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of immunofluorescence protein multiplex 
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Abstract 

Background:  The extent of cellular heterogeneity in breast cancer could have potential impact on diagnosis and 
long-term outcome. However, pathology evaluation is limited to biomarker immunohistochemical staining and 
morphology of the bulk cancer. Inter-cellular heterogeneity of biomarkers is not usually assessed. As an initial evalua‑
tion of the extent of breast cancer cellular heterogeneity, we conducted quantitative and spatial imaging of Estrogen 
Receptor (ER), Progesterone Receptor (PR), Epidermal Growth Factor Receptor-2 (HER2), Ki67, TP53, CDKN1A (P21/
WAF1), CDKN2A (P16INK4A), CD8 and CD20 of a tissue microarray (TMA) representing subtypes defined by St. Gallen 
surrogate classification.

Methods:  Quantitative, single cell-based imaging was conducted using an Immunofluorescence protein multiplex‑
ing platform (MxIF) to study protein co-expression signatures and their spatial localization patterns. The range of MxIF 
intensity values of each protein marker was compared to the respective IHC score for the TMA core. Extent of hetero‑
geneity in spatial neighborhoods was analyzed using co-occurrence matrix and Diversity Index measures.

Results:  On the 101 cores from 59 cases studied, diverse expression levels and distributions were observed in MxIF 
measures of ER and PR among the hormonal receptor-positive tumor cores. As expected, Luminal A-like cancers 
exhibit higher proportions of cell groups that co-express ER and PR, while Luminal B-like (HER2-negative) cancers 
were composed of ER+, PR- groups. Proliferating cells defined by Ki67 positivity were mainly found in groups with 
PR-negative cells. Triple-Negative Breast Cancer (TNBC) exhibited the highest proliferative fraction and incidence of 
abnormal P53 and P16 expression. Among the tumors exhibiting P53 overexpression by immunohistochemistry, a 
group of TNBC was found with much higher MxIF-measured P53 signal intensity compared to HER2+, Luminal B-like 
and other TNBC cases. Densities of CD8 and CD20 cells were highest in HER2+ cancers. Spatial analysis demonstrated 
variability in heterogeneity in cellular neighborhoods in the cancer and the tumor microenvironment. 

Conclusions:  Protein marker multiplexing and quantitative image analysis demonstrated marked heterogene‑
ity in protein co-expression signatures and cellular arrangement within each breast cancer subtype. These refined 
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Introduction
Breast Cancer is a highly heterogeneous disease. Meth-
ods to classify different clinicopathologic types of 
breast cancers range from evaluation of the immuno-
histochemical (IHC) staining of hormonal and protein 
biomarkers (Estrogen receptor ER, Progesterone recep-
tor PR and Epidermal Growth Factor Receptor HER2/
neu), etc., to molecular profiling and intrinsic subtyping 
based on RNA expression [1–3] and integrated tran-
scriptomics with copy number aberrations (IntClust) 
[4–7] in bulk populations of cancer cells. Molecularly 
defined intrinsic subtypes classify breast cancers into 
Luminal A, Luminal B, HER2-enriched and basal-like 
cancers.

While these classification systems are clinically valu-
able for prognosis and treatment planning, the defini-
tions of ER+/HER2-cancers as specified at the 2013 
meeting of the St. Gallen International Breast Cancer 
Conference are quite broad [8] and display a spectrum of 
“intermediate” luminals (those between Luminal A-like 
and Luminal B-like) [9]. Discordance as high as 18% was 
found between clinical classification of hormonal recep-
tor-positive and molecular subtyping of luminal cancers, 
with HR+ cancers often assigned to HER2-enriched 
and TNBC molecular subtypes, while clinically diag-
nosed HER2+ and TNBC included a fraction of Lumi-
nal cancers by PAM50 assessment [3, 10–17]. Detailed 
analysis of ER+ cancers with long-term outcome data 
has also identified integrative molecular subtypes that 
are associated with increased risk of long-term recur-
rence [18]. These findings suggest that additional speci-
ficity within this spectrum may be helpful in improving 
the characterization of this subtype. Heterogeneity was 
also observed in HER2+ and TNBC with impact on the 
response to treatment [15, 19–23]. The presence of inher-
ent intra- and inter-tumoral heterogeneity could reduce 
effectiveness of treatment, possibly resulting in residual 
viable cancer cells which could contribute to resistance 
to treatment or recurrence [24–26]. Defining the cellular 
and molecular heterogeneities at the single cell level with 
spatial context will provide a more comprehensive under-
standing of breast cancer biology. Importantly, correla-
tions between the molecular definitions of subtype with 
assays used in the clinical setting, namely morphology 
and IHC scoring, will help to translate these enhanced 
measures into functional tools for the clinical laboratory.

The purpose of this study is to assess heterogeneity 
within each clinical subtype of breast cancer in the con-
text of protein marker expression signatures of single 
cells. Quantitative evaluation of the physical arrangement 
of cell subgroups is also illustrated to demonstrate the 
application of protein multiplexing in the investigation of 
spatial heterogeneities in breast cancer. In order to obtain 
a quantitative, single cell-based analysis of heterogeneity 
within breast cancer subtypes, we studied the co-expres-
sion patterns of breast biomarkers in individual cells of 
the cancer epithelium, the distribution of each subgroup 
and their spatial arrangement. Sequential staining of the 
same tissue section with a series of fluorescent-labeled 
antibodies, combined with digital imaging and bleaching 
of the fluorophores at the end of each staining round, was 
conducted using an immunofluorescence protein multi-
plexing platform MxIF [27]. In this study, we evaluated 
breast biomarkers ER, PR, HER2 and Ki67, together with 
TP53, CDKN2A (P16INK4a), cyclin-dependent kinase 
(CDK) inhibitor CDKN1A (P21/WAF1) in individual 
cancer cells of a breast tissue microarray (TMA) com-
prising invasive tumors. Subgroups of cells based on ER, 
PR, HER2 and Ki67 MxIF positivity were identified, and 
their abundances and spatial distributions were studied 
and compared between the pathologic IHC-based sub-
types. Co-expression patterns of TP53 and P16 were also 
studied. In addition, CD8 and CD20 lymphocytes in the 
tumor microenvironment were quantified and their spa-
tial localization was analyzed.

Methods and materials
Breast cancer tissue microarray (TMA)
The formalin-fixed, paraffin-embedded (FFPE) breast 
cancer TMA used in this work was obtained from Pan-
tomics (CA, USA). It includes 75 cases of benign tissue 
and invasive breast cancer with two independent cores 
(1.1  mm diameter) taken from different regions of the 
same specimen (referred as paired cores in this study). 
Only cores with invasive cancers were analyzed.

Immunohistochemical staining
Serial sections of the TMA were stained with protein 
marker in immunohistochemistry either using the Ven-
tana autostainer (Roche), or manually, following manu-
facturers’ protocols. The following antibodies were used: 
Estrogen Receptor (SP1, Ventana Medical Systems), 

descriptors of biomarker expressions and spatial patterns could be valuable in the development of more informative 
tools to guide diagnosis and treatment.
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Progesterone Receptor (1E2, Ventana Medical Systems), 
HER2 (4B5, Ventana Medical Systems), Ki67 (MIB-1, 
Ventana Medical Systems), P53 (DO-7, Dako), P16 (CIN-
tec, Ventana Medical Systems), P21 (1:200, Cell Signaling 
Cat#2947). ER, PR, HER2 and P21 IHC were scored by 
study pathologist (K.L.) with an evaluation of staining 
intensity and percentage of positive cells [28]. HER2 scor-
ing was conducted according to the recommendations 
from 2013 ASCO/CAP [29]. HER2 2+ (equivocal) cases 
by IHC were further evaluated with fluorescent in  situ 
hybridization (FISH) (S. N-M). Ki67 IHC was presented 
as percentages of positive cells per core (scored by K.L.). 
P53 and P16 IHC were reviewed by study pathologist (S. 
N-M.) and categorized as normal, null or over-expressed 
for P53 and normal or over-expressed for P16.

Classification of intrinsic subtypes based on IHC surrogate 
staining
Based on scoring of ER, PR, HER2 and Ki67 IHC of serial 
sections of the TMA, cores were classified as Luminal 
A-like [LumA], Luminal B-like (HER2-negative) [LumB], 
Luminal B-like (HER2-positive) [LumB, HER2 +], 
HER2+ (non-luminal) [HER2 +] and TNBC [TNBC] 
based on criteria described in Goldhirsch et. al. [30]. Of 
the TMA cores studied, 24 (14 cases) were LumA cores, 
36 (21 cases) were LumB cores. One case has one core 
classified as LumA, and the second core classified as 
LumB. Six cores (4 cases) were LumB, HER2+, 13 cores 
(9 cases) were from HER2+ cancers, and 22 cores (12 
cases) were from TNBC.

Antibody selection, conjugation, calibration and validation 
of MxIF
Commercially available antibodies for each protein 
marker of interest were first tested using standard IHC 
with appropriate positive and negative control tissues. 

Antibodies that showed specific staining and intensity 
comparable to IHC were selected and conjugated to Cy3 
or Cy5 fluorophores following established protocols [27]. 
Each fluorophore-conjugated antibody was optimized 
and validated using control tissues. The staining patterns, 
specificities and intensities of conjugated antibodies were 
compared to the optimized IHC staining of the same tis-
sue and evaluated by study pathologists (K.L, S.N-M). For 
breast biomarkers of ER, PR, HER2 and Ki67, we used 
clinically annotated breast cancer tissues for antibody 
validation. P53 staining was validated with a colon can-
cer case demonstrating P53 overexpression, while P21 
and P16 were validated with skin and colon tissues and 
on high-grade serous ovarian cancer cases, respectively. 
A range of concentrations were tested for each fluoro-
phore-conjugated antibody in the MxIF staining protocol 
and the parameters that resulted in staining intensities 
similar to those with IHC as performed in the clinical 
immunohistochemistry lab were selected.

Protein multiplexing
Protein multiplexing was conducted on the Immuno-
fluorescence Multiplexing MxIF platform (GE Research 
(GER), Niskayuna, NY, USA) [27]. Pairs of fluorophore-
conjugated (Cy3 and Cy5) antibodies were sequentially 
applied onto a single tissue section of the TMA, fol-
lowed by image acquisition and photo-induced chemical 
bleaching to inactivate optical signals from antibodies 
(U.S. patent 7,741,045) [31]. The order of antibody stain-
ing is listed in Table  1. In the first round of staining, 
unconjugated antibodies for HER2 and P16 were applied 
in primary incubation, followed by secondary staining 
with fluorophore conjugates of Cy3 or Cy5, respectively. 
All other antibodies were directly conjugated to fluoro-
phores. After completion of MxIF staining rounds, qual-
ity of the staining of each protein marker was visually 

Table 1  List of antibodies, fluorophore conjugated to each, and the staining sequence in MxIF. Na+K+ATPase and Ribosomal S6 were 
used as segmentation markers for membrane and cytosol, respectively. Pan-cytokeratin (PCK26) was used as the epithelial cell marker. 
COX2 was also included in the staining rounds but data not analyzed in the current study

Staining 
round

Cy3 Cy5

Antibody (clone) Supplier Cat # Unconj or Conj Antibody Supplier Cat # Unconj or Conj

1 HER2/neu (SP3) ThermoFisher RM9103 Unconj p16 (CINtec) Roche/Ventana 725–413 Unconj

2 Na+K+ATPase Abcam ab167390 Conj KI67(SP6) Zeta Z2031 Conj

3 PR Dako M3568 Conj ER(SP1) Spring Bioscience M3014C Conj

4 Ribosomal S6 Cell Signaling 2217BF Conj p21 Cell Signaling 2947BF Conj

5 PCK26 Sigma C5992 Conj p53 Dako M7001 Conj

6 – COX2 ThermoFisher 187379 Conj

7 – CD20 Abcam ab166865 Conj

8 – CD8 Dako M7103 Conj
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evaluated. TMA cores showing non-specific staining or 
having high background, over-exposed areas, or exhib-
iting tissue damage were excluded from analysis. Anti-
bodies for the cyclooxygenase-II enzyme (COX-2) were 
included in the panel and data will be presented in a 
future report.

Image analysis and statistical methods
Image registration and single cell segmentation were per-
formed with the software package, Layers, developed by 
GER for the MxIF platform. The DAPI signal and those 
from antibodies of ribosomal S6 and Na+-K+-ATPase 
were used for segmentation of the cell nuclear, cytoplas-
mic and membranous compartments, respectively, as 
well as the boundary of individual cells. Layers uses one 
channel to highlight the nuclear component and a sec-
ond to represent intracellular membranes, extracellular 
fibers and other tissue structures, to produce a “virtual 
H&E” (vH&E) image. Following cell segmentation, meas-
urements of cell size, morphology and protein marker 
signals were collected together with the coordinates of 
cell centroids. Pre-processing of data was conducted to 
remove cells that did not meet quality control require-
ments (i.e. cells that were lost or damaged at some point 
in the processing procedure). Pixel size in our study was 
0.293 μm.

Inclusion of cancer cells for analysis
For the study of the cancer population, a set of cell size 
parameters (> 90 pixels in perimeter, > 400 pixels in cell 
area and > 10 pixels of nuclear area) were applied in gat-
ing and included for analysis. To enrich for cancer cells 
in our analysis, single cell data from Luminal A/B and 
HER2+ cores were gated with Pan-Cytokeratin (PCK26) 
level (> = 1500 raw signal intensity) in order to select for 
PCK+ epithelial cancer cells. Regions with benign ducts 
were manually annotated by study pathologist (K.L.) on 
the virtual H&E images using the Image viewer Sedeen 
(Pathcore Inc, Toronto, ON). A python script (http://​
www.​python.​org) was developed to include/exclude sin-
gle cell data from annotated regions. In this case, single 
cell data corresponding to the annotated benign ducts 
were excluded from analysis. For TNBC, PCK staining is 
generally weak and prevented gating for PCK+ epithelial 
cells. Subsequently, cancer cells were manually annotated 
using Sedeen and the python script was applied to select 
for cells in the annotated regions.

Data processing and thresholding
Protein expression levels for each marker were extracted 
from their reported subcellular compartment locali-
zations as the fluorescent marker pixel values (ER-
nuclear, PR-nuclear, HER2-membranous, Ki67-nuclear, 

P53-nuclear and cytosol, P21-nuclear, P16-nuclear, PCK-
membranous). A min–max normalization to a range of 
0–15 was performed on the values for each marker indi-
vidually. For thresholding analysis of ER, PR and HER2, 
selection of empirical cut-points for marker positivity 
(weak vs strong staining for ER) were determined by 
comparing the MxIF values of cells from cores that were 
scored as negative, weak, moderate or strong staining 
intensities on IHC. For HER2, MxIF values were com-
pared to cores scored as 0, 1+, 3+ in IHC as cases with 
equivocal (2+) scoring were further tested with FISH. 
Five cores in each scoring class were studied (3 cores only 
for PR weak). For Ki67, the cut-point was determined by 
comparing MxIF distributions from representative cores 
with a range of IHC scores. For P53, P16 and P21, cut-
points were determined at > 0, 2 and 1 of normalized 
MxIF levels, respectively, after comparison with IHC 
scores.

Immune cells analysis
All segmented cells (including cancer and stromal cells) 
were included for analysis. CD8-positive and CD20-pos-
itive cells were quantified based on a threshold setting of 
normalized MxIF signals at 0.2.

Spatial arrangement of single cells
A MATLAB script was developed to map and label 
individual cells with their protein marker classifications 
using their cell centroid coordinates. Neighborhood 
analysis was conducted by calculating the frequency of 
each neighboring cell type within a 30 μm (100 pixel) or 
100 μm (341 pixel) radius from the centroid of the cen-
tral cell. Heterogeneity was evaluated by calculating 
the Shannon Equitability index (EH) (Shannon Diver-
sity Index divided by maximum diversity defined as [Ln 
(Number of Species)]) [32]. It assumes a value between 
0 and 1, with 1 representing the condition of all species 
present in the neighborhood and at the same level of 
abundance.

Statistical analysis
Significant difference between each pair of cores taken 
from the same cancer specimen was determined with 
the compare.2.vectors function (afex package in R) with 
the EPH and Ki67 classifications (16 classes) for all cells 
in each TMA core presented as a vector. p < 0.01 for both 
Wilcoxon test (coin::Wilcoxon) and permutation test 
were used to determine significant difference. Signifi-
cant differences between the percentages of cells in each 
EPH group among IHC subtypes, and between EH of 
EPH groups were evaluated with ANOVA test and Tuk-
ey’s HSD. All statistical analysis were performed in R (R 
Statistics).

http://www.python.org
http://www.python.org
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Results
MxIF intensities of biomarkers in single cells showed 
distributions comparable to IHC scoring of tissue core
A total of 225,086 single cells from 101 TMA cores (59 
cases) were included after quality evaluation and gating 
parameters had been applied (see Additional file 1). From 
the 101 TMA cores studied, 82 were paired cores from 
41 cases. In order to determine if MxIF measurements of 
breast biomarkers reflect IHC results, we compared the 
distribution of normalized ER and PR MxIF signals from 
individual cells between cores that were scored by IHC 
as negative, weak, moderately or strongly stained for the 
majority of the cells (Fig. 1A–D). For HER2, the distribu-
tions of normalized MxIF signals from individual cells 
were compared between cores that were scored in HER2 
IHC as negative, 1+ or 3+ (2 cases that were scored as 
2+/equivocal in IHC were further tested by FISH with 
one case re-classified to 1+ and one to 3 +)(Fig. 1E, F). 
We found that ER MxIF signal intensities were relatively 
low in cores scored as weak or moderate by IHC and 
that there was significant overlap in the range of MxIF 
values in those cores (Fig.  1B). Some cells in cores that 
were scored as strong in IHC also exhibited zero or low 
MxIF signal intensities, but the majority of cells showed 
medium to high MxIF staining intensities. For PR, MxIF 
signal intensities for negative and weakly stained cores 

again showed overlapping distributions, with cells from 
moderate and strongly stained IHC cores showing higher 
intensities and more dispersed range (Fig.  1D). MxIF 
HER2 staining showed discrete distributions between 
neg (0), 1+ and 3+ IHC-scored cores (Fig. 1F).

Based on the distributions of normalized MxIF inten-
sities for each protein marker, threshold levels were 
determined for binary classification of cells. As the maxi-
mum MxIF level of cells from weak ER IHC cores (IHC 
score = Low) was 0.36 (Fig.  1B), a threshold of 0.4 was 
chosen to segregate cells with negative or weak stain-
ing from the moderate and strongly positive cells. The 
cut-point to classify PR positive and negative cells was 
set at 1.6 as the range of normalized MxIF cell intensi-
ties from IHC PR-negative cores extended from 0 to 1.6 
(Fig. 1D). The HER2-positive cut-point was set at 5.0, the 
maximum signal intensity from cells in HER2 1+ cores 
(Fig.  1F). Comparison of representative cores with vari-
ous levels of Ki67 IHC positivity prompted the selection 
of a cut-point value at 0.2 to include the weakly positive 
cells (Fig. 1G, H).

In addition to ER, PR, HER2 and Ki67, we also used 
MxIF to study the expressions of P53, P21 and P16 on 
the TMA. Pathologists evaluate P53 and P16 IHC stain-
ing in cancers by reviewing the overall staining inten-
sity and pattern across the lesion and classify tumors as 
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Fig. 1  Comparison of MxIF biomarker signal intensities to IHC scoring on serial sections. A, C, E Paired MxIF with vH&E in inset (top) and IHC 
(bottom) images of ER (A), PR (C) and HER2 (E) of representative cores are shown. A small region of each image is zoomed in 40 × magnification 
(dotted circle). The corresponding IHC score for each core is as indicated. For ER and PR, IHC were scored with the percentage of positive cells and 
average marker intensity. For example, 90-w indicates 90% positive cells with weak staining. m-Moderate staining, s- Strong staining. B, D, F The 
distribution of normalized MxIF signal intensities from single cells in cores that were classified based on their corresponding IHC staining on serial 
sections for ER (B), PR (D) and HER2 (F). Normalized MxIF values (ERnorm, PRnorm or HER2norm) from single cells were compared between cores 
where IHC scoring indicated that they are either negative (Neg), or a majority (60% +) of cells were scored as weak (Low), moderate (Med), or strong 
(High) for ER and PR, and negative, 1+, 3+ for HER2. The number of cores (N) included in each group is as shown. G Ki67 comparison. Paired MxIF 
and IHC of representative cores with the indicated IHC scores of positive percentages are shown. H Distribution of normalized Ki67 MxIF signal 
intensities from the same cores
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normal (heterogeneous staining across the lesion), null 
or overexpression for P53 and normal or overexpression 
for P16 [33, 34]. We studied the distribution of MxIF sig-
nal intensity levels of each marker in cores that showed 
various IHC staining patterns (Fig. 2). P53 MxIF signals 
in cores that were scored by IHC as null ranged from 
0–0.5 (Fig. 2A, B). P53 normal cores expressed a major-
ity of cells with P53 MxIF at 0, with some cells expressing 
levels between 0 and 1, whereas some cells in cores with 
overexpression (O/E) by IHC exhibited much higher lev-
els of MxIF signal intensity (99th percentile at 6.77). In a 
comparison of P16 MxIF levels between IHC normal or 
O/E cores, cells from O/E cores tended to exhibit higher 
measured intensity than normal cores (Fig.  2C, D). P21 
expression in IHC was scored in terms of percentage of 
positive cells and average staining intensity. P21 MxIF 
values from four cases with varying IHC scores were 
compared (Fig.  2E, F). MxIF values from the P21 nega-
tive core remained low at 0 to 1. As the percentages of 
IHC positive cells and their staining intensities increased, 
a corresponding increasing trend in MxIF signal intensity 
was observed. These data suggest that MxIF signal distri-
butions could be used to reflect the mutational status of 
P53 and P16 or P21 expression patterns determined by 
IHC evaluation.

MxIF co‑expression pattern of ER, PR, HER2 and Ki67 
recapitulates IHC‑surrogate subtypes and identifies 
heterogeneity within each subtype
Cut-points for ER, PR and HER2 were applied to MxIF 
measured levels in each cell. As a result, 8 classes, 
which we refer to as EPH groups (for ER, PR and HER2) 
emerged from the data and were color-labelled accord-
ingly (Fig.  3A). Each group was further stratified as 
being Ki67+ or Ki67−. The abundance of EPH-classified 
cells in each TMA core was measured (Fig.  3B-C and 
Additional file 2: Table S1). Cores that were taken from 
the same cancer case were arranged together in pairs 
(Fig.  3B). Paired cores from all but one case were clas-
sified into the same IHC-surrogate subtype and gener-
ally showed similar distributions of EPH groups. That 
one case showed discordant classification, where one 
core was classified as Luminal A-like (LumA) (spot_032) 
and the second core as Luminal B-like (HER2-negative) 

(LumB) (spot_059). Luminal cancers were composed of 
varying proportions of cells from HER2-negative EPH 
groups (Groups 1, 3, 5 and 7) (Fig. 3B, C). LumB cancers 
harbored cells from PR-negative Groups 1 and 5, while 
LumA cancers also comprised PR+ Groups 3 and 7 cells. 
Only a few LumB, HER2+ (Luminal B-like, HER2+) 
cores were studied, and these mainly presented with cells 
from ER-weak, PR-negative EPH Group 1 and HER2+ 
Group 2. One particular LumB, HER2+ core (spot_117, 
Fig. 3B) showed composition of not only Groups 1 and 2, 
but also cells from ER-weak, PR-positive, HER2 ± Groups 
3 and 4. Most of the cells in HER2+ (non-luminal) cases 
belonged to Groups 1 and 2 only (Fig. 3C). TNBC cases 
were predominately comprised of Group 1 cells (Fig. 3C).

We did not observe any strong association of Ki67 posi-
tivity to a single EPH group, but higher proliferative frac-
tions were observed in Luminal B, HER2+ and TNBC 
cores, coinciding with EPH Groups 1, 2 and 5 (Fig. 3C), 
all of which are negative for PR.

Intra-tumoral heterogeneity was assessed by compar-
ing the EPH composition and Ki67 positivity of single 
cells between cores taken from the same specimen. There 
were 41 cases with two cores studied. 6 out of 10 cases 
(60%) of LumA breast cancer showed significant statisti-
cal difference between cores, and 60% (9 out of 15 cases) 
of LumB cases showed significant differences. 1 out of 2 
cases of LumB, HER2+, and all 4 HER2+ cases showed 
significant differences. As expected, only 20% (2 out of 10 
cases) of TNBC showed significant differences between 
cores from the same specimen as most TNBC are com-
posed of EPH Group 1 cells (Ki67+ or −) only.

Co‑expression patterns of Ki67, P53, P16 and P21 
in IHC‑surrogate subtypes reveals protein marker 
heterogeneity in TNBC
Next, we analyzed the co-expression pattern of Ki67, P53, 
P21 and P16 in each core. Cores were arranged according 
to their IHC-surrogate subtypes (same order as Fig. 3B) 
to determine if specific signatures are more prevalent 
(Fig. 4). The normalized MxIF levels of P53, P16 and P21 
per cell, as well as the positive fractions of Ki67, P53, 
P16 and P21 in each core are shown. Mutational status 
of P53 and P16 based on IHC evaluation are also shown 
for each case. We observed that proliferative fractions of 

Fig. 2  Distribution of MxIF signal intensities of P53, P16 and P21 from cores with various IHC patterns. A Comparison of P53 staining pattern 
from MxIF and IHC of representative cores which were classified as normal, null or overexpressed (OE) with IHC scoring. Virtual H&E image of the 
corresponding core in MxIF is shown in inset. A small region of each image was zoomed in 40 × magnification (dotted circle). B Boxplot graphs 
showing MxIF P53 normalized signals from single cells in cores classified as P53 normal, null or overexpressed (OE) with IHC evaluation (top). The 
plot is further magnified (bottom). The number of cores (N) included in each group is as indicated. C P16 evaluation of MxIF and IHC staining 
of cores that were classified as normal or overexpressed (OE) in IHC. D Boxplot graphs showing MxIF P16 normalized signals from single cells in 
cores that were classified as normal or overexpressing (OE) P16. E P21 IHC were scored with the percentage of positive cells and average intensity. 
Representative cores with negative staining (neg), 40% weak (40-w), 80% moderate (80-m) and 90% strong (90-s) are shown, together with MxIF 
staining of the same core. F Boxplot graphs showing P21 MxIF normalized signals from single cells in cores with the indicated IHC scores

(See figure on next page.)
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MxIF-measured Ki67+ cells were high in some LumB, 
most HER2+ and most TNBC cases, with the latter 
exhibiting the highest levels. P53 and P16 aberrations 
were found most frequently in TNBC by IHC, either 
as null or as overexpression, as well as in HER2+ and a 
small fraction of LumB breast cancers. However, levels 
of P53 MxIF signal intensities were observed to be much 
higher in some TNBC tumors, compared to HER2+ or 
LumB cases which also exhibited P53 overexpression 
patterns in IHC. A large fraction of TNBC cases was 

also found to exhibit P16 overexpression by IHC or by 
high MxIF levels which coincided with IHC-scored P53 
aberrations. On the other hand, two LumB cases which 
showed overexpression of P16 demonstrated normal P53 
by IHC. P21 expression levels did not appear to associate 
with P53 or P16 expression patterns, yet a slightly higher 
proportion of LumB breast cancers, as compared to the 
other subtypes, demonstrated higher levels of P21 and 
P21-positive fractions measured by MxIF. The associa-
tion between MxIF-measured P21 level and EPH Group 
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Fig. 3  Abundance and distribution of EPH groups across IHC-surrogate subtypes of breast cancer. A Table showing the eight EPH groups of single 
cell classification according to thresholding of MxIF signal intensities of ER, PR and HER2. Ki67 positivity was also determined in each cell and 
denoted by shaded color bars. B Proportion of EPH groups (EPH1-8) in tumor cores that were classified as Luminal A-like (Number of cores, N = 24), 
Luminal B-like (HER2-) (N = 36), Luminal B-like (HER2+) (N = 6), HER2+ (non-luminal) (N = 13) and triple-negative (TNBC) (N = 22). Cores taken from 
the same cancer are aligned in pairs for comparison. Spot_032 and spot_059 are paired cores but assigned to different IHC-surrogate subtype 
and marked with asterisks (**). C Boxplot presentations of the percentages of cells of each EPH group that are either Ki67-negative (top panels) or 
Ki67-positive (bottom panels) across IHC subtypes. LumBH2- LumB, HER2+. To indicate subtypes that showed significant difference (p = 0.01) for 
a EPH group, the subtypes are marked with dashed lines with the major subtype denoted with an asterisk (*)—for EPH Group 1 (Ki67-), significant 
difference was found between TNBC and LumA, TNBC and LumB, and TNBC and LumBH2, respectively. Double asterisk (**) denotes the subtype that 
showed significant difference with all other subtypes—for EPH Group 2 (Ki67 +), significant difference were found between HER2 and LumA, HER2 
and LumB, HER2 and LumBH2, and HER2 and TNBC
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Fig. 4  MxIF co-expression patterns of Ki67, P53, P21 and P16 in breast cancer cores with corresponding IHC evaluation. The fractions of 
MxIF-measured Ki67-positive cells (Ki67 pos fraction), P53-positive cells (P53 pos fraction, P16-positive cells (P16 pos fraction) and P21-positive cells 
(P21 pos fraction) per core, and the distribution of normalized MxIF signal intensities of P53 (P53norm), p16 (P16norm) and P21 (P21norm) in single 
cells are shown across all cores as classified by IHC-surrogate subtypes. The IHC status of P53 and P16 are also evaluated and presented with solid 
color box representing normal, “X” indicates the presence of null expression for P53 and “O” indicates the presence of overexpression of P53 or P16
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classification was assessed and no significant dependence 
was observed (F-value = 0.003, p-value = 0.955).

Neighborhood analysis to assess heterogeneity in cellular 
arrangement
The spatial arrangement of cells with different protein 
co-expression signatures was studied. In Fig. 5 and Addi-
tional file 2: Fig. S1, the centroid of each cell, depicted by 
a color representing its EPH grouping was mapped back 
to its cellular location on the tissue section. Images from 
TMA cores of three LumB cases, one of which was also 
HER2+, are shown in Fig. 5. Spot135, a LumB (HER2-) 
tumor, illustrated a relatively homogeneous composi-
tion and consisted of predominately ERm/s EPH5 cells 
(Fig.  5A, D). Spot056, also a LumB (HER2-), appeared 
to be more heterogeneous in the composition of EPH 
groups and is composed of a majority of cells in EPH 
Groups 1 and 5, and a small number of cells in PR+ EPH 
Groups 3 and 7 (Fig.  5B, E). The LumB, HER2+ core 
(spot117) shown here was highly heterogeneous and 
composed of cells from all groups except for Group 5 
(Fig. 5C, F). Here, cells from the two predominant groups 
(EPH3 and 4) appeared to form spatial clusters within 
their own group.

Quantitative analysis of heterogeneity in cellular 
arrangement with Shannon Equitability Index (EH) is 
illustrated in Fig. 5D–F. EH was calculated for each (cen-
tral) cell for the indicated size of neighborhood (30 and 
100 μm in radii) and presented as the mean for each EPH 
cell type. In spot135, EH was found to be significantly 
higher for central EPH1 cells in both 30 and 100  μm 
neighborhoods (p < 0.01) (Fig.  5D), suggesting that EPH 
Group 1 cells tend to have more heterogeneous mix of 
cells in their proximity compared to other EPH groups in 
this cancer. In the other LumB case (spot056), EH meas-
ured for EPH5 central cells was significantly higher than 
EPH Groups 1 and 3 in the 30 μm neighborhood (p < 0.01) 
(Fig. 5E). In the LumB, HER2+ case examined (spot117), 
EH evaluated for central cells of both EPH Groups 2 and 
3 was significantly higher than for EPH1 and 4 (p < 0.01), 
suggesting that EPH2 and 3 cells are more likely to be 
present in a heterogeneous cellular environment com-
pared to other cellular groups in this tumor (Fig. 5F).

To determine if the neighborhood environment for cer-
tain EPH Group cells demonstrate particular patterns, we 
studied the cumulative neighboring cell types of central 

EPH cell type in 5 LumA and 5 LumB cores (Fig.  5G, 
H). For LumA cores (Fig. 5G), each EPH group that was 
present appeared to have a higher likelihood to being 
in close proximity to cells of the same EPH group. For 
LumB cores (Fig. 5H), only small numbers of EPH3 and 
7 cells were present, while EPH1 and 5 cells tended to be 
most likely to cluster with their own group.

Quantification of immune cells and their spatial 
organization
In addition to analysis of breast cancer cells, densities 
of CD8 T-lymphocytes and CD20 B-lymphocytes in the 
tumor microenvironment were quantified. We found 
higher levels of both CD8 and CD20 lymphocytes in 
the HER2+ cancers compared to the other IHC sub-
types (Fig.  6A). Next we attempted to evaluate the spa-
tial localization patterns of these lymphocytes using 
co-occurrence matrices. Four representative cases with 
similar densities of CD8 (3.5–8.6%) and CD20 (3.3–8.2%) 
are shown in Fig. 6B. The localization maps indicate that 
the lymphocytes in spots 035 and 097 have more spa-
tially scattered, tumor-infiltrating patterns, whereas in 
spots 012 and 060 lymphocytes tended to be arranged 
in close proximity, particularly for the CD20 B-lympho-
cytes. These observations were also apparent from the 
quantification of percentage of neighboring cells for each 
central CD8 or CD20 cell. While the majority of neigh-
boring cells for CD8 and CD20 were PCK+ cancer cells 
in spots 035 and 097, about half of neighboring cells for 
CD20 were also CD20 cells in spots 012 and 060. These 
findings suggest that cancers that showed similar levels 
of immune densities could exhibit heterogeneous spatial 
patterns.

Discussion
Breast cancers are traditionally classified based on mor-
phology including histologic grade and the expressions of 
ER, PR and HER2 following established guidelines. The 
St. Gallen International Expert Consensus on the primary 
therapy of early breast cancers have established the use of 
IHC staining to define surrogates for molecularly defined 
intrinsic subtypes [30]. In this proof of principle study, 
we have reported the use of protein marker multiplexing 
with MxIF to examine protein biomarker co-expression 
patterns of single cells within each IHC-surrogate sub-
type. Comparison of the distribution of MxIF intensity 

Fig. 5  Spatial analysis of EPH groups. A–C The centroid location of each single cell is marked in color according to their EPH group assignment. The 
corresponding virtual H&E image is shown in inset. Two Luminal B-like cases (HER2-) and a Luminal B-like (HER2+) case are shown. D–F Quantitative 
evaluation of spatial heterogeneity. With neighborhood analysis, the percentages of neighboring EPH groups for each central EPH group are 
calculated for the indicated distance (30 or 100 mm in radius). The Shannon Equitability index for each central cell type is presented as the mean 
and standard deviation. G–H Cumulative analysis of the proportion of each EPH cell type in the neighborhood of the central cell type for G Luminal 
A-like cancers (N = 5) and for H Luminal B-like (HER2-negative) cancers (N = 5)

(See figure on next page.)
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levels of each marker and the corresponding IHC scor-
ing illustrated that MxIF-measured expression correlates 
well overall with IHC classifications. When individual 
cells were characterized by their MxIF-measured lev-
els of ER, PR and HER2, they segregated into groups to 
which we refer here as EPH, and demonstrated marked 
heterogeneity between cores within the Luminal A/B-
like St. Gallen IHC subtypes. Heterogeneity was also 
observed in TNBC cancers with varying P53 and P16 lev-
els. P53 protein levels measured with MxIF were much 
higher in some TNBC cancers, compared to HER2+ or 
luminal B-like cases which also harbored P53 overexpres-
sion identified with IHC. Our study illustrates that het-
erogeneity within each St. Gallen IHC-surrogate subtype 
could be further explained by quantitative analysis of 
co-expression signatures of key biomarkers. Addition of 
these refined descriptors could assist in the characteriza-
tion of individual breast cancer to improve management 
and long-term prognostication of the disease.

When single cells were grouped according to the co-
expression signatures of ER, PR and HER2, we found 
that significant levels of variation exist within ER+ can-
cers, especially in the proportion and staining intensi-
ties of ER and PR. Currently, depending on the patient’s 
menopausal status, endocrine therapy is recommended 
for hormone receptor-positive, HER2-negative cancers, 
defined as ER/PR > 1%. Recent recommendations from 
the American Society of Clinical Oncology/College of 
American Pathologists (ASCO/CAP) for ER and PR test 
reporting include the introduction of a new category of 
“ER Low Positive” in light of limited data on the benefit 
of endocrine therapy for cancers with 1% to 10% of ER+ 
cells [35]. Improved characterization of cancers with low 
to intermediate range of hormonal receptor expression 
will help to identify subgroups of cases with poor prog-
nosis which may require more aggressive treatment or 
monitoring. Hormonal receptor-positive, HER2-positive 
breast cancers, which constitute 5% of all breast can-
cers, also exhibit high degrees of heterogeneity in ER and 
HER2 expression which has been shown to be associated 
with their response to neoadjuvant chemotherapy and 
HER2-targeted therapy [36]. Our analysis included only 
a few Luminal B-like, HER2+ cancers. Interestingly, we 
found as reported by others [37, 38] that cells co-express-
ing high levels of both ER and HER2 are rare, while co-
expression of PR and HER2 was detected in a small 
fraction of cells. Ki67 positivity appeared to co-localize 
with EPH groups that are PR-negative. This observation 
aligns with previous findings which suggest that the loss 
of, or low values of PR expression is an adverse prognos-
tic factor [39, 40].

Spatial arrangement of cells was evaluated quantita-
tively by measuring the frequency of each cell type in a 

user-defined distance from the central cell type. Hetero-
geneity in cellular neighborhood was also quantified by 
calculating the Shannon Equitability index for each cen-
tral cell. Although only a few cases were presented here, 
certain EPH groups appear to be localized in neighbor-
hoods that were less heterogeneous. Since our limited 
dataset lacks outcome information of the cases studied, 
the clinical significance of these findings is not clear 
at this point. Nevertheless we believe that this tool for 
quantifying cellular arrangements could be useful when 
combined with other molecular profiling assays, par-
ticularly in the study of mutational evolution. Cells har-
boring potential driver mutations will exhibit higher 
proliferative capacity, resulting in these cells being closely 
arranged in cellular homogeneous neighborhoods. Such 
cellular neighborhood analysis could also be used to pre-
dict functional interaction between cell groups, such as 
the relationships between infiltrating immune subsets 
or between immune and cancer cells. We demonstrated 
that between cancers that have similar levels of CD8 and 
CD20 lymphocytes, some cases showed a more scattered 
infiltration pattern, while in others the lymphocytes were 
arranged in close proximity. However, the limited size of 
the TMA cores studied here prevented us from properly 
assessing immune densities and localization patterns 
over the entire lesion as would be done in the pathol-
ogy lab [41]. Nevertheless, we believe these methods, 
when applied to whole tissue sections, could be useful for 
evaluating response to immunotherapy, where the type, 
density and localization of immune subsets have shown 
to predict long-term outcomes and response to therapy 
[41–47].

Our current analysis was based on gating for cancer 
cells on the basis of larger sizes compared to normal epi-
thelial cells in perimeter and area in pixels. Selection of 
cancer cells was further enriched after thresholding of 
PCK26 level in luminal and HER2+ cancers. TNBC cells 
express weak PCK26, preventing the use of a threshold 
for gating. Therefore, cancer cells were manually anno-
tated in the TNBC cancers. Nevertheless, “contamina-
tion” with non-cancer cells in our study population was 
inevitable and these could be tumor-infiltrating lym-
phocytes, fibroblasts or vascular cells. Another tech-
nical challenge is the low sensitivity in calibrating the 
MxIF measurement in distinguishing ER weakly positive 
cells from ER negative cells. A more granular calibration 
study, with the goal of improving the correlation of MxIF 
measurements to IHC histoscores in breast cancer is 
being conducted to develop methods that could translate 
multiplex-defined signatures to clinical subtypes.

Recent advances in high-dimensional proteomics 
technologies have allowed the study of breast cancer 
with hundreds or even thousands of protein markers 
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and revealed the presence of a myriad of cellular phe-
notypes in the cancer and the tumor microenviron-
ment that may further define each PAM50 intrinsic 
molecular subtype [48–52]. Although our analysis here 
is limited to seven markers, our comparison with IHC-
surrogate subtypes and IHC staining patterns illus-
trate how the MxIF co-expression signatures could be 
translated to phenotypes identified in the clinical set-
ting. We believe that a detailed quantitative assessment 
of protein markers co-expression on single cells, in the 
context of intensity grading and spatial arrangement, 
could improve the precision in stratifying the disease 
for treatment assignment and monitoring. To this goal, 
we are applying the methods reported here to study 
whole tissue sections from a cohort of whole-mount 
processed breast lumpectomies and correlating with 
clinical outcome information. A combined evaluation 
with molecular analyses such as targeted mutational 
or RNA profiling, will augment our protein signature 
and clustering analysis. The ability to study spatial 
arrangement of cell groups, particularly between can-
cer cells and cells in the stroma and the heterogeneity 
of such arrangement could provide valuable insight into 
improved management of breast cancer.

Conclusions
We report on a proof-of-concept study where single-
cell image analysis of protein multiplexing is used to 
assess heterogeneity within IHC-defined breast cancer 
subtypes. Biomarker expression signatures evaluated 
on single cells, revealed heterogeneous composition 
and spatial arrangement of subgroups. Furthermore, 
cancers with the same IHC score of overexpression of 
P53 and/or P16 exhibited a range of expression lev-
els when measured in individual cells. These findings 
motivate a more refined stratification of breast can-
cers based on the expression levels of protein biomark-
ers and evaluation of correlation with outcomes. This 
information may improve the characterization of breast 
cancers and predicting their responsiveness to therapy.
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