 1997, 94: 2581-2586. 10.1073/pnas.94.6.2581, A study documenting that quinone reductase, an antioxidant, chemoprotectivegene, is regulated by estrogens and antiestrogens with ‘reversed pharmacology’,being upregulated by antiestrogens, with this action blocked byestrogens. Antiestrogen regulation was shown to require functional ER andto be mediated via the electrophile response element region of the quinonereductase gene.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Montano MM, Jaiswal AK, Katzenellenbogen BS: Transcriptional regulation of the human quinone reductase gene by antiestrogen-liganded estrogen receptor-α and estrogen receptor-β. J Biol Chem. 1998, 273: 25443-25449. 10.1074/jbc.273.39.25443.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Yang NN, Venugopalan M, Hardikar S, Glasebrook A: Identification of an estrogen response element activated by metabolites of 17-β-estradiol and raloxifene. Science. 1996, 273: 1222-1225, An early demonstration that ERa can activate genes when tethered to aresponse element through other proteins. In this system, certain antiestrogensand estradiol metabolites were especially potent, more so than estradiol.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Tora L, White J, Brou C, Tassett D, Webster N, Scheer E, Chambon P: The human estrogen receptor has two independent transcriptional nonacidic activation functions. Cell. 1989, 59: 477-487, The first demonstration that two separable activation functions are presentin ERa and mediate its transcriptional activity. This study laid the groundworkfor many subsequent investigations.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Bocquel MT, Kumar V, Chambon P, Gronemeyer H: The contribution of the N- and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell specific. Nucl Acids Res. 1989, 17: 2581-2595.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Tzukerman MT, Esty A, Santiso-Mere D, Danielian P, Parker MG, Stein RB, Pike JW, McDonnell DP: Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol. 1994, 8: 21-30. 10.1210/me.8.1.21.

    CAS  PubMed  Google Scholar 

  40. 40.

    Shim W-S, DiRenzo J, DeCaprio JA, Santen RJ, Brown M, Jeng M-H: Segregation of steroid receptor coactivator-1 from steroid receptors in mammary epithelium. Proc Natl Acad Sci USA. 1999, 96: 208-213. 10.1073/pnas.96.1.208.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Kraus WL, McInerney EM, Katzenellenbogen BS: Ligand-dependent, transcriptionally productive association of the amino- and carboxyl-terminal regions of a steroid hormone nuclear receptor. Proc Natl Acad Sci USA. 1995, 92: 12314-12318.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    McInerney EM, Tsai MJ, O'Malley BW, Katzenellenbogen BS: Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator. Proc Natl Acad Sci USA. 1996, 93: 10069-10073. 10.1073/pnas.93.19.10069.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Shibata H, Spencer TE, Onate SA, Jenster G, Tsai SY, Tsai M-J, O'Malley BW: Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res. 1997, 52: 141-165.

    CAS  PubMed  Google Scholar 

  44. 44.

    Horwitz KB, Jackson TA, Bain DL, Richer JK, Takimoto GS: Nuclear receptor coactivators and corepressors. Mol Endocrinol. 1996, 10: 1167-1177. 10.1210/me.10.10.1167.

    CAS  PubMed  Google Scholar 

  45. 45.

    Glass CK, Rose DW, Rosenfeld MG: Nuclear receptor coactivators. Curr Opin Cell Biol. 1997, 9: 222-232. 10.1016/S0955-0674(97)80066-X.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    McKenna NJ, Lanz RB, O'Malley BW: Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev. 1999, 20: 321-344. 10.1210/er.20.3.321.

    CAS  PubMed  Google Scholar 

  47. 47.

    Glass CK, Rosenfeld MG: The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000, 14: 121-141.

    CAS  PubMed  Google Scholar 

  48. 48.

    Gee AC, Carlson KE, Martini PG, Katzenellenbogen BS, Katzenellenbogen JA: Coactivator peptides have a differential stabilizing effect on the binding of estrogens and antiestrogens with the estrogen receptor. Mol Endocrinol. 1999, 13: 1912-1923. 10.1210/me.13.11.1912.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Szapary D, Huang Y, Simons SS: Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor-regulated gene expression. Mol Endocrinol. 1999, 13: 2108-2121. 10.1210/me.13.12.2108.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Onate SA, Tsai SY, Tsai MJ, O'Malley BW: Sequence and characterization of a coactivator for the steroid hormone receptor super family. Science. 1995, 270: 1354-1357.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Montano MM, Ekena K, Delage-Mourroux R, Chang W, Martini P, Katzenellenbogen BS: An estrogen receptor-selective coregulator that potentiates the effectiveness of antiestrogens and represses the activity of estrogens. Proc Natl Acad Sci USA. 1999, 96: 6947-6952. 10.1073/pnas.96.12.6947.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan X-Y, Sauter G, Kallioniemi O-P, Trent JM, Meltzer PS: AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science. 1997, 277: 965-968. 10.1126/science.277.5328.965.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Smith CL, Nawaz Z, O'Malley BW: Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol. 1997, 11: 657-666. 10.1210/me.11.6.657.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen T-M, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW: Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA. 1998, 95: 2920-2925. 10.1073/pnas.95.6.2920.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Jackson TA, Richer J, Bain DL, Takimoto GS, Tung L, Horwitz KB: The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol. 1997, 11: 693-705. 10.1210/me.11.6.693.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, McInerney EM, Mullen T-M, Glass CK, Rosenfeld MG: Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science. 1998, 279: 703-707. 10.1126/science.279.5351.703.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Kraichely DM, Sun J, Katzenellenbogen JA, Katzenellenbogen BS: Conformational changes and coactivator recruitment by novel ligands for estrogen receptor alpha and estrogen receptor beta: Correlations with biological character and distinct differences among SRC coactivator family members. Endocrinology. 2000.

    Google Scholar 

  58. 58.

    Cowley SM, Hoare S, Mosselman S, Parker MG: Estrogen receptors α and β form heterodimers on DNA. J Biol Chem. 1997, 272: 19858-19862. 10.1074/jbc.272.32.19858.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Pace P, Taylor J, Suntharalingam S, Coombes RC, Ali S: Human estrogen receptor beta binds DNA in a similar to and dimerizes with estrogen receptor alpha. J Biol Chem. 1997, 272: 25832-25838. 10.1074/jbc.272.41.25832.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Vladusic EA, Hornby AE, Guerra-Vladusic FK, Lupu R: Expression of estrogen receptor β messenger RNA variant in breast cancer. Cancer Res. 1998, 58: 210-214.

    CAS  PubMed  Google Scholar 

  61. 61.

    Dotzlaw H, Leygue E, Watson PH, Murphy LC: Expression of estrogen receptor-β in human breast tumors. J Clin Endocrinol Metab. 1997, 82: 2371-2377. 10.1210/jc.82.7.2371.

    CAS  PubMed  Google Scholar 

  62. 62.

    Leygue E, Dotzlaw H, Watson PH, Murphy LC: Altered estrogen receptor α and β messenger RNA expression during human breast tumorigenesis. Cancer Res. 1998, 58: 3197-3201.

    CAS  PubMed  Google Scholar 

  63. 63.

    Zhang Q-X, Hilsenbeck SG, Fuqua SAW, Borg A: Multiple splicing variants of the estrogen receptor are present in individual human breast tumors. J Steroid Biochem Mol Biol. 1996, 59: 251-260. 10.1016/S0960-0760(96)00120-3.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Hall JM, McDonnell DP: The estrogen receptor beta-isoform (ERβ) of the human estrogen receptor modulates ER alpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology. 1999, 140: 5566-5578. 10.1210/en.140.12.5566.

    CAS  PubMed  Google Scholar 

  65. 65.

    Herman ME, Katzenellenbogen BS: Response-specific antiestrogen resistance in a newly characterized MCF-7 human breast cancer cell line resulting from long-term exposure to trans-hydroxytamoxifen. J Steroid Biochem Mol Biol. 1996, 59: 121-134. 10.1016/S0960-0760(96)00114-8.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Karnik PS, Kulkarni S, Liu X, Budd GT, Bukowski RM: Estrogen receptor mutation in tamoxifen-resistant breast cancer. Cancer Res . 1994, 54: 349-353.

    CAS  PubMed  Google Scholar 

  67. 67.

    Wolf DM, Jordan VC: Characterization of tamoxifen stimulated MCF-7 tumor variants grown in athymic mice. Breast Cancer Res Treat . 1994, 31: 117-127.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Levenson AS, Jordan VC: The key to the antiestrogenic mechanism of raloxifene is amino acid 351 (aspartate) in the estrogen receptor. Cancer Res. 1998, 58: 1872-1875.

    CAS  PubMed  Google Scholar 

  69. 69.

    Katzenellenbogen BS, Montano MM, Ekena K, Herman ME, McInerney EM: Antiestrogens: mechanisms of action and resistance in breast cancer. Breast Cancer Res Treat. 1997, 44: 23-38. 10.1023/A:1005835428423.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Morrow M, Jordan VC: Molecular mechanisms of resistance to tamoxifen therapy in breast cancer. Arch Surg. 1993, 128: 1187-1191.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Osborne CK, Fuqua SAW: Mechanisms of tamoxifen resistance. Breast Cancer Res Treat. 1994, 32: 49-55.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Aronica SM, Katzenellenbogen BS: Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I. Mol Endocrinol . 1993, 7: 743-752. 10.1210/me.7.6.743.

    CAS  PubMed  Google Scholar 

  73. 73.

    Fujimoto N, Katzenellenbogen BS: Alteration in the agonist/antagonist balance of antiestrogens by activation of protein kinase A signaling pathways in breast cancer cells: antiestrogen-selectivity and promoter-dependence. Mol Endocrinol. 1994, 8: 296-304. 10.1210/me.8.3.296.

    CAS  PubMed  Google Scholar 

  74. 74.

    Ignar-Trowbridge DM, Nelson KG, Bidwell MC, Curtis SW, Washburn TF, McLachlan JA, Korach KS: Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci USA. 1992, 89: 4658-4662.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Bunone G, Briand PA, Miksicek RJ, Picard D: Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 1996, 15: 2174-2183.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Kato SH, Endoh Y, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masucshige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 1995, 270: 1491-1494.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Weigel NL: Steroid hormone receptors and their regulation by phosphorylation. Biochem J. 1996, 319: 657-667.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Sheffield LG, Welsch CW: Cholera-toxin-enhanced growth of human breast cancer cell lines in vitro and in vivo: interaction with estrogen. Int J Cancer. 1985, 36: 479-483.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Silberstein GB, Strickland PS, Trumpbour V, Coleman S, Daniel CW: cAMP stimulates growth and morphogenesis of mouse mammary ducts. Proc Natl Acad Sci USA. 1984, 81: 4950-4954.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Tremblay A, Tremblay GB, Labrie F, Giguere V: Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-1. Mol Cell. 1999, 3: 513-519.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Arnold SF, Obourn JD, Jaffe H, Notides AC: Serine 167 is the major estradiol-induced phosphorylation site on the human estrogen receptor. Mol Endocrinol. 1994, 8: 1208-1214. 10.1210/me.8.9.1208.

    CAS  PubMed  Google Scholar 

  82. 82.

    LeGoff P, Montano MM, Schodin DJ, Katzenellenbogen BS: Phosphorylation of the human estrogen receptor: identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem. 1994, 269: 4458-4466.

    CAS  Google Scholar 

  83. 83.

    Ali S, Metzger D, Bornert J-M, Chambon P: Phosphorylation of the human oestrogen receptor: identification of a phosphorylation site required for transactivation. EMBO J. 1993, 12: 1153-1160.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Lahooti H, White R, Hoare SA, Rahman D, Pappin DJC, Parker MG: Identification of phosphorylation sites in the mouse oestrogen receptor. J Steroid Biochem Mol Biol. 1995, 55: 305-313. 10.1016/0960-0760(95)00188-3.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Joel PB, Smith J, Sturgill TW, Fisher TL, Blenis J, Lannigan DA: pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol Cell Biol. 1998, 18: 1978-1984.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Joel PB, Traish AM, Lannigan DA: Estradiol-induced phosphorylation of serine 118 in the estrogen receptor is independent of p42/p44 mitogen-activated protein kinase. J Biol Chem. 1998, 273: 13317-13323. 10.1074/jbc.273.21.13317.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Couse JF, Korach KS: Estrogen receptor null mice: what have we learned and where will they lead us?. Endocr Rev. 1999, 20: 358-417. 10.1210/er.20.3.358.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Ediger TR, Kraus WL, Weinman EJ, Katzenellenbogen BS: Estrogen receptor regulation of the Na+/H+exchanger regulatory factor. Endocrinology. 1999, 140: 2976-2982. 10.1210/en.140.7.2976.

    CAS  PubMed  Google Scholar 

  89. 89.

    Castoria G, Migliaccio A, Green S, Di Domenico M, Chambon P, Auricchio F: Properties of a purified estradiol-dependent calf uterus tyrosine kinase. Biochemistry. 1993, 32: 1740-1750.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Arnold SF, Vorojeikina DP, Notides AC: Phosphorylation of tyrosine 537 on the human estrogen receptor is required for binding to an estrogen response element. J Biol Chem. 1995, 270: 30205-30212. 10.1074/jbc.270.4.1850.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Weis KE, Ekena K, Thomas JA, Lazennec G, Katzenellenbogen BS: Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol Endocrinol. 1996, 10: 1388-1398. 10.1210/me.10.11.1388.

    CAS  PubMed  Google Scholar 

  92. 92.

    White R, Sjoberg M, Kalkhoven E, Parker MG: Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine. EMBO J. 1997, 16: 1427-1435. 10.1093/emboj/16.6.1427.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Zhang Q-X, Borg A, Wolf DM, Oesterreich S, Fuqua SAW: An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res. 1997, 57: 1244-1249.

    CAS  PubMed  Google Scholar 

  94. 94.

    Yudt MR, Vorojeikina D, Zhong L, Skafar DF, Sasson S, Gasiewicz TA, Notides AC: The function of estrogen receptor tyrosine 537 in hormone binding, DNA binding and transactivation. Biochemistry. 1999, 38: 14146-14156. 10.1021/bi9911132.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Tremblay GB, Tremblay A, Labrie F, Giguere V: Ligand-independent activation of the estrogen receptors α and β by mutations of a conserved tyrosine can be abolished by antiestrogens. Cancer Res. 1998, 58: 877-881.

    CAS  PubMed  Google Scholar 

  96. 96.

    Cho H, Katzenellenbogen BS: Synergistic activation of estrogen receptor-mediated transcription by estradiol and protein kinase activators. Mol Endocrinol. 1993, 7: 441-452. 10.1210/me.7.3.441.

    CAS  PubMed  Google Scholar 

  97. 97.

    Auricchio F, Migliaccio A, Castoria G, Di Domenico M, Bilancio A, Rotondi A: Protein tyrosine phosphorylation and estradiol action. Ann N Y Acad Sci. 1996, 784: 149-172.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Lieberherr M, Grosse B, Kachkache M, Balsan S: Cell signaling and estrogens in female rat osteoblasts: a possible involvement of unconventional nonnuclear receptors. J Bone Miner Res. 1993, 8: 1365-1376.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Improta-Brears T, Whorton AR, Codazzi F, York JD, Meyer T, McDonnell DP: Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. Proc Natl Acad Sci USA. 1999, 96: 4686-4691. 10.1073/pnas.96.8.4686.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Zhou Y, Watters JJ, Dorsa DM: Estrogen rapidly induces the phosphorylation of the cAMP response element binding protein in rat brain. Endocrinology. 1996, 137: 2163-2166. 10.1210/en.137.5.2163.

    CAS  PubMed  Google Scholar 

  101. 101.

    Razandi M, Pedram A, Greene GL, Levin ER: Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERα and ERβ expressed in chinese hamster ovary cells. Mol Endocrinol. 1999, 13: 307-319. 10.1210/me.13.2.307.

    CAS  PubMed  Google Scholar 

  102. 102.

    Migliaccio A, Di Domenico M, Castoria G, de Flaco A, Bontempo P, Nola E, Auricchio F: Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J. 1996, 15: 1292-1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Watson CS, Norfleet AM, Pappas TC, Gametchu B: Rapid actions of estrogens in GH3/B6 pituitary tumor cells via a plasma membrane version of estrogen receptor-alpha. Steroids. 1999, 64: 5-13. 10.1016/S0039-128X(98)00107-X.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Pappas TC, Gametchu B, Watson CS: Membrane estrogen receptors identified by multiple antibody labeling and impeded-ligand binding. FASEB J. 1995, 9: 404-410.

    CAS  PubMed  Google Scholar 

  105. 105.

    Zheng J, Ramirez VD: Demonstration of membrane estrogen binding proteins in rat brain by ligand blotting using a 17β-estradiol-[125I] bovine serum albumin conjugate. J Steroid Biochem Mol Biol. 1997, 62: 327-336. 10.1016/S0960-0760(97)00037-X.

    CAS  PubMed  Article  Google Scholar 

Download references


We are grateful to the scientists in our laboratories for their important contributions. We regret that many important references could not be cited, due to space limitations.

Author information



Corresponding author

Correspondence to Benita S Katzenellenbogen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katzenellenbogen, B.S., Katzenellenbogen, J.A. Estrogen receptor transcription and transactivation Estrogen receptor alpha and estrogen receptor beta: regulation by selective estrogen receptor modulators and importance in breast cancer. Breast Cancer Res 2, 335 (2000).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • coactivators
  • corepressors
  • estrogen receptor
  • ligands for estrogen receptors
  • selective estrogen receptor modulators