Background
Resistance to radiotherapy may be a significant factor in the development of local recurrence following surgical resection and radiotherapy. In addition, if patients with radioresistant breast cancers can be identified, harmful side effects from exposure to unnecessary ionizing radiation could be prevented. We aimed to develop a novel in vitro model of radio-resistance using a breast cancer cell line and to subsequently identify molecular biomarkers that may be associated with the radioresistant phenotype. Antibody microarrays offer a complementary approach for proteomic analysis in conjunction with standard screening methods such as two-dimensional gel electrophoresis/mass spectrometry. We have previously utilised the Panorama Cell Signalling Antibody Microarray Kit (Sigma-Aldrich, Poole, UK) consisting of 224 antibodies [1]. In the present study we assessed a novel high-density 725-antibody microarray to screen for proteins associated with radioresistance.