Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Volume 11 Supplement 3

Controversies in Breast Cancer 2009

Clinical relevance and current challenges of research on disseminating tumor cells in cancer patients


Despite complete resection of their primary tumors, breast cancer patients still harbor a considerable risk of metastatic relapse caused by minimal residual disease (MRD). To identify single disseminated tumor cells (DTC) in the bone marrow (BM) and circulating tumor cells (CTC) in the peripheral blood undetectable even by high-resolution imaging technologies, sensitive and specific assays have been developed [1, 2].

BM plays the most prominent role among the distant organs as an indicator organ for MRD. Moreover, BM appears to be a common homing organ for DTC derived from various types of epithelial tumors [3]. Although BM is easily accessible by aspiration through the iliac crest and is a routine diagnostic method for patients with leukemias and lymphomas, BM analysis is an invasive procedure not yet introduced in the clinical management of solid tumor patients. In contrast, peripheral blood analyses are more convenient and less stressful for patients than BM analyses, and many research groups are currently evaluating the clinical utility of CTC for assessment of prognosis and monitoring of systemic therapy. Previous findings suggest that DTC/CTC are capable of surviving chemotherapy probably by persisting in a dormant nonproliferating state for many years [4, 5]. Detection and characterization of DTC/CTC provide the potential to monitor systemic tumor cell dissemination in BM and blood, and to identify therapeutic targets on DTC/CTC that might contribute to an improved individualized targeted treatment of cancer patients.

Detection of disseminated tumor cells/circulating tumor cells

Several methods for the detection of DTC/CTC from BM aspirates and blood have been developed to enrich these rare cells [6, 7]. Methods to screen BM aspirates or peripheral blood for DTC/CTC after enrichment can be classified into cytometric/immunological approaches and molecular approaches [1, 8, 9]. Detection by immunocytochemistry [3, 8] enables the characterization of both cell size and shape as well as the nucleus-cytoplasm relationship of each individual event, thereby excluding BM-derived or blood cells with weak expression of the protein of interest. Because of the absence of tumor-specific target antigens, epithelial-specific antigens such as cytoskeleton-associated cytokeratins, surface adhesion molecules, or growth factor receptors are still the markers of choice for the detection of DTC/CTC [1, 8]. To overcome the problem of strongly varying detection rates of DTC/CTC in BM and blood from nonmetastatic breast cancer patients (for review see [2, 10]), a concept for the detection and enrichment of DTC in BM has been proposed that includes criteria to evaluate morphology and staining results after automatic microscopic screening [1114].

Viable DTC/CTC defined by their ability to secrete individual proteins after short-term culture can be detected by the EPISPOT (epithelial immunospot) technique. Using this approach, Muc-1-secreting and/or CK19-secreting DTC could be demonstrated in BM samples of breast cancer patients with (90%) and without (50%) overt metastases [15]. Furthermore, in a small series of 45 breast cancer patients, the detection of full-length CK19 released by cells using this technique correlated with the presence of overt metastasis and a reduced survival [16].

Progress towards a standardized method for CTC detection in peripheral blood was reached through the introduction of the CellSearch system (Veridex, Warren, NJ, USA), an automated enrichment and immunostaining device that has been cleared by the US Food and Drug Administration for the detection of CTC in patients with metastatic breast cancer, colon cancer and prostate cancer [1724]. Furthermore, with the recently presented CTC-chip - a microfluid platform consisting of anti-EpCAM antibody-coated microposts capable of capturing CTC from unfractionated blood under precisely controlled laminar flow conditions - Nagrath and colleagues detected CTC in almost all cancer patients independent of the stage of the disease [25]. CTC counts 2 to 3 log units higher than those obtained by the US Food and Drug Administration-approved method were reported by Pachmann and colleagues in nearly 100% of breast cancer patients using the MAINTRAC™ assay. In this analysis, after erythrocyte lysis, fluorescently labeled EpCAM-positive/CD45-negative cells are counted by laser scanning cytometry [26]. Furthermore, ultraspeed automated digital microscopy fiberoptic array scanning technology and laser printing techniques allow ultrafast evaluation of images [2729]. Very recently, Talasaz and colleagues presented a new sample preparation technology, the MagSweeper - an automated immunomagnetic separation technology [30].

RT-PCR to detect epithelium-specific or rather organ-specific transcripts such as CK19 and CK20, HER2 or mammaglobin has also been proven promising to detect DTC/CTC [3138]. Very recently, the AdnaTest Breast Cancer Detect for analyzing tumor-associated mRNA for HER2, MUC1 or GA 733-2 was described for the detection of CTC in blood from primary breast cancer patients [39]. The main drawback of RT-PCR approaches are false positive results due to a low level of epithelial-related or tissue-related transcription in normal cells [4042]. Moreover, heterogeneity in the expression levels of a particular target transcript between individual DTC/CTC cannot be predicted by RT-PCR. Nevertheless, several studies provided evidence for a clinical relevance of DTC/CTC detected by RT-PCR (for a review see [2, 10]). The advantages and disadvantages of the mentioned detection approaches have been recently discussed elsewhere [7].

Characterization of disseminated tumor cells/circulating tumor cells

DTC are likely to be genomically unstable and heterogeneous [43] as well as capable of disseminating in a less progressed genomic state, acquiring genomic alterations typical for fully metastatic cells later [44]. Furthermore, DTC are heterogeneous regarding the expression of growth factor receptors, adhesion molecules, proteases and their inducer and receptors, major histocompatibility complex antigens, signaling kinases, melanoma-associated antigens or telomerase activity [1, 3, 4551].

Of particular importance is the epidermal growth factor receptor HER2, the expression of which in primary tumors is the basis for trastuzumab treatment decisions of breast cancer patients [52, 53]. HER2 overexpression on DTC in BM was predictive for a poor clinical outcome of stage I to stage III breast cancer patients [54]. The study of Vincent-Salomon and colleagues demonstrated that in the majority of cases the HER2 status remained stable between DTC and the corresponding primary tumors [55]. There is also evidence, however, for discrepancies between the HER2 status of primary tumors and that of DTC in BM [54, 56], or CTC in blood [5759]. This discrepancy might be due to the presence of a small subclone of HER2-amplified cells missed by routine fluorescence in situ hybridization analysis of the primary tumor or an acquisition of HER2 gene amplification in DTC/CTC after dissemination [57].

For CTC from patients with metastatic breast cancer, global gene expression profiles have been defined and a list of CTC-specific genes obtained, which might be useful to distinguish a normal control phenotype from cancer patients [60]. TWIST1, a transcription factor pivotal for metastasis by promoting epithelial-mesenchymal transition [6164], was part of the gene expression signature identified in EpCAM-enriched cells from BM of breast cancer patients after chemotherapy. Its expression was associated with distant metastasis and local progression [65]. The first hints for stem cell features of DTC in BM were provided by Balic and colleagues and by Alix-Panabieres and colleagues, who demonstrated a significant number of DTC from BM of breast cancer patients with either CD44+/CD24-/low or CK19+/Muc-1-stem cell-like phenotypes [15, 66]. With the AdnaTest Tumor Stem Cell/The AdnaTest EMT RT-PCT assay, Aktas and colleagues found that a major proportion of CTC from metastatic breast cancer patients showed features characteristic for stem cells and epithelial-mesenchymal transition [67]. Resistance to systemic chemotherapy and long-term persistence of DTC in BM of cancer patients is also indicative for a putative stem cell phenotype [6870].

To perform functional studies for the validation of the descriptive findings observed in cancer patients, the development of appropriate mouse models mimicking MRD is pivotal.

Clinical relevance of disseminated tumor cells/circulating tumor cells

The meta-analysis published by Braun and colleagues, including data for 4,703 breast cancer patients, demonstrated that the presence of DTC in BM was not only predictive of the development of skeletal metastases but also predicted the development of metastases in other organs [71].

Based on these data and other results showing clinical relevance of DTC/CTC detection in breast cancer patients [7, 10], DTC and CTC were mentioned for the first time in the American Society of Oncology recommendations on tumor markers in 2007 [72].

The ability of DTC to survive chemotherapy and hormonal therapy [5, 68] and the persistence in BM over many years post surgery, linked to an increased risk of late metastatic relapse, have been described previously [69, 70, 73, 74]. A European pooled analysis involving 696 breast cancer patients revealed that the persistence of DTC in 16% of breast cancer patients was an independent prognostic factor for subsequent reduced breast cancer survival [75, 76].

Bidard and colleagues recently reported about the prognostic relevance of DTC detection in stage I to stage III breast cancer patients [77]. As also published by Bidard and colleagues, the presence of DTC in BM was associated with a different pattern of loco-regional cancer cell dissemination and might influence loco-regional recurrence-free survival. Hormonal therapy and radiotherapy could help to prevent reseeding of the primary tumor area by DTC [78].

Sequential peripheral blood analyses are more convenient than BM analyses. Only few studies have thus far directly compared BM and blood analyses in the same patients [5, 7982], and only studies on larger cohorts of patients may help to clarify whether BM analysis can be replaced by a blood test.

CTC analyses for therapy monitoring have provided significant prognostic information in metastatic breast cancer. Cristofanilli and colleagues showed that the number of CTC before treatment and at the first follow-up visit after initiation of therapy is an independent predictor of progression-free survival and overall survival [17]. Moreover, results by Hayes and colleagues indicated that CTC in peripheral blood of metastatic cancer patients at any time during therapy directly reflect the patient's response, or lack of response, respectively, to therapy [20] - and CTC seem to be superior or additive to conventional imaging methods such as radiologic assessment, including computed tomograms [83, 84]. Despite these promising data, however, the recent American Society of Oncology guidelines have stated that even the use of the US Food and Drug Administration-cleared CellSearch assay in patients with metastatic breast cancer cannot be recommended until further validation confirms the clinical value of this test [72]. The clinical utility of CTC measurements in metastatic breast cancer patients is therefore now being prospectively addressed in the randomized trial SWOG S0500 led by the Southwest Oncology group [85], expecting to enroll 500 patients with metastatic breast cancer.

To monitor MRD in nonmetastatic patients is the most important challenge of new DTC/CTC technologies. In a phase II trial (REMAGUS 02), Pierga and colleagues monitored CTC in 118 patients with large operable or locally advanced breast cancer before and after neoadjuvant chemotherapy, and showed that the presence of CTC after a short follow-up time of 18 months was an independent prognostic factor for reduced metastasis-free survival [86]. Interestingly, they did not find a significant correlation for response of the primary tumor to chemotherapy. In contrast, follow-up analyses of two German trials using the CellSearch technology - the GEPARQuattro trial on neoadjuvant chemotherapy and additionally, if indicated, trastuzumab treatment, and the

SUCCESS trial on adjuvant chemotherapy - are still ongoing and will show whether the observed decreases in CTC rates will be associated with an improved survival rate [87, 88]. Very recently, Xenidis and colleagues described patients with detectable CK19 mRNA post chemotherapy having significantly reduced overall survival and disease-free survival [38].


Detection of DTC in BM and of CTC in blood of breast cancer patients years before the occurrence of distant overt metastases is facilitated by several rare cell detection techniques. The resulting information may be used to assess the individual prognosis of cancer patients and to stratify the patients at risk to systemic therapies aimed to prevent recurrences and metastatic relapses. Nevertheless, the detection of DTC/CTC is still not part of the routine tumor staging in clinical practice. DTC/CTC measurements within clinical trials, however, might provide an important biomarker for real-time monitoring of the efficacy of systemic therapies in individual cancer patients, which may accelerate drug development, help to define subpopulations of patients with the highest treatment benefit, and open a new avenue for investigating drug resistance.

Recent data support the hypothesis that DTC are able to persist in the BM in a dormant state and that the BM provides a reservoir out of which DTC might disseminate also in other organs, such as the lung, the liver and the brain [89]. To understand molecular mechanisms involved in the regulation of the dormant stage together with the identification of those DTC/CTC that have the potential to initiate metastases are the most challenging topics of basic research on the biology of these cells.



bone marrow


circulating tumor cells


disseminated tumor cells


minimal residual disease


polymerase chain reaction


reverse transcriptase.


  1. 1.

    Pantel K, Brakenhoff RH, Brandt B: Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer. 2008, 8: 329-340. 10.1038/nrc2375.

  2. 2.

    Pantel K, Alix-Panabières C, Riethdorf S: Cancer micrometastasis. Nat Clin Pract Oncol. 2009, 6: 339-351.

  3. 3.

    Pantel K, Brakenhoff RH: Dissecting the metastatic cascade. Nat Rev Cancer. 2004, 4: 448-456. 10.1038/nrc1370.

  4. 4.

    Pantel K, Schlimok G, Braun S, Kutter D, Lindemann F, Schaller G, Funke I, Izbicki JR, Riethmuller G: Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst. 1993, 85: 1419-1424. 10.1093/jnci/85.17.1419.

  5. 5.

    Muller V, Stahmann N, Riethdorf S, Rau T, Zabel T, Goetz A, Janicke F, Pantel K: Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin Cancer Res. 2005, 11: 3678-3685. 10.1158/1078-0432.CCR-04-2469.

  6. 6.

    Zach O, Lutz D: Tumor cell detection in peripheral blood and bone marrow. Curr Opin Oncol. 2006, 18: 48-56. 10.1097/01.cco.0000198973.51615.fa.

  7. 7.

    Alix-Panabieres C, Riethdorf S, Pantel K: Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res. 2008, 14: 5013-5021. 10.1158/1078-0432.CCR-07-5125.

  8. 8.

    Lacroix M: Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer. 2006, 13: 1033-1067. 10.1677/ERC-06-0001.

  9. 9.

    Alix-Panabieres C, Muller V, Pantel K: Current status in human breast cancer micrometastasis. Curr Opin Oncol. 2007, 19: 558-563. 10.1097/CCO.0b013e3282f0ad79.

  10. 10.

    Riethdorf S, Wikman H, Pantel K: Review: biological relevance of disseminated tumor cells in cancer patients. Int J Cancer. 2008, 123: 1991-2006. 10.1002/ijc.23825.

  11. 11.

    Borgen E, Beiske K, Trachsel S, Nesland JM, Kvalheim G, Herstad TK, Schlichting E, Qvist H, Naume B: Immunocytochemical detection of isolated epithelial cells in bone marrow: non-specific staining and contribution by plasma cells directly reactive to alkaline phosphatase. J Pathol. 1998, 185: 427-434. 10.1002/(SICI)1096-9896(199808)185:4<427::AID-PATH127>3.0.CO;2-7.

  12. 12.

    Borgen E, Naume B, Nesland JM, Nowels KW, Pavlak N, Ravkin I, Goldbard S: Use of automated microscopy for the detection of disseminated tumor cells in bone marrow samples. Cytometry. 2001, 46: 215-221. 10.1002/cyto.1130.

  13. 13.

    Fehm T, Braun S, Muller V, Janni W, Gebauer G, Marth C, Schindlbeck C, Wallwiener D, Borgen E, Naume B, Pantel K, Solomayer E: A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer. 2006, 107: 885-892. 10.1002/cncr.22076.

  14. 14.

    Borgen E, Pantel K, Schlimok G, Muller P, Otte M, Renolen A, Ehnle S, Coith C, Nesland JM, Naume B: A European interlaboratory testing of three well-known procedures for immunocytochemical detection of epithelial cells in bone marrow. Results from analysis of normal bone marrow. Cytometry B Clin Cytom. 2006, 70: 400-409.

  15. 15.

    Alix-Panabieres C, Vendrell JP, Pelle O, Rebillard X, Riethdorf S, Muller V, Fabbro M, Pantel K: Detection and characterization of putative metastatic precursor cells in cancer patients. Clin Chem. 2007, 53: 537-539. 10.1373/clinchem.2006.079509.

  16. 16.

    Alix-Panabieres C, Vendrell JP, Slijper M, Pelle O, Barbotte E, Mercier G, Jacot W, Fabbro M, Pantel K: Full length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast Cancer Res. 2009, 11: R39-10.1186/bcr2326.

  17. 17.

    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF: Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004, 351: 781-791. 10.1056/NEJMoa040766.

  18. 18.

    Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW: Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004, 10: 6897-6904. 10.1158/1078-0432.CCR-04-0378.

  19. 19.

    Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM, Doyle GV, Matera J, Allard WJ, Miller MC, Fritsche HA, Hortobagyi GN, Terstappen LW: Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol. 2005, 23: 1420-1430. 10.1200/JCO.2005.08.140.

  20. 20.

    Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, Matera J, Allard WJ, Doyle GV, Terstappen LW: Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res. 2006, 12: 4218-4224. 10.1158/1078-0432.CCR-05-2821.

  21. 21.

    Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, Tanaka E, Lilja H, Schwartz L, Larson S, Fleisher M, Scher HI: Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res. 2007, 13: 7053-7058. 10.1158/1078-0432.CCR-07-1506.

  22. 22.

    Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Janicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K: Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res. 2007, 13: 920-928. 10.1158/1078-0432.CCR-06-1695.

  23. 23.

    Shaffer DR, Leversha MA, Danila DC, Lin O, Gonzalez-Espinoza R, Gu B, Anand A, Smith K, Maslak P, Doyle GV, Terstappen LW, Lilja H, Heller G, Fleisher M, Scher HI: Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin Cancer Res. 2007, 13: 2023-2029. 10.1158/1078-0432.CCR-06-2701.

  24. 24.

    Sastre J, Maestro ML, Puente J, Veganzones S, Alfonso R, Rafael S, Garcia-Saenz JA, Vidaurreta M, Martin M, Arroyo M, et al: Circulating tumor cells in colorectal cancer: correlation with clinical and pathological variables. Ann Oncol. 2008, 19: 935-938. 10.1093/annonc/mdm583.

  25. 25.

    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M: Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007, 450: 1235-1239. 10.1038/nature06385.

  26. 26.

    Pachmann K, Clement JH, Schneider CP, Willen B, Camara O, Pachmann U, Hoffken K: Standardized quantification of circulating peripheral tumor cells from lung and breast cancer. Clin Chem Lab Med. 2005, 43: 617-627. 10.1515/CCLM.2005.107.

  27. 27.

    Krivacic RT, Ladanyi A, Curry DN, Hsieh HB, Kuhn P, Bergsrud DE, Kepros JF, Barbera T, Ho MY, Chen LB, Lerner RA, Bruce RH: A rare-cell detector for cancer. Proc Natl Acad Sci USA. 2004, 101: 10501-10504. 10.1073/pnas.0404036101.

  28. 28.

    Curry DN, Krivacic RT, Hsieh HB, Ladanyi A, Bergsrud DE, Ho MY, Chen LB, Kuhn P, Bruce RH: High-speed detection of occult tumor cells in peripheral blood. Conf Proc IEEE Eng Med Biol Soc. 2004, 2: 1267-1270.

  29. 29.

    Hsieh HB, Marrinucci D, Bethel K, Curry DN, Humphrey M, Krivacic RT, Kroener J, Kroener L, Ladanyi A, Lazarus N, Kuhn P, Bruce RH, Nieva J: High speed detection of circulating tumor cells. Biosens Bioelectron. 2006, 21: 1893-1899. 10.1016/j.bios.2005.12.024.

  30. 30.

    Talasaz AH, Powell AA, Huber DE, Berbee JG, Roh KH, Yu W, Xiao W, Davis MM, Pease RF, Mindrinos MN, Jeffrey SS, Davis RW: Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc Natl Acad Sci USA. 2009, 106: 3970-3975. 10.1073/pnas.0813188106.

  31. 31.

    Schoenfeld A, Kruger KH, Gomm J, Sinnett HD, Gazet JC, Sacks N, Bender HG, Luqmani Y, Coombes RC: The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry and reverse transcriptase polymerase chain reaction for keratin 19. Eur J Cancer. 1997, 33: 854-861. 10.1016/S0959-8049(97)00014-2.

  32. 32.

    Smith BM, Slade MJ, English J, Graham H, Luchtenborg M, Sinnett HD, Cross NC, Coombes RC: Response of circulating tumor cells to systemic therapy in patients with metastatic breast cancer: comparison of quantitative polymerase chain reaction and immunocytochemical techniques. J Clin Oncol. 2000, 18: 1432-1439.

  33. 33.

    Berois N, Varangot M, Aizen B, Estrugo R, Zarantonelli L, Fernandez P, Krygier G, Simonet F, Barrios E, Muse I, Osinaga E: Molecular detection of cancer cells in bone marrow and peripheral blood of patients with operable breast cancer. Comparison of CK19, MUC1 and CEA using RT-PCR. Eur J Cancer. 2000, 36: 717-723. 10.1016/S0959-8049(99)00338-X.

  34. 34.

    Zhong XY, Kaul S, Lin YS, Eichler A, Bastert G: Sensitive detection of micrometastases in bone marrow from patients with breast cancer using immunomagnetic isolation of tumor cells in combination with reverse transcriptase/polymerase chain reaction for cytokeratin-19. J Cancer Res Clin Oncol. 2000, 126: 212-218. 10.1007/s004320050035.

  35. 35.

    Bossolasco P, Ricci C, Farina G, Soligo D, Pedretti D, Scanni A, Deliliers GL: Detection of micrometastatic cells in breast cancer by RT-pCR for the mammaglobin gene. Cancer Detect Prev. 2002, 26: 60-63. 10.1016/S0361-090X(02)00009-0.

  36. 36.

    Becker S, Becker-Pergola G, Fehm T, Wallwiener D, Solomayer EF: Time is an important factor when processing samples for the detection of disseminated tumor cells in blood/bone marrow by reverse transcription-PCR. Clin Chem. 2004, 50: 785-786. 10.1373/clinchem.2003.025510.

  37. 37.

    Ignatiadis M, Kallergi G, Ntoulia M, Perraki M, Apostolaki S, Kafousi M, Chlouverakis G, Stathopoulos E, Lianidou E, Georgoulias V, Mavroudis D: Prognostic value of the molecular detection of circulating tumor cells using a multimarker reverse transcription-PCR assay for cytokeratin 19, mammaglobin A, and HER2 in early breast cancer. Clin Cancer Res. 2008, 14: 2593-2600. 10.1158/1078-0432.CCR-07-4758.

  38. 38.

    Xenidis N, Ignatiadis M, Apostolaki S, Perraki M, Kalbakis K, Agelaki S, Stathopoulos EN, Chlouverakis G, Lianidou E, Kakolyris S, Georgoulias V, Mavroudis D: Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J Clin Oncol. 2009, 27: 2177-2184. 10.1200/JCO.2008.18.0497.

  39. 39.

    Fehm T, Hoffmann O, Aktas B, Becker S, Solomayer EF, Wallwiener D, Kimmig R, Kasimir-Bauer S: Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells. Breast Cancer Res. 2009, 11: R59-10.1186/bcr2349.

  40. 40.

    Ring A, Smith IE, Dowsett M: Circulating tumour cells in breast cancer. Lancet Oncol. 2004, 5: 79-88. 10.1016/S1470-2045(04)01381-6.

  41. 41.

    Balducci E, Azzarello G, Valori L, Toffolatti L, Bolgan L, Valenti MT, Bari M, Pappagallo GL, Ausoni S, Vinante O: A new nested primer pair improves the specificity of CK-19 mRNA detection by RT-PCR in occult breast cancer cells. Int J Biol Markers. 2005, 20: 28-33.

  42. 42.

    Ballestrero A, Garuti A, Bertolotto M, Rocco I, Boy D, Nencioni A, Ottonello L, Patrone F: Effect of different cytokines on mammaglobin and maspin gene expression in normal leukocytes: possible relevance to the assays for the detection of micrometastatic breast cancer. Br J Cancer. 2005, 92: 1948-1952. 10.1038/sj.bjc.6602563.

  43. 43.

    Klein CA, Blankenstein TJ, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein NH, Riethmuller G: Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet. 2002, 360: 683-689. 10.1016/S0140-6736(02)09838-0.

  44. 44.

    Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ, Kaufmann M, Diebold J, Arnholdt H, Muller P, Bischoff J, Harich D, Schlimok G, Riethmuller G, Eils R, Klein CA: From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA. 2003, 100: 7737-7742. 10.1073/pnas.1331931100.

  45. 45.

    Pantel K, Schlimok G, Kutter D, Schaller G, Genz T, Wiebecke B, Backmann R, Funke I, Riethmuller G: Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells. Cancer Res. 1991, 51: 4712-4715.

  46. 46.

    Klein CA, Seidl S, Petat-Dutter K, Offner S, Geigl JB, Schmidt-Kittler O, Wendler N, Passlick B, Huber RM, Schlimok G, Baeuerle PA, Riethmüller G: Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol. 2002, 20: 387-392. 10.1038/nbt0402-387.

  47. 47.

    Hemsen A, Riethdorf L, Brunner N, Berger J, Ebel S, Thomssen C, Janicke F, Pantel K: Comparative evaluation of urokinase-type plasminogen activator receptor expression in primary breast carcinomas and on metastatic tumor cells. Int J Cancer. 2003, 107: 903-909. 10.1002/ijc.11488.

  48. 48.

    Thurm H, Ebel S, Kentenich C, Hemsen A, Riethdorf S, Coith C, Wallwiener D, Braun S, Oberhoff C, Janicke F, Pantel K: Rare expression of epithelial cell adhesion molecule on residual micrometastatic breast cancer cells after adjuvant chemotherapy. Clin Cancer Res. 2003, 9: 2598-2604.

  49. 49.

    Reimers N, Zafrakas K, Assmann V, Egen C, Riethdorf L, Riethdorf S, Berger J, Ebel S, Janicke F, Sauter G, Pantel K: Expression of extracellular matrix metalloproteases inducer on micrometastatic and primary mammary carcinoma cells. Clin Cancer Res. 2004, 10: 3422-3428. 10.1158/1078-0432.CCR-03-0610.

  50. 50.

    Pierga JY, Bonneton C, Magdelenat H, Vincent-Salomon A, Nos C, Boudou E, Pouillart P, Thiery JP, de Cremoux P: Real-time quantitative PCR determination of urokinase-type plasminogen activator receptor (uPAR) expression of isolated micrometastatic cells from bone marrow of breast cancer patients. Int J Cancer. 2005, 114: 291-298. 10.1002/ijc.20698.

  51. 51.

    Meng S, Tripathy D, Shete S, Ashfaq R, Saboorian H, Haley B, Frenkel E, Euhus D, Leitch M, Osborne C, Frenkel E, Hoover S, Leitch M, Clifford E, Vitetta E, Morrison L, Herlyn D, Terstappen LW, Fleming T, Fehm T, Tucker T, Lane N, Wang J, Uhr J: uPAR and HER-2 gene status in individual breast cancer cells from blood and tissues. Proc Natl Acad Sci USA. 2006, 103: 17361-17365. 10.1073/pnas.0608113103.

  52. 52.

    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Láng I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Rüschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E, et al: Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005, 353: 1659-1672. 10.1056/NEJMoa052306.

  53. 53.

    Steeg PS: Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006, 12: 895-904. 10.1038/nm1469.

  54. 54.

    Braun S, Schlimok G, Heumos I, Schaller G, Riethdorf L, Riethmuller G, Pantel K: ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I-III breast cancer patients. Cancer Res. 2001, 61: 1890-1895.

  55. 55.

    Vincent-Salomon A, Pierga JY, Couturier J, d'Enghien CD, Nos C, Sigal-Zafrani B, Lae M, Freneaux P, Dieras V, Thiery JP, Sastre-Garau X: HER2 status of bone marrow micrometastasis and their corresponding primary tumours in a pilot study of 27 cases: a possible tool for anti-HER2 therapy management?. Br J Cancer. 2007, 96: 654-659. 10.1038/sj.bjc.6603584.

  56. 56.

    Solomayer EF, Becker S, Pergola-Becker G, Bachmann R, Kramer B, Vogel U, Neubauer H, Wallwiener D, Huober J, Fehm TN: Comparison of HER2 status between primary tumor and disseminated tumor cells in primary breast cancer patients. Breast Cancer Res Treat. 2006, 98: 179-184. 10.1007/s10549-005-9147-y.

  57. 57.

    Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S, Beitsch P, Khan A, Euhus D, Osborne C, Frenkel E, Hoover S, Leitch M, Clifford E, Vitetta E, Morrison L, Herlyn D, Terstappen LW, Fleming T, Fehm T, Tucker T, Lane N, Wang J, Uhr J: HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci USA. 2004, 101: 9393-9398. 10.1073/pnas.0402993101.

  58. 58.

    Wulfing P, Borchard J, Buerger H, Heidl S, Zanker KS, Kiesel L, Brandt B: HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin Cancer Res. 2006, 12: 1715-1720. 10.1158/1078-0432.CCR-05-2087.

  59. 59.

    Riethdorf S, Loibl S, Komor M, Houber J, Schrader I, Conrad U, Untch M, von Minckwitz G, Pantel K, Muller V: Incidence and kinetics of circulating tumor cells in breast cancer patients treated with primary systemic therapy including trastuzumab for patients with HER2-positive tumors - a translational project within the study 'GeparQuattro' [abstract 5025]. Breast Cancer Res Treat. 2007, 106 (Suppl 1): S214-

  60. 60.

    Smirnov DA, Zweitzig DR, Foulk BW, Miller MC, Doyle GV, Pienta KJ, Meropol NJ, Weiner LM, Cohen SJ, Moreno JG, et al: Global gene expression profiling of circulating tumor cells. Cancer Res. 2005, 65: 4993-4997. 10.1158/0008-5472.CAN-04-4330.

  61. 61.

    Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF: Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 2002, 161: 1881-1891. 10.1016/S0002-9440(10)64464-1.

  62. 62.

    Kang Y, Massague J: Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004, 118: 277-279. 10.1016/j.cell.2004.07.011.

  63. 63.

    Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH: Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007, 67: 1979-1987. 10.1158/0008-5472.CAN-06-1479.

  64. 64.

    Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y, Abbruzzese JL, Hortobagyi GN, Hung MC: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res. 2007, 67: 9066-9076. 10.1158/0008-5472.CAN-07-0575.

  65. 65.

    Watson MA, Ylagan LR, Trinkaus KM, Gillanders WE, Naughton MJ, Weilbaecher KN, Fleming TP, Aft RL: Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin Cancer Res. 2007, 13: 5001-5009. 10.1158/1078-0432.CCR-07-0024.

  66. 66.

    Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Datar RH, Cote RJ: Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res. 2006, 12: 5615-5621. 10.1158/1078-0432.CCR-06-0169.

  67. 67.

    Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S: Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009, 11: R46-10.1186/bcr2333.

  68. 68.

    Braun S, Kentenich C, Janni W, Hepp F, de Waal J, Willgeroth F, Sommer H, Pantel K: Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol. 2000, 18: 80-86.

  69. 69.

    Wiedswang G, Borgen E, Karesen R, Qvist H, Janbu J, Kvalheim G, Nesland JM, Naume B: Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome. Clin Cancer Res. 2004, 10: 5342-5348. 10.1158/1078-0432.CCR-04-0245.

  70. 70.

    Janni W, Rack B, Schindlbeck C, Strobl B, Rjosk D, Braun S, Sommer H, Pantel K, Gerber B, Friese K: The persistence of isolated tumor cells in bone marrow from patients with breast carcinoma predicts an increased risk for recurrence. Cancer. 2005, 103: 884-891. 10.1002/cncr.20834.

  71. 71.

    Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, Schlimok G, Diel IJ, Gerber B, Gebauer G, Pierga JY, Marth C, Oruzio D, Wiedswang G, Solomayer EF, Kundt G, Strobl B, Fehm T, Wong GY, Bliss J, Vincent-Salomon A, Pantel K: A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005, 353: 793-802. 10.1056/NEJMoa050434.

  72. 72.

    Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, Somerfield MR, Hayes DF, Bast RC: American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007, 25: 5287-5312. 10.1200/JCO.2007.14.2364.

  73. 73.

    Naume B, Wiedswang G, Borgen E, Kvalheim G, Karesen R, Qvist H, Janbu J, Harbitz T, Nesland JM: The prognostic value of isolated tumor cells in bone marrow in breast cancer patients: evaluation of morphological categories and the number of clinically significant cells. Clin Cancer Res. 2004, 10: 3091-3097. 10.1158/1078-0432.CCR-03-0373.

  74. 74.

    Slade MJ, Singh A, Smith BM, Tripuraneni G, Hall E, Peckitt C, Fox S, Graham H, Luchtenborg M, Sinnett HD, Cross NC, Coombes RC: Persistence of bone marrow micrometastases in patients receiving adjuvant therapy for breast cancer: results at 4 years. Int J Cancer. 2005, 114: 94-100. 10.1002/ijc.20655.

  75. 75.

    Janni W, Wiedswang G, Fehm T, Jueckstock J, Borgen E, Rack B, Braun S, Sommer H, Solomayer E, Pantel K, Nesland JM, Genss E, Friese K, Naume B: Persistence of disseminated tumor cells (DTC) in bone marrow (BM) during follow-up predicts increased risk for relapse up-date of the pooled European data [abstract 18]. Breast Cancer Res Treat. 2006, 100 (Suppl 1): S11-

  76. 76.

    Naume B, Fehm T, Wiedswang G, Jückstock J, Borgen E, Rack B, Synnestvedt M, Braun S, Sommer H, Solomayer E, Pantel K, Friese K, Janni W: Persistence of isolated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse - a European pooled analysis. Cancer Res. 2009, 69 (2 Suppl):

  77. 77.

    Bidard FC, Vincent-Salomon A, Gomme S, Nos C, De Rycke Y, Thiery JP, Sigal-Zafrani B, Mignot L, Sastre-Garau X, Pierga JY: Disseminated tumor cells of breast cancer patients: a strong prognostic factor for distant and local relapse. Clin Cancer Res. 2008, 14: 3306-3311. 10.1158/1078-0432.CCR-07-4749.

  78. 78.

    Bidard FC, Kirova YM, Vincent-Salomon A, Alran S, de Rycke Y, Sigal-Zafrani B, Sastre-Garau X, Mignot L, Fourquet A, Pierga JY: Disseminated tumor cells and the risk of locoregional recurrence in nonmetastatic breast cancer. Ann Oncol. 2009, 20: 1836-1841. 10.1093/annonc/mdp200.

  79. 79.

    Wiedswang G, Borgen E, Schirmer C, Karesen R, Kvalheim G, Nesland JM, Naume B: Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int J Cancer. 2006, 118: 2013-2019. 10.1002/ijc.21576.

  80. 80.

    Bidard FC, Vincent-Salomon A, Sigal-Zafrani B, Dieras V, Mathiot C, Mignot L, Thiery JP, Sastre-Garau X, Pierga JY: Prognosis of women with stage IV breast cancer depends on detection of circulating tumor cells rather than disseminated tumor cells. Ann Oncol. 2008, 19: 496-500. 10.1093/annonc/mdm507.

  81. 81.

    Pierga JY, Bonneton C, Vincent-Salomon A, de Cremoux P, Nos C, Blin N, Pouillart P, Thiery JP, Magdelenat H: Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res. 2004, 10: 1392-1400. 10.1158/1078-0432.CCR-0102-03.

  82. 82.

    Slade MJ, Payne R, Riethdorf S, Ward B, Zaidi SA, Stebbing J, Palmieri C, Sinnett HD, Kulinskaya E, Pitfield T, McCormack RT, Pantel K, Coombes RC: Comparison of bone marrow, disseminated tumour cells and blood-circulating tumour cells in breast cancer patients after primary treatment. Br J Cancer. 2009, 100: 160-166. 10.1038/sj.bjc.6604773.

  83. 83.

    Budd GT, Cristofanilli M, Ellis MJ, Stopeck A, Borden E, Miller MC, Matera J, Repollet M, Doyle GV, Terstappen LW, Hayes DF: Circulating tumor cells versus imaging--predicting overall survival in metastatic breast cancer. Clin Cancer Res. 2006, 12: 6403-6409. 10.1158/1078-0432.CCR-05-1769.

  84. 84.

    De Giorgi U, Valero V, Rohren E, Dawood S, Ueno NT, Miller MC, Doyle GV, Jackson S, Andreopoulou E, Handy BC, Reuben JM, Fritsche HA, Macapinlac HA, Hortobagyi GN, Cristofanilli M: Circulating tumor cells and [18F]fluorodeoxyglucose positron emission tomography/computed tomography for outcome prediction in metastatic breast cancer. J Clin Oncol. 2009, 27: 3303-3311. 10.1200/JCO.2008.19.4423.

  85. 85.

    SWOG-S0500 Trial. []

  86. 86.

    Pierga JY, Bidard FC, Mathiot C, Brain E, Delaloge S, Giachetti S, de Cremoux P, Salmon R, Vincent-Salomon A, Marty M: Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res. 2008, 14: 7004-7010. 10.1158/1078-0432.CCR-08-0030.

  87. 87.

    Muller V, Riethdorf S, Loibl S, Komor M, Houber J, Schrader I, Conrad U, Untch M, von Minckwitz G, Pantel K: Prospective monitoring of circulating tumor cells in breast cancer patients treated with primary systemic therapy - a translational project of the German breast Group study GeparQuattro [abstract]. J Clin Oncol. 2007, 25 (Suppl): 21085-

  88. 88.

    Rack BK, Schindlbeck C, Schneeweiss A, Hilfrich J, Lorenz R, Beckmann MW, Pantel K, Lichtenegger W, Sommer HL, Janni WJ: Prognostic relevance of circulating tumor cells (CTCs) in peripheral blood of breast cancer patients before and after adjuvant chemotherapy: the German SUCCESS-Trial [abstract]. J Clin Oncol. 2008, 26 (Suppl): 503-

  89. 89.

    Gnant M, Mlineritsch B, Schippinger W, Luschin-Ebengreuth G, Postlberger S, Menzel C, Jakesz R, Seifert M, Hubalek M, Bjelic-Radisic V, Samonigg H, Tausch C, Eidtmann H, Steger G, Kwasny W, Dubsky P, Fridrik M, Fitzal F, Stierer M, Rücklinger E, Greil R, ABCSG-12 Trial Investigators, Marth C: Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med. 2009, 360: 679-691. 10.1056/NEJMoa0806285.

Download references


This article has been published as part of Breast Cancer Research Volume 11 Suppl 3 2009: Controversies in Breast Cancer 2009. The full contents of the supplement are available online at

Author information



Corresponding author

Correspondence to Klaus Pantel.

Additional information

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Riethdorf, S., Pantel, K. Clinical relevance and current challenges of research on disseminating tumor cells in cancer patients. Breast Cancer Res 11, S10 (2009).

Download citation


  • Breast Cancer Patient
  • Circulate Tumor Cell
  • Minimal Residual Disease
  • Metastatic Breast Cancer Patient
  • Disseminate Tumor Cell