Schmitt-ney M, Doppler W, Ball RK, Groner B: b-casein gene promoter activity is regulated by the hormone mediated relief of transcriptional repression and a mammary-gland-specific nuclear factor. Mol Cell Biol. 1991, 11: 3745-3755.
PubMed
CAS
PubMed Central
Google Scholar
Gouilleux F, Wakao H, Mundt V, Groner B: Prolactin induces phosphorylation of Tyr694 of STAT5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J. 1994, 13: 4361-4369.
PubMed
CAS
PubMed Central
Google Scholar
Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, Robertson FG, Blazek KD, Kazlauskas M, Hilton HN, Wittlin S, et al: Socs2 and Elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol. 2006, 20: 1177-1187. 10.1210/me.2005-0473.
PubMed
CAS
Google Scholar
Oakes S, Hilton H, Ormandy C: Key stages in mammary gland development. The alveolar switch: coordinating the proliferative cues and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium. Breast Cancer Res. 2006, 8: 207-10.1186/bcr1411.
PubMed
PubMed Central
Google Scholar
Richert MM, Schwertfeger KL, Ryder JW, Anderson SM: An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia. 2000, 5: 227-241. 10.1023/A:1026499523505.
PubMed
CAS
Google Scholar
Hens JR, Wyszomerski JJ: Molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res. 2005, 7: 220-224. 10.1186/bcr1306.
PubMed
CAS
PubMed Central
Google Scholar
Lyons WR, Li CH, Johnson RE: The hormonal control of mammary growth and lactation. Recent Prog Horm Res. 1958, 14: 219-248.
PubMed
CAS
Google Scholar
Sternlicht MD: The cues that regulate ductal branching and morphogenesis. Breast Cancer Res. 2006, 8: 201-212. 10.1186/bcr1368.
PubMed
PubMed Central
Google Scholar
Andres A-C, Strange R: Apoptosis in the estrus and menstrual cycle. J Mammary Gland Biol Neoplasia. 1999, 4: 221-228. 10.1023/A:1018737510695.
PubMed
CAS
Google Scholar
Schedin P, Mitrenga T, Kaeck M: Estrous cycle regulation of mammary epithelial cell proliferation, differentiation, and death in Sprague-Dawley rat: a model for investigation the roles of estrous cycling in mammary carcinogenesis. J Mammary Gland Biol Neoplasia. 2000, 5: 211-225. 10.1023/A:1026447506666.
PubMed
CAS
Google Scholar
Lydon JP, Demayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA, Shyamala G, Conneely OM, O'Malley BW: Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995, 9: 2266-2278.
PubMed
CAS
Google Scholar
Muldoon TG: Prolactin mediation of estrogen-induced changes in mammary tissue estrogen and progesterone receptors. Endocrinology. 1987, 121: 141-149.
PubMed
CAS
Google Scholar
Koseki Y, Cole D, Matsuzawa A, Costlow ME: Prolactin regulation of estrogen and progesterone receptors in normal and neoplastic mouse mammary tissue. Jpn J Cancer Res. 1987, 78: 1105-1111.
PubMed
CAS
Google Scholar
Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, McMahon JA, McMahon AP, Weinberg RA: Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 2000, 14: 650-654.
PubMed
CAS
PubMed Central
Google Scholar
Fata JE, Kong Y-Y, Li J, Sasaki T, Irie-Saski J, Moorehead RA, Elliott R, Scully S, Voura EB, Lacey DL, et al: The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000, 103: 41-50. 10.1016/S0092-8674(00)00103-3.
PubMed
CAS
Google Scholar
Ormandy CJ, Binart N, Kelly PA: Mammary gland development in prolactin receptor knockout mice. J Mammary Gland Biol Neoplasia. 1997, 2: 355-364. 10.1023/A:1026395229025.
PubMed
CAS
Google Scholar
Goffin V, Binart N, Clement-Lacroix P, Bouchard B, Bole-Feysot C, Edery M, Lucas BK, Touraine P, Pezet A, Maaskant R, et al: From the molecular biology of prolactin and its receptor to the lessons learned from knockout mice models. Genetic Analysis. 1999, 15: 189-201. 10.1016/S1050-3862(99)00025-X.
PubMed
CAS
Google Scholar
Ormandy CJ, Naylor MJ, Harris J, Robertson F, Horseman ND, Lindeman GJ, Kelly PA: Investigation of the transcriptional changes underlying functional defects in the mammary glands of prolactin receptor knockout mice. Recent Prog Horm Res. 2003, 58: 297-323. 10.1210/rp.58.1.297.
PubMed
CAS
Google Scholar
Brisken C, Ayyannan A, Nguyen C, Heineman A, Reinhardt F, Jan T, Dey SK, Dotto GP, Weinberg RA: IGF-2 is a mediator of prolactin-induced morphogenesis in the breast. Dev Cell. 2002, 3: 877-887. 10.1016/S1534-5807(02)00365-9.
PubMed
CAS
Google Scholar
Hovey RC, Harris J, Hadsell DL, Lee AV, Ormandy CJ, Vonderhaar BK: Local insuln-like growth factor-II mediates prolactin-induced mammary gland development. Mol Endocrinol. 2003, 17: 460-471. 10.1210/me.2002-0214.
PubMed
CAS
Google Scholar
Naylor MJ, Oakes SR, Gardiner-Garden M, Harris J, Blazek K, Ho TWC, Li FC, Wynick D, Walker AM, Ormandy CJ: Transcriptional changes underlying the secretory activation phase of mammary gland development. Mol Endocrinol. 2005, 19: 1868-1883. 10.1210/me.2004-0254.
PubMed
CAS
Google Scholar
Goldstein JL, Bose-Boyd RA, Brown MS: Protein sensors for membrane sterols. Cell. 2006, 124: 35-46. 10.1016/j.cell.2005.12.022.
PubMed
CAS
Google Scholar
Traurig HH: A radiographic study of cell proliferation in the mammary gland of the pregnant mouse. Anatomical Record. 1967, 159: 239-248. 10.1002/ar.1091590213.
PubMed
CAS
Google Scholar
Elias JJ, Pitelka DR, Armstrong RC: Changes in fat cell morphology during lactation in the mouse. Anatomical Record. 1973, 177: 533-547. 10.1002/ar.1091770407.
PubMed
CAS
Google Scholar
Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM: Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res. 2003, 44: 1100-1112. 10.1194/jlr.M300045-JLR200.
PubMed
CAS
Google Scholar
Palmer CA, Lubon H, McManaman JL: Transgenic mice expressing recombinant human protein C exhibit defects in lactation and impaired mammary gland development. Transgenic Res. 2003, 12: 283-292. 10.1023/A:1023398926763.
PubMed
CAS
Google Scholar
Ho MY, Murphy D: A bovine oxytocin transgene in mice: expression in the female reproductive organs and regulation during pregnancy, parturition and lactation. Mol Cell Endocrinol. 1997, 136: 15-21. 10.1016/S0303-7207(97)00208-6.
PubMed
CAS
Google Scholar
Wagner K-U, Young WS, Liu X, Ginns EI, Li M, Furth PA, Hennighausen L: Oxytocin and milk removal are required for post-partum mammary gland development. Genes Funct. 1997, 1: 233-244.
PubMed
CAS
Google Scholar
Stinnakre MG, Vilotte J-L, Soulier S, Mercier JC: Creation and phenotypic analysis of alpha-lactalbumin-deficient mice. Proc Natl Acad Sci USA. 1994, 91: 6544-6548. 10.1073/pnas.91.14.6544.
PubMed
CAS
PubMed Central
Google Scholar
Ogg SL, Weldon AK, Dobbie L, Smith AJH, Mather IH: Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc Natl Acad Sci USA. 2004, 101: 10084-10089. 10.1073/pnas.0402930101.
PubMed
CAS
PubMed Central
Google Scholar
Vorbach C, Scriven A, Capecchi MR: The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secrection: gene sharing in the lactating mammary gland. Genes Dev. 2002, 16: 3223-3235. 10.1101/gad.1032702.
PubMed
CAS
PubMed Central
Google Scholar
Blackman B, Russell T, Nordeen S, Medina D, Neville M: Claudin 7 expression and localization in the normal murine mammary gland and murine mammary tumors. Breast Cancer Res. 2005, 7: R248-R255. 10.1186/bcr988.
PubMed
CAS
PubMed Central
Google Scholar
Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC: Functional development of the mammary gland: Use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia. 2003, 8: 287-307. 10.1023/B:JOMG.0000010030.73983.57.
PubMed
Google Scholar
Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, Lee DC: Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development. 1999, 126: 2739-2750.
PubMed
CAS
Google Scholar
Mellenberger RW, Bauman DE: Metabolic adaptations during lactogenesis: fatty acid synthesis in rabbit mammary tissue during pregnancy and lactation. Biochem J. 1974, 138: 373-379.
PubMed
CAS
PubMed Central
Google Scholar
McManaman JL, Palmer CA, Anderson S, Schwertfeger K, Neville MC: Regulation of milk lipid formation and secretion in the mouse mammary gland. Adv Exp Med Biol. 2004, 554: 263-279.
PubMed
CAS
Google Scholar
Neville MC, McFadden TB, Forsyth IA: Hormonal regulation of mammary differentiation and lactation. J Mammary Gland Biol Neoplasia. 2002, 7: 49-66. 10.1023/A:1015770423167.
PubMed
Google Scholar
Bartholomeusz RK, Bruce NW, Martin CE, Hartmann PE: Serial measurement of arterial plasma progesterone levels throughout gestation and parturition in individual rats. Acta Endocrinol (Copenh). 1976, 82: 2683-2694.
Google Scholar
Kuhn NJ: Progesterone withdrawal as the lactogenic trigger in the rat. J Endocrinol. 1969, 44: 39-54.
PubMed
CAS
Google Scholar
Silberstein GB, Van Horn K, Shyamala G, Daniel CW: Progesterone receptors in the mouse mammary duct: Distribution and developmental regulation. Cell Growth Differ. 1996, 7: 945-952.
PubMed
CAS
Google Scholar
Djiane J, Durand P: Prolactin-progesterone antagonism in self regulation of prolactin receptors in the mammary gland. Nature. 1977, 266: 641-643. 10.1038/266641a0.
PubMed
CAS
Google Scholar
Mizoguchi Y, Kim JY, Sasaki T, Hama T, Sasaki M, Enami J, et al: Acute expression of the PRL receptor gene after ovariectomy in midpregnant mouse mammary gland. Endoc J. 1996, 43: 537-544.
CAS
Google Scholar
Rosen JM, O'Neal DL, McHugh JE, Comstock JP: Progesterone-mediated inhibition of casein mRNA and polysomal casein synthesis in the rat mammary gland during pregnancy. Biochemistry. 1978, 17: 290-297. 10.1021/bi00595a016.
PubMed
CAS
Google Scholar
Nguyen D-A, Parlow AF, Neville MC: Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J Endocrinol. 2001, 170: 347-356. 10.1677/joe.0.1700347.
PubMed
CAS
Google Scholar
Hartmann P, Trevethan P, Shelton JN: Progesterone and oestrogen and the initiation of lactation in ewes. J Endocrinol. 1973, 59: 249-259.
PubMed
CAS
Google Scholar
Loizzi RF: Progesterone withdrawal stimulates mammary gland tubulin polymerization in pregnant rats. Endocrinology. 1985, 116: 2543-2547.
PubMed
CAS
Google Scholar
Deis RP, Delouis C: Lactogenesis induced by ovariectomy in pregnany rats and its regulation by oestrogen and progesterone. J Steroid Biochem. 1983, 18: 687-690. 10.1016/0022-4731(83)90246-7.
PubMed
CAS
Google Scholar
Ball RK, Friis RR, Schoenenberger CA, Doppler W, Groner B: Prolactin regulation of b-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 1988, 7: 2089-2095.
PubMed
CAS
PubMed Central
Google Scholar
Hollman KH: Cytology and fine structure of the mammary gland. Lactation. Edited by: Larson BL, Smith VR. 1974, New York: Academic Press, 3-95.
Google Scholar
Patton S, Huston GE, Montgomery PA, Josephson RV: Approaches to the study of colostrum: the onset of lactation. Human Lactation 2: Maternal and Environmental Factors. Edited by: Hamosh M, Goldman AS. 1986, New York: Plenum Press, 231-240.
Google Scholar
Jones EA: Studies on the particulate lactose synthesis if mouse mammary gland and the role of a-lactalbumin in the initiation of lactose synthesis. Biochem J. 1972, 126: 67-78.
PubMed
CAS
PubMed Central
Google Scholar
Kuhn NJ: Lactogenesis in the rat. Biochem J. 1968, 106: 743-748.
PubMed
CAS
PubMed Central
Google Scholar
Stacey A, Schnieke A, Kerr M, Scott A, McKee C, Cottingham I, Binas B, Wilde C, Colman A: Lactation is disrupted by a-lactalbumin deficiency and can be restored by human a-lactalbumin gene replacement in mice. Proc Natl Acad Sci. 1995, 92: 2835-2839. 10.1073/pnas.92.7.2835.
PubMed
CAS
PubMed Central
Google Scholar
Palmer CA, Neville MC, Anderson SM, McManaman JL: Analysis of lactation defects in transgenic mice. J Mammary Gland Biol Neoplasia. 2006, 12: 269-282. 10.1007/s10911-006-9023-3.
Google Scholar
Stein T, Morris J, Davies C, Weber-Hall S, Duffy MA, Heath V, Bell A, Ferrier R, Sandilands G, Gusterson B: Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res. 2004, 6: R75-R91. 10.1186/bcr753.
PubMed
CAS
PubMed Central
Google Scholar
Rosen JM, Wyszomierski SL, Hadsell D: Regulation of milk protein gene expression. Annu Rev Nutr. 1999, 19: 407-436. 10.1146/annurev.nutr.19.1.407.
PubMed
CAS
Google Scholar
Kazansky AV, Raught B, Lindsey SM, Wang Y-F, Rosen JM: Regulation of mammary gland factor/Stat5 during mammary gland development. Mol Endocrinol. 1995, 9: 1598-1609. 10.1210/me.9.11.1598.
PubMed
CAS
Google Scholar
Liu X, Robinson GW, Hennighausen L: Activation of Stat5a and Stat5b by tyrosine phosphorylation is tightly linked to mammary gland differentiation. Mol Endocrinol. 1996, 10: 1496-1506. 10.1210/me.10.12.1496.
PubMed
CAS
Google Scholar
Liu X, Robinson GW, Wagner K-U, Garrett L, Wynshaw-Boris A, Hennighausen L: Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997, 11: 179-186.
PubMed
CAS
Google Scholar
Choi KM, Barash I, Rhoads RE: Insulin and prolactin synergistically stimulate b-casein messenger ribonucleic acid translation by cytoplasmic polyadenylation. Mol Endocrinol. 2004, 18: 1670-1686. 10.1210/me.2003-0483.
PubMed
CAS
Google Scholar
Moshel Y, Rhoads RE, Barash I: Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells. J Cell Biochem. 2006, 98: 685-700. 10.1002/jcb.20825.
PubMed
CAS
Google Scholar
GIngras A-C, Kennedy SG, O'Leary MA, Sonenberg N, Hay N: 4E-bp1, a repressor of mRNA translation, is phosphorylated by the Akt(PKB) signaling pathway. Genes Dev. 1998, 12: 502-513.
PubMed
CAS
PubMed Central
Google Scholar
Redpath NT, Foulstone EJ, Proud CG: Regulation of translocation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J. 1996, 15: 2291-2297.
PubMed
CAS
PubMed Central
Google Scholar
Jefferies HB, Rumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G: Rapamycin suppresses 5'TOP mRNA translation though inhibition of p70s6k. EMBO J. 1997, 16: 3693-3704. 10.1093/emboj/16.12.3693.
PubMed
CAS
PubMed Central
Google Scholar
Thompson EJ, Shanmugam K, Hattrup CL, Kotlarczyk KL, Gutierrez A, Bradley JM, Mukherjee P, Gendler SJ: Tyrosines in the MUC1 cytoplasmic tail modulate transcription via the extracellular signal-regulated kinase 1/2 and nuclear factor-kB pathways. Mol Cancer Res. 2006, 4: 489-497. 10.1158/1541-7786.MCR-06-0038.
PubMed
CAS
Google Scholar
Scibetta AG, Albanese I, Morris J, Cooper L, Downward J, Rowe PP, Taylor-Papadimitriou J: Regulation of MUC1 expression in human mammary cell lines by the c-ErbB2 and Ras signaling pathways. DNA Cell Biol. 2001, 20: 265-274. 10.1089/104454901750232463.
PubMed
CAS
Google Scholar
Adriance MC, Gendler SJ: Downregulation of Muc1 in MMTV-c-Neu tumors. Oncogene. 2004, 23: 697-705. 10.1038/sj.onc.1207165.
PubMed
CAS
Google Scholar
Dunbar ME, Dann P, Brown CW, Van Houton J, Dreyer B, Philbrick WP, Wyszomierski JJ: The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J Clin Invest. 2004, 113: 598-608. 10.1172/JCI200418776.
Google Scholar
Kuhn NJ, White A: Milk glucose as an index of the intracellular glucose concentration of rat mammary gland. Biochem J. 1975, 152: 153-155.
PubMed
CAS
PubMed Central
Google Scholar
Neville MC, Hay WW, Fennessey P: Physiological significance of the concentration of human milk glucose. Protoplasma. 1990, 159: 118-128. 10.1007/BF01322595.
CAS
Google Scholar
Neville MC: Lactogenesis in women: Evidence for a cascade of cellular events. Handbook of Composition of Milks. Edited by: Jensen RG. 2005, San Diego: Academic press
Google Scholar
Allen JC, Keller RP, Archer PC, Neville MC: Studies in human lactation: 6. Milk composition and daily secretion rates of macronutrients in the first year of lactation. Am J Clin Nutr. 1991, 54: 69-80.
PubMed
CAS
Google Scholar
Neville MC, Sawicki V, Hay WW: Effect of fasting, elevated plasma glucose and plasma insulin concentrations on milk secretion in women. J Endocrinol. 1993, 139: 165-173.
PubMed
CAS
Google Scholar
Camps M, Vilaro S, Testar X, Palacin M, Zorzano A: High and polarized expression of GLUT1 glucose transporters in epithelial cells from mammary gland: acute down-regulation of GLUT1 carries by weaning. Endocrinology. 1994, 134: 924-934. 10.1210/en.134.2.924.
PubMed
CAS
Google Scholar
Nemeth BA, Tsang SWY, Geske RS, Haney PM: Golgi targeting of the GLUT1 glucose transporter in lactating mouse mammary gland. Pediatr Res. 2000, 47: 444-450.
PubMed
CAS
Google Scholar
Haney PM: Localization of the GLUT1 glucose transporter to brefeldin A-sensitive vesicles of differentiated CIT3 mouse mammary epithelial cells. Cell Biol. 2001, 25: 277-288. 10.1006/cbir.2000.0649.
CAS
Google Scholar
Fawcett HAC, Baldwin SA, Flint DJ: Hormonal regulation of the glucose transporter GLUT1 in the lactating rat mammary gland. Biochem Soc Trans. 1991, 20: 17S-
Google Scholar
Kaselonis GL, McCabe ERB, Gray SM: Expression of hexokinase 1 and hexokinase 2 in mammary tissue of nonlactating and lactating rats: evaluation by RT-PCR. Mol Genet Metab. 1999, 68: 371-374. 10.1006/mgme.1999.2923.
PubMed
CAS
Google Scholar
Wilson JE: Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 2003, 206: 2049-2057. 10.1242/jeb.00241.
PubMed
CAS
Google Scholar
Ardehali H, Printz RL, Whitesell RR, May JM, Granner DK: Functional interaction between the N- and C-terminal halves of human hexokinase II. J Biol Chem. 1999, 274: 15986-15989. 10.1074/jbc.274.23.15986.
PubMed
CAS
Google Scholar
Mather IH, Keenan T: Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia. 1998, 3: 259-274. 10.1023/A:1018711410270.
PubMed
CAS
Google Scholar
Neville MC, Picciano MF: Regulation of milk lipid synthesis and composition. Annu Rev Nutr. 1997, 17: 159-184. 10.1146/annurev.nutr.17.1.159.
PubMed
CAS
Google Scholar
Varvikko T, Vanhatalo A, Jalava T, Huhtanen P: Lactation and metabolic responses to graded abomasal doses of methionine and lysine in cows fed grass silage diets. J Dairy Sci. 1999, 82: 2659-2673.
PubMed
CAS
Google Scholar
Rudolph MC, McManaman JL, Phang T, Russel T, Kominsky DM, Serkova N, et al: Metabolic regulation in the lactating mammary gland: A lipid synthesizing machine. Physiol Genomics. 2007, 28: 323-336.
PubMed
CAS
Google Scholar
Smith S, Abraham S: The composition of milk fat. Adv Lipid Res. 1975, 13: 195-239.
PubMed
CAS
Google Scholar
Matsuda M, Lockefeer JA, Horseman ND: Aldolase C/zebrin gene regulation by prolactin during pregnancy and lactation. Endocrine. 2003, 20: 91-100. 10.1385/ENDO:20:1-2:91.
PubMed
CAS
Google Scholar
Smith S: The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J. 1994, 8: 1248-1259.
PubMed
CAS
Google Scholar
Horton JD, Goldstein JL, Brown MS: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002, 109: 1125-1131. 10.1172/JCI200215593.
PubMed
CAS
PubMed Central
Google Scholar
Brown S, Maloney M, Kinlaw W: "Spot 14" protein functions at the pretranslational level in the regulation of hepatic metabolism by thyroid hormone and glucose. J Biol Chem. 1997, 272: 2163-2166. 10.1074/jbc.272.4.2163.
PubMed
CAS
Google Scholar
Schwertfeger KL, Richert MM, Anderson SM: Mammary gland involution is delayed by activated Akt in transgenic mice. Mol Endocrinol. 2001, 15: 867-881. 10.1210/me.15.6.867.
PubMed
CAS
Google Scholar
Sato R, Inoue J, Kawabe Y, Kodama T, Takano T, Maeda M: Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem. 1996, 271: 26461-26464. 10.1074/jbc.271.43.26461.
PubMed
CAS
Google Scholar
Memiya-Kudo M, Shimano H, Yoshikawa T, Yahagi N, Hasty AH, Okazaki H, Tamura Y, Shionoiri F, Iizuka Y, Ohashi K, et al: Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. J Biol Chem. 2000, 275: 31078-31085. 10.1074/jbc.M005353200.
Google Scholar
Magana MM, Osborne TF: Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem. 1996, 271: 32689-32694. 10.1074/jbc.271.51.32689.
PubMed
CAS
Google Scholar
Magana MM, Lin SS, Dooley KA, Osborne TF: Sterol regulation of acetyl coenzyme A carboxylase promoter requires two interdependent binding sites for sterol regulatory element binding proteins. J Lipid Res. 1997, 38: 1630-1638.
PubMed
CAS
Google Scholar
Oh SY, Park SK, Kim JW, Ahn YH, Park SW, Kim KS: Acetyl-CoA carboxylase b gene is regulated by sterol regulatory element-binding protein-1 in liver. J Biol Chem. 2003, 278: 28410-28417. 10.1074/jbc.M300553200.
PubMed
CAS
Google Scholar
Horton JD, Goldstein JL, Brown MS: Activators of the complete program of cholersterol and fatty acid synthesis in the liver. J Clin Invest. 2002, 109: 1125-1135. 10.1172/JCI200215593.
PubMed
CAS
PubMed Central
Google Scholar
Travers MT, Vallance AJ, Gourlay HT, Gill CA, Klein I, Bottema CB, Barber MC: Promoter I of the ovine acetyl-CoA carboxylase-alpha-gene: An E-box motif at -114 in the proximal promoter binds upstream stimulatory factor (USF)-1 and USF-2 and acts as an insulin-response sequence in differentiating adipocytes. Biochem J. 2001, 359: 273-284. 10.1042/0264-6021:3590273.
PubMed
CAS
PubMed Central
Google Scholar
Schweizer M, Roder K, Zhang L, Wolf SS: Transcription factors acting on the promoter of rat fatty acid synthase gene. Biochem Soc Trans. 2002, 30: 1070-1072. 10.1042/BST0301070.
PubMed
CAS
Google Scholar
Hadsell DL, Bonnette S, George J, Torres D, Klementidis Y, Gao S, Haney PM, Summy-Long J, Soloff MS, Parlow AF, et al: Diminished milk synthesis in Upstream Stimulatory Factor 2 null mice is associated with decreased circulating oxytocin and decreased mammary gland expression of eukaryotic initiation factors 4E and 4G. Mol Endocrinol. 2003, 17: 2251-2267. 10.1210/me.2002-0031.
PubMed
CAS
Google Scholar
Porstmann T, Griffiths B, CHung Y-L, Delpuech O, Griffiths JR, Downward J, Schulze A: PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene. 2005, 24: 6465-6481.
PubMed
CAS
Google Scholar
Sundqvist A, Goechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW, Ericsson J: Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCFFbw7. Cell Metabolism. 2005, 1: 379-391. 10.1016/j.cmet.2005.04.010.
PubMed
CAS
Google Scholar
Cross DA, Alessi DR, Cohen P, Andejelkovic M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995, 378: 785-789. 10.1038/378785a0.
PubMed
CAS
Google Scholar
Boxer RB, Stairs DB, Dugan KD, Notarfrancesco KL, Portocarrero CP, Keister BA, Belka GK, Cho H, Rathmell JC, Thompson CB, et al: Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metabolism. 2006, 4: 475-490. 10.1016/j.cmet.2006.10.011.
PubMed
CAS
Google Scholar
Berwick DC, Hers I, Heesom KJ, Moule SK, Tavare JM: The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J Biol Chem. 2002, 277: 33895-33900. 10.1074/jbc.M204681200.
PubMed
CAS
Google Scholar
Harvatine KJ, Bauman DE: SREBP1 and thyroid hormone responsive Spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J Nutr. 2006, 136: 2468-2474.
PubMed
CAS
Google Scholar
Zhu Q, Anderson GW, Mucha GT, Parks EJ, Metkowski JK, Mariash CN: The Spot 14 protein is required for de novo lipid synthesis in the lactating mammary gland. Endocrinology. 2005, 146: 3343-3350. 10.1210/en.2005-0204.
PubMed
CAS
Google Scholar
Edinger A, Thompson CB: Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. 2002, 13: 2276-2288. 10.1091/mbc.01-12-0584.
PubMed
CAS
PubMed Central
Google Scholar
Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB: Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol. 2001, 21: 5899-5912. 10.1128/MCB.21.17.5899-5912.2001.
PubMed
CAS
PubMed Central
Google Scholar