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Abstract

Background: Although the incidence of positive resection margins in breast-conserving surgery has decreased,
both incomplete resection and unnecessary large resections still occur. This is especially the case in the surgical
treatment of ductal carcinoma in situ (DCIS). Diffuse reflectance spectroscopy (DRS), an optical technology based on
light tissue interactions, can potentially characterize tissue during surgery thereby guiding the surgeon
intraoperatively. DRS has shown to be able to discriminate pure healthy breast tissue from pure invasive carcinoma
(IC) but limited research has been done on (1) the actual optical characteristics of DCIS and (2) the ability of DRS to
characterize measurements that are a mixture of tissue types.

Methods: In this study, DRS spectra were acquired from 107 breast specimens from 107 patients with proven IC
and/or DCIS (1488 measurement locations). With a generalized estimating equation model, the differences between
the DRS spectra of locations with DCIS and IC and only healthy tissue were compared to see if there were
significant differences between these spectra. Subsequently, different classification models were developed to be
able to predict if the DRS spectrum of a measurement location represented a measurement location with “healthy”
or “malignant” tissue. In the development and testing of the models, different definitions for “healthy” and
“malignant” were used. This allowed varying the level of homogeneity in the train and test data.

Results: It was found that the optical characteristics of IC and DCIS were similar. Regarding the classification of
tissue with a mixture of tissue types, it was found that using mixed measurement locations in the development of
the classification models did not tremendously improve the accuracy of the classification of other measurement
locations with a mixture of tissue types. The evaluated classification models were able to classify measurement
locations with > 5% malignant cells with a Matthews correlation coefficient of 0.41 or 0.40. Some models showed
better sensitivity whereas others had better specificity.

Conclusion: The results suggest that DRS has the potential to detect malignant tissue, including DCIS, in healthy
breast tissue and could thus be helpful for surgical guidance.

Keywords: Image-guided surgery, Tissue characterization, Optical spectroscopy, Breast-conserving surgery, Ductal
carcinoma in situ (DCIS), Invasive carcinoma (IC)
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Background
The incidence of positive resection margins in breast
cancer surgery has decreased over time due to improved
imaging and a changed definition of a “positive” resec-
tion margin [1, 2]. Despite this decrease, re-excisions be-
cause of positive resection margins still occur frequently,
especially in patients with ductal carcinoma in situ
(DCIS) [3]. In this patient group, tumor-positive resec-
tion margins are reported in up to 35% of the patients
[4–8]. In addition to this, excision volumes are not
always matching with optimal resection volumes.
Unnecessarily large volumes of healthy tissue might be
excised while clear margins are not assured [9–11]. This
is important as the quantity of resected tissue negatively
impacts the cosmetic result [12–17]. Approximately 30%
of patients treated for breast cancer report a poor or fair
cosmetic result after breast-conserving surgery [18, 19].
Patients that experience a poor outcome are likely to
remain unsatisfied with the outcome 2 to 6 years after
surgery and the percentage of women that report poor
esthetic outcomes increases in the long-term follow-up
[18]. Furthermore, the poor cosmetic outcome was
associated with lower quality of life [14, 20, 21] which is
persistent over time [20].
Providing intraoperative tissue characterization to the

surgeon could improve the outcome of breast-conserving
surgery, with fewer positive resection margins and better
cosmetic results, and consequently reduce healthcare costs
[22]. Diffuse reflectance spectroscopy (DRS) is an optical
technology that seems to be an outstanding candidate to
fulfill this unmet clinical need as this technology is based
on endogenous tissue contrast, is non-destructive, can be
performed in real time, and does not require highly skilled
personnel. For a DRS measurement, light from a broad-
band light source is transmitted into the tissue via a fiber
integrated into a fiber-optic probe that is brought in con-
tact with the tissue. Inside the tissue, the light is absorbed
and scattered after which it is collected with another fiber
in the fiber-optic probe. This fiber is connected to a
spectrometer that produces a spectrum of the diffusely
reflected light (DRS measurement). The amount of ab-
sorption and scattering of the light in the tissue depends
on the composition and morphology of the tissue.
DRS has shown to have the potential to discriminate

healthy breast tissue from invasive carcinoma (IC). How-
ever, compared to IC, the number of DRS measurements
of DCIS reported in the literature is small. DCIS can be
a precursor stage for invasive carcinoma and is structur-
ally different from IC. DCIS is non-invasive and confined
to the milk ducts whereas in the case of IC, the basal
membrane has disappeared and cancer has become inva-
sive. These conditions are also different from healthy tis-
sue in which these ducts are still present and tend to be
smaller and not filled with cells. Since the morphology

of these tissue types is different, this might also result in
differences in the measured diffuse reflectance.
Furthermore, evaluation of DRS has been focused on

discriminating “pure” healthy tissue from “pure” IC
whereas little is known on the performance of DRS mea-
surements in more heterogeneous tissue containing mul-
tiple tissue types. Investigating both issues is crucial
before the technology can be implemented in clinical
practice. In this study, we aim to address these issues by
acquiring optical DRS measurements from ex vivo breast
specimens with a fiber-optic probe. To determine the
value of DRS for the detection of DCIS, the measure-
ments of IC, DCIS, and healthy tissue are compared
based on spectral features derived from the spectra.
Spectral features that show potential for discriminating
healthy tissue from malignant tissue are subsequently
used to develop classification algorithms. In the develop-
ment of the classification algorithms, different definitions
for “healthy” and “malignant” were used to evaluate which
definition would result in optimal classification of in-
homogeneous measurement locations with a combination
of different tissue types. Finally, these classification models
are evaluated with a completely independent dataset to
assess the accuracy for detecting DRS measurement loca-
tions including some malignant tissue (IC or DCIS).

Methods
Tissue slices
Fiber-optic diffuse reflectance spectra were acquired
from fresh tissue slices originating from resection speci-
mens of patients who had undergone breast surgery for
proven IC and/or DCIS in the Netherlands Cancer
Institute-Antoni van Leeuwenhoek Hospital. The study
was approved by the hospital. According to Dutch
guidelines, no informed consent had to be acquired
which was confirmed by the local ethics committee.
Immediately after surgery, when the surgeon was done

performing the resection and filling in the paperwork,
the specimen was brought from the OR to the pathology
department. At the pathology department, the specimens
were processed according to standard protocol. A path-
ologist inked each of the margins with a specific color
and sometimes the tissue was frozen to facilitate cutting
of the specimen. Subsequently, the specimen was cut in
a bread-loafed manner into slices with a thickness between
3 and 10mm. One of the slices with, if present, macroscop-
ically visible tumor tissue, was used for measuring. Per
specimen, one slice was available for measurements.

Measurement setup
The measurement setup consisted of a fiber-optic probe
and two spectrometers (DU420A-BRDD & DU492A-1.7,
Andor Technology, Belfast, Northern Ireland) together
covering the wavelength range between 400 and 1600
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nm. The blunt fiber-optic probe was attached to the
spectrometers. Inside the fiber-optic probe, three differ-
ent fibers with a core diameter of 200 μm were inte-
grated. One of the fibers was used for illuminating the
tissue, the other two fibers were used for collecting the
light. These were placed next to each other at a distance
of 1 mm away from the illuminating fiber and were each
connected to one of the two spectrometers.
Before each measuring session, a calibration was per-

formed using a calibration cap with a Spectralon refer-
ence standard at the bottom. A similar measurement
setup has been used previously and was described in de-
tail elsewhere [23, 24]. Compared to this setup, the setup
used in the current study has a smaller distance between
the illuminating and collecting fiber (1 mm versus 2.48
mm). Due to the smaller fiber separation distance, the
measurement volume will be smaller and spectra will be
influenced more by scattering interactions relative to the
number of absorption events. This smaller fiber distance
makes this data also less suitable for analysis with an
analytical model based on diffusion theory as was done
in these publications. Therefore, in this current study,
the data were analyzed by comparing the measured in-
tensity and using machine learning algorithms.
For measuring, a custom-made grid was placed on top

of the tissue slice that defined the measurement loca-
tions. The fiber-optic probe was fixed in this grid during
the acquisition of the data. The process of correlating
the location of a measurement with the histopathology
and estimating the composition of the measurement
location is explained in detail in Additional file 1. In
short, a registration was made between the RGB image
of the tissue without grid and the hematoxylin and eosin
(HE) stained section of the tissue slice. The HE sections
were evaluated by the pathologist who annotated the
different tissue types and specifically estimated the per-
centage of malignant cells (if present) in a measurement
location. Also, a registration was made between the RGB
image of the tissue with the grid and the RGB image of
the tissue without the grid. This step allowed to display
the measurement locations in the RGB without the grid.
Combining this RGB image with measurement locations
with the labeled HE section allowed estimating the tissue
composition in each measurement location. These path-
ology results were used to label the measurement loca-
tions for the development of the classification models.
Pathology ink that was present on the ex vivo speci-

mens affected the visual wavelengths. Therefore, only
the spectrum between 850 and 1600 nm was used in the
analysis. In total, 80 features were extracted from all the
spectra for the analysis (Additional files 2, 3, 4, 5 and 6).
These spectral features included slopes between wave-
length pairs and spectral features that were derived from
the local minima and local maxima of the spectra.

IC vs DCIS vs healthy
To assess the optical characteristics of DCIS, the spectra
of locations with only DCIS were compared with the
spectra of locations with only IC. Also, the spectra of
both these malignant tissue type locations were separ-
ately compared with the spectra of locations with only
healthy tissue. This way, it is possible to assess the dif-
ferences between IC and DCIS as well as the optical
contrast between the malignant tissue types and healthy
tissue. For comparing DRS spectra of measurement
locations with DCIS to DRS spectra from measurement
locations with IC, measurement locations were selected
that contained either IC or DCIS in combination with
surrounding connective tissue. Connective tissue was
allowed to be present in these malignant measurement
locations as there were no measurement locations that
consisted of only IC cells or DCIS cells without any con-
nective tissue. For the healthy tissue measurement loca-
tions, all measurement locations that consisted of only
fat and/or connective tissue were selected.
A generalized estimating equation (GEE) model was

generated with each spectral feature to assess if a spec-
tral feature was statistically different in the comparison
between two tissue types. The analysis was performed
with GEE models as these are suitable for modeling cor-
related data by assessing associations between measure-
ments and covariates while taking into account the
inter-patient correlation between measurements. For de-
scribing the variance and covariance between repeated
measurements, an equicorrelated structure was used for
all GEE models. In each model, the tissue type (‘IC’/
‘DCIS’/‘healthy’) was provided as a covariate as well as
the percentage of connective tissue at a measurement lo-
cation. All analyses were performed in SPSS (IBM SPSS
Statistics 25, Armonk, New York, USA). A spectral fea-
ture was considered significant when the p value lower
than 0.05 was calculated.

Classification model development
Classification models were developed to predict if the
DRS spectrum from a measurement location represented
a “healthy” or “malignant” measurement location. The
hypothesis was that for classifying mixed measurement
locations a model that was developed with measurement
locations with a mixture of tissue types would result in
improved accuracy. To this end, the definitions of
“healthy” and “malignant” were modified for developing
different classification models. A measurement location
was labeled “malignant” based on two criteria: (1) the
presence of malignant cells (IC or DCIS), and (2) the
percentage of fat in the measurement location does not
exceed Thresmaxfat. This percentage of fat was set
between 0 and 100% at 10% intervals. The percentage of
fat was varied in the definition of “malignant” as fat is
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the predominant tissue type in healthy breast tissue.
Measurement locations were labeled as “healthy” if they
met the following criteria: (1) the absence of malignant
cells (IC or DCIS), and (2) the percentage of connective
tissue present in the measurement volume does not
exceed Thresmaxcon. Thresmaxcon was set between 0 and
100% at 10% intervals. For the definition of “healthy,”
the percentage of connective was varied as connective
tissue is often present in tumor tissue. Measurement
locations that did not meet the definition of “healthy” or
“malignant” were labeled as “mixed.”
For each combination of Thresmaxfat and Thresmaxcon,

a classification model was developed with measurement
locations that were “healthy” or “malignant” according
to the definitions. Thus in total, 121 models were devel-
oped. A linear support vector machine (SVM) was used
in each of the models to discriminate between the two
classes. The SVM was weighted to compensate for the
imbalance between the number of “healthy” and “malig-
nant” measurements.
To avoid bias in the model, development and assess-

ment of the performance different datasets were formed
for training, validating, and testing the models. This was

done by splitting the dataset of 107 patients into several
subsets (Fig. 1). The data of 36 patients (~ 33%) was
used to both develop and test a classification model.
This dataset was again split into two sets of data via 8-
fold cross-validation; (1) data for developing the classifi-
cation model; the Model data (“healthy” and “malignant”
measurement locations), and (2) data for testing the
model once it had been optimized; the Test data pure
(“healthy” and “malignant” measurement locations) and
Test data mix (“mix” measurement locations). Via 3-fold
cross-validation, the Model data was further split into
the Train data (“healthy” and “malignant” measurement
locations) and Validation data (‘healthy’ and ‘malignant’
measurement locations) which was used for optimizing
the classification model. The definition of “healthy” and
“malignant” depended on Thresmaxfat and Thresmaxcon

and as a consequence measurement locations could have
different labels in the development of the different
models.
The splitting of the data was based on the patient

number to ensure that the data used for training and
testing the different models always originated from the
same patient for each of the 121 models.

Fig. 1 Flowchart of the splitting of data into three subsets. The data was split into test data (pure and mix), model data, and independent data.
The model data and test data were used to develop a classification model based on a linear, weighted support vector machine (SVM), and test
this classification model. The independent data was classified with the developed classification model to evaluate the performance of the
classification model on a separate dataset
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The second group of 71 patients formed the independ-
ent data (“healthy,” “malignant,” and “mix” measurement
locations) which was completely independent of the data
used for the development of the models. This data was
used to further assess the performance of the classifica-
tion models.

Performance of the classification models
Test data pure and test data mix
To assess the accuracy of the classification models for
classifying the DRS measurements, first, the test data
pure was classified. The performance of the individual
classification models was assessed by calculating the
Matthews correlation coefficient (MCC). To test for
overfitting, also the model data was classified with the
classification models and compared to the MCC of the
test data pure. Subsequently, classification models with
high MCCs were selected and used to classify the test
data mix (measurement locations labeled as “mix”) and
an MCC was calculated. This enabled us to investigate
the performance of the classification models for classifying
measurement locations with a mixture of tissue types.

Independent data
The independent data consisted of data from patients
that were not used for developing or testing the classifi-
cation models. To evaluate the performance of the
classification models on this dataset, the classification
output was compared to the composition of the meas-
urement location. Subsequently, also the MCC, as well
as the sensitivity, and specificity were calculated for de-
tecting all measurement locations with 5–40% malignant
cells to relate the performance of the classification
model to the clinical setting.

Results
Fiber-optic diffuse reflectance spectra of 1488 measure-
ment locations from 107 resection specimens of 107 pa-
tients were available for analysis. Fat, connective tissue,
IC, and DCIS were present in respectively 90.5%, 86.9%,
14.6%, and 8% of the measurement locations.
In Table 1, the characteristics of the patients are dis-

played. The mean age was 56.3 years (± 11.5 years). Of the
107 patients, 58 were postmenopausal (54.2%), 33 patients
were premenopausal (9.3%), 10 patients were perimeno-
pausal (9.3%), and menopausal status was unknown for 6
patients (5.6%). In total, 44 patients had received a
preoperative treatment with either chemotherapy (30 pa-
tients, 28%) or hormonal therapy (14 patients, 13.1%).

IC vs DCIS vs healthy
From the total dataset of 1488 measurement locations,
the measurement locations with either IC, DCIS, or
healthy tissue only were selected (1244 measurement

locations) to compare how the spectral features differed
between these groups of measurement locations. The
composition of these selected measurement locations is
given in Fig. 2.
As can be seen in Fig. 2a, some of the healthy meas-

urement locations consisted of 100% fat or connective
tissue. On the other hand, there are no measurement lo-
cations that consist of only malignant cells (Fig. 2b, c).
In the case of IC, the highest percentage of IC cells is
90%, and for DCIS measurement locations, this is 80%.
The GEE results of the majority of spectral features

did not have p values below 0.05 and are therefore not
significantly different between the measurement loca-
tions with IC and the measurement locations with DCIS
(Fig. 3). Only two features were significantly different
with a p value below 0.05; (1) the slope between 999 nm
and 1034 nm and (2) the wavelength of the inflection
point on the right side of the local minimum at 1205 nm
(see Additional file 7).
On the other hand, the vast majority of spectral fea-

tures was significantly different for IC measurement lo-
cations in comparison to healthy tissue measurement
locations (62 of 80 features), and for DCIS measurement
locations in comparison to healthy tissue measurement
locations (65 of 80 features). Altogether, in 75% (60/80)
of the features, the calculated p values for both the IC
and DCIS comparison with healthy tissue measurement
locations show the same result. The fact that the results
were consistent for IC and DCIS confirmed that the
measured DRS spectra of these malignant tissue types
are similar. Thus, it was concluded that the optical char-
acteristics of IC and DCIS are the same.

Performance of classification models
In total, 121 classification models (11 possibilities for
Thresmaxcon multiplied by 11 possibilities for Thresmaxfat)
were developed and evaluated on the classification per-
formance. For the model development, the number of
features was further reduced to a set of 16 features by

Table 1 Patient characteristics

Age

Mean 56.3 years

Standard deviation 11.5 years

Menopausal status

Premenopausal 33 patients (30.8%)

Perimenopausal 10 patients (9.3%)

Postmenopausal 58 patients (54.2%)

Unknown 6 patients (5.6%)

Preoperative treatment

Chemotherapy 30 patients (28%)

Hormonal therapy 14 patients (13.1%)
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performing a floating feature search (See Additional file
8). Figure 4a shows the MCC on the model data, and
Fig. 4b shows the MCC on the test data pure for all
models. In general, for all models, the MCC of the model
data is slightly better than the MCC of the test data
pure. The differences between the two are small which
indicates that the models are not overfitting. The MCC
decreases with an increasing percentage of fat in the
measurement locations defined as “malignant” (i.e., an
increasing percentage of Thresmaxfat) and an increasing
percentage of connective tissue in the measurement lo-
cations defined as “healthy” (i.e., an increasing percent-
age of Thresmaxcon).
Regarding the test data pure, the performances of the

models with a Thresmaxfat of 0% and a Thresmaxcon of
0%, 10%, or 20% are excellent with MCCs of 0.97, 0.93,
and 0.93 respectively. With a Thresmaxfat of 10%, the per-
formances on this dataset of the models with a Thresmax-

con of 0%, 10%, and 20% are still very good with MCCs
ranging between 0.91 and 0.95.
Four models marking the corners of the box between

a Thresmaxfat of 0 to 10% and a Thresmaxcon of 0 to 20%
in Fig. 4b were selected to assess the ability of the classi-
fication models to correctly classify measurement loca-
tions with a mixture of tissue types. The selected models
were as follows: (1) Thresmaxfat 0%/Thresmaxcon 0%
(Model I), (2) Thresmaxfat 0%/Thresmaxcon 20% (Model
II), (3) Thresmaxfat 10%/Thresmaxcon 0% (Model III), and
(4) Thresmaxfat 10%/Thresmaxcon 20% (Model IV). These
models were selected as they have similar performance
but different definitions of “healthy” and “malignant.”

Model I is based on the most homogeneous data
whereas in the three other models more fat tissue and/
or connective tissue was allowed in the definition of
“healthy” and “malignant.”

Test data pure and test data mix
Figure 5 shows the results of the four selected classifica-
tion models on the test data pure (left) and test data mix
(right). Regarding the test data pure, for the measurement
locations with 0% malignant cells, the mean output of the
four classification models is close to 0 which represents
classification as “healthy” (Fig. 5a). For the three categories
with malignant cells (Fig. 5c, e and f), the mean output of
all the classification models is close to 1 and thus these
measurement locations were classified as “malignant.”
Hence, the classification accuracy of all models is similar
and excellent for classifying measurements without malig-
nant cells as “healthy” and classifying measurement loca-
tions with malignant cells as “malignant.”
The results on the test data mix show that for meas-

urement locations with 0% malignant cells (Fig. 5b) the
mean output of Model I was below 0.5, and for Model
II, Model III, and Model IV, the median was higher than
0.5. Hence, for these three models, a substantial group
of measurement locations without malignant cells was
classified as “malignant.”
Classification of measurement locations with a low

percentage of malignant cells (≤ 33%) seems difficult for
all models but one. Only Model III shows a mean classi-
fication model output of 0.5 for this category (Fig. 5d).
For classification of measurement locations with

Fig. 2 Composition of the locations selected for comparing the differences between measurements of different tissue types. The three groups
that were defined were healthy tissue measurement locations (a), measurement locations of IC (b), and measurement locations of DCIS (c)
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higher percentages of malignant cells, the median of
the classification model output for the test data mix
dataset increased with an increasing percentage of
malignant cells in the measurement location (Fig. 5d,
f, h). In the category with > 66% malignant cells (Fig.
5h), only limited data were available, however, and
no measurement locations could be classified by
Model III and Model IV. The reason for this is that
more measurement locations are labeled as “healthy”
and “tumor” and are therefore used in the develop-
ment of the classification model. For all of these
models, the standard deviations are large.

Composition of independent data
The classification models were used on the inde-
pendent data of 71 patients. The data of these

patients were not used in the development of the
classification models. The measurement locations in
this dataset were both measurement locations with
only one tissue type or a mixture of tissue types and
should be a representation of the composition of
breast tissue in general. The tissue composition of
the measurement locations in the independent data
is depicted in Fig. 6a. The large circles in the left
corner of the graph in Fig. 6a indicate that the
majority of the measurement locations had a high
percentage of fat. Furthermore, the majority of the
circles are located at the lower border of the tri-
angle. Hence, a large portion of the measurement
locations did not have any malignant cells but was
composed of fat and connective tissue (88% of meas-
urement locations). Except for the 100% fat measure-
ment locations, there are no circles depicted on the
left border of the triangle implying that there was
always some connective tissue present in those
measurement locations.

Classification of independent dataset
Figure 6b–e depicts the interpolated classification results
by each of the four models of the dataset of independent
data in triangle plots. Comparing the performance of
Model I to Model II, the difference is that more
connective tissue (up to 20%) is allowed in the definition
of “healthy.” However, there is hardly any effect of this
change in definition in the results on the independent
data. The effect of changing the definition of “malig-
nant” by allowing more fat tissue (up to 10%) can be
seen by comparing Model I with Model III. Especially,
the locations in the middle of the ternplot, which are lo-
cations with a mixture of tissue types, are more often
classified as “malignant.” All measurement locations with
more than 40% of malignant cells have a classification
model output that suggests tumor. Lastly, in Model IV,
both up to 20% of connective tissue is allowed in the
definition of “healthy” and up to 10% of fat tissue is
allowed in the definition of “malignant.” The classifica-
tion model output of this model is comparable to the
classification model output of Model I and Model II.
Finally, the MCC, sensitivity, and specificity were

calculated for all four classification models for the de-
tection of measurement locations with a certain per-
centage of malignant cells. The results are shown in
Table 2.
Model I, Model II, and Model IV show the same per-

formance and have the highest MCC of 0.41 for the low-
est percentage of malignant cells (5%). However, for this
percentage of malignant cells, the MCC of Model III is
almost similar to the other three models. With an in-
creasing percentage of malignant cells, the MCC de-
creases for all four models.

Fig. 3 P values of each feature for comparing measurement
locations with IC vs measurement locations with DCIS (a),
measurement locations with IC vs measurement locations with only
healthy tissue types (b), and measurement locations with DCIS vs
measurement locations with only healthy tissue types (c)
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For measurement locations with 5% or more malig-
nant cells, Model I, Model II, and Model IV have a
higher specificity and a lower sensitivity whereas Model
III has a higher sensitivity and lower specificity. With an
increasing percentage of malignant cells, the sensitivity
increases for all models. For Model III, the sensitivity
reaches 0.96 for locations with more than 40% malignant
cells. Model I, Model II, and Model IV have a sensitivity
of 0.80 for this percentage of malignant cells. Besides an
increased sensitivity, a decreased specificity is found with
increasing percentages of malignant cells. For locations
with more than 5% malignant cells, the specificity is 0.84
(Model I, Model II, and Model IV) and 0.71 (Model III).
When more than 40% of malignant cells are present, the
specificity is 0.66 for Model III, and 0.79 for Model I,
Model II, and Model IV.

Discussion
In this study, we investigated the potential use of DRS
for margin assessment during breast-conserving surgery
with ex vivo measurements on breast specimens of 107
unique patients. We aimed to assess (1) the optical
difference between measurements of DCIS and IC and
(2) the classification of measurements that contain a
mixture of tissue types.
First, the optical differences between measurement lo-

cations with DCIS and measurement locations with IC
were analyzed by comparing the spectral features of the
measurements of both groups. The vast majority of
spectral features were not significantly different DCIS
measurements compared to the IC measurements. Fur-
thermore, 60 out of the total 80 spectral features were
significantly different in the comparison of the malignant
tissue types (both IC and DCIS) in comparison with the
healthy tissue measurements. It was concluded that
DCIS and IC have similar optical characteristics and for
this reason, for the remaining analyses DCIS and IC

were assessed jointly as “malignant cells.” There have
been a few reports on DRS measurements of DCIS spe-
cifically [25–28]. In these papers, measurements were
acquired over a smaller wavelength range, typically only
enclosing the visual wavelengths, and often the analysis
was performed with optical parameters (i.e., blood con-
tent, reduced scattering) that were derived from the
measured spectrum. Comparing our measurements with
the previously published work is therefore not possible.
The main value of our work is that we have gathered a
large database of DCIS measurements and that we have
shown that DCIS can be detected by DRS. This is of crit-
ical importance when the technique is used for evaluat-
ing resection margins.
The second topic of this research was the classification

of measurements in heterogeneous tissue consisting of a
combination of malignant cells and healthy tissue such
as fat and connective tissue. We assessed if developing
classification models with DRS measurements from a
mixture of tissue types would improve the performance
for classification of measurement locations with a mix-
ture of tissue types. To this end, first, the models were
tested with the test data pure. The performance of the
models on this data was comparable to results from pre-
vious studies [26, 29–31]. Four classification models with
high MCCs (> 0.91) on the test data pure dataset were
used to also classify other datasets with measurement lo-
cations that contain a mixture of tissue types. The classi-
fication of the test data mix was less accurate compared
to the test data pure, probably because the measure-
ments in the test data mix were more heterogeneous
compared to the test data pure. Model III showed a
higher classification model output for the measurement
locations with up to 33% malignant cells in comparison
to the other three models. This model is thus more sen-
sitive for the correct classification of the measurement
locations with a low percentage of malignant cells than

Fig. 4 Mean MCC of model data (a) and test data pure (b) for all 121 models. Each model was developed with a different Thresmaxfat and
Thresmaxcon that determined which measurement locations were labelled “healthy” or “malignant”
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the other models. This also suggests that allowing more
fat tissue in the definition of “malignant” can help in de-
tecting the measurement locations with a small portion
of fat tissue combined with malignant cells. Allowing
more connective tissue in the definition of “healthy” did
not help in improving the correct classification of
healthy measurement locations that could have some
connective tissue. An explanation could be that to some
extent the connective tissue, that is always present

around the malignant cells, is used by the classification
models for discriminating “healthy” from “malignant.” It
should also be noted that the standard deviation is large
especially for the measurement locations without or with
lower percentages of malignant cells. This could suggest
that there might be subgroups in each category that are
either easy or difficult to classify correctly.
The four selected classification models were further

tested with the independent data which was completely

Fig. 5 Results on the classification of “healthy” and “malignant” locations from the test data pure (left) and “mix” locations from test data mix (right). In
each graph, the x-axis represents the output of the classification model. A value between 0 and 0.5 is considered “healthy” by the classification models
and a value between 0.5 and 1 is considered “malignant” by the classification model. The graphs (a, b) show the classification results of measurements
with 0% malignant cells, (c, d) the results of measurement locations in which 1 to 33% of the volume was comprised of malignant cells, in (e, f) this
percentage ranges from 34 to 66%, and in (g, h) measurement locations contained more than 66% malignant cells
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independent of the data used for the development of the
classification models. An analysis of the composition of
the measurement locations in this dataset revealed that
the majority of the measurement locations have a large
percentage of fat and a limited presence of malignant
cells and that connective tissue was present in almost all
measurement locations. This is expected as breast tissue
consists of mainly fat tissue interlined with some glandu-
lar/connective tissue. Comparing the outputs of all four

models, three models seem very similar and only Model
III shows a different result. The classification model out-
put of Model I and Model II was very comparable which
suggests that allowing up to 20% of connective tissue in
the definition of “healthy” did not result in improved
classification results of measurement locations without
malignant cells that contain a mix of fat tissue and con-
nective tissue. This was also seen in the results of the
test data mix. An explanation for this could be that the

Fig. 6 Ternary plots of independent data. Each point in a plot sums to a total of 100%. The three corners of the plot represent measurement
locations of 100% malignant cells, 100% connective tissue, and 100% fat tissue. Points within the triangle represent mixtures of these substances.
For each measurement location, the percentage of one of these substances decreases linearly with increasing distance from the corner that
represents 100% of the substances. a Composition of the measurement locations. The size of the dots is proportional to the number of
measurement locations with that specific tissue composition. b–e Classification model output of Model I–Model IV

Boer et al. Breast Cancer Research           (2021) 23:59 Page 10 of 15



majority of measurement locations with some connect-
ive tissue but without malignant cells are already classi-
fied correctly as “healthy.” On the contrary, allowing up
to 10% of fat tissue in the definition of “malignant”
(Model III) resulted in a classification model output of >
0.5 for all measurement locations with more than 40% of
malignant cells, independent of the amount of fat and
connective tissue. Hence, the presence of a little bit of
fat in a measurement location does not automatically re-
sult in a classification model output of < 0.5 (e.g.,
“healthy”). The classification model output of Model IV
is very comparable to the outputs of Model I and Model
II and distinctly different from Model III. The effect of
only allowing more fat tissue in the measurement loca-
tions defined as “malignant” seems to be overpowered
by the effect of allowing more connective tissue in the
measurement locations defined as “healthy.” However,
although this seems visually the case this is probably a
bias related to the way the results are displayed in the
ternplots. All the healthy measurement locations without
any malignant cells are visualized on the lower border of

the ternplot whereas all the measurement locations that
contain a percentage of malignant cells are spread over
the rest of the pyramid. This makes visualizing the ef-
fects on the healthy measurement locations more diffi-
cult in this type of plot.
In Table 2, the effect of the percentage of malignant

cells on the performance of the classification models is
displayed. With regard to an increasing percentage of
malignant cells, all models show similar performance in
terms of MCC, sensitivity, and specificity. The sensitivity
increases, whereas MCC and specificity decrease. Thus,
with a higher percentage of malignant cells present in
the measurement location, the models are better at
detecting these as “malignant.” However, specificity
decreases, thus also more locations without malignant
cells are classified as malignant. This can be explained as
there is always connective tissue present in the measure-
ment locations that contain malignant cells. Therefore,
completely separating connective tissue from malignant
cells is impossible and all classification models to some
extent seem to use the presence of connective tissue as a

Table 2 Performance of the classification models for the detection of measurement locations with a different threshold for the
percentages of malignant cells in the locations labeled as “malignant”

Percentage malignant cells Model I Model II Model III Model IV

MCC 5% 0.41 0.41 0.40 0.41

10% 0.39 0.39 0.37 0.39

15% 0.40 0.40 0.36 0.40

20% 0.37 0.37 0.33 0.37

25% 0.36 0.36 0.32 0.36

30% 0.35 0.35 0.30 0.35

35% 0.31 0.31 0.28 0.31

40% 0.31 0.31 0.28 0.31

Sensitivity 5% 0.62 0.62 0.79 0.62

10% 0.66 0.66 0.82 0.66

15% 0.71 0.71 0.86 0.71

20% 0.73 0.73 0.85 0.73

25% 0.75 0.75 0.88 0.75

30% 0.79 0.79 0.90 0.79

35% 0.77 0.77 0.91 0.77

40% 0.80 0.80 0.96 0.80

Specificity 5% 0.84 0.84 0.71 0.84

10% 0.82 0.82 0.70 0.82

15% 0.82 0.82 0.69 0.82

20% 0.81 0.81 0.68 0.81

25% 0.80 0.80 0.67 0.80

30% 0.80 0.80 0.67 0.80

35% 0.79 0.79 0.66 0.79

40% 0.79 0.79 0.66 0.79
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surrogate for the presence of malignant cells. This result
was also found by other groups [32]. Furthermore, meas-
urement locations with a high percentage of malignant
cells, a low percentage of connective tissue, combined
with fat tissue were rare. For example, only 50 locations
(3.4%) consisted of less than 30% connective tissue and
more than 5% malignant cells.
When comparing the performances of the models in

terms of sensitivity and specificity differences can be
seen between Model III and the other three Models.
Model III has a higher sensitivity and lower specificity,
whereas the other three models have a lower sensitivity
and higher specificity. This is independent of the per-
centage of malignant cells in the measurement locations.
Model III is thus better for detecting all locations with
malignant cells, but this is achieved at the expense of
misclassifying some healthy measurement locations.
Which model is optimal for clinical use, or in other
words, if higher sensitivity or specificity is desired,
should be researched in a large clinical study. In this
study, the output of the models should be related to
what is considered a positive resection margin according
to the pathologist as well as the consequences of pos-
sibly resecting some healthy tissue that is incorrectly
classified as malignant.
In this research, only the linear and weighted SVM

was used for classifying the measurements. This was a
deliberate choice as the linear SVM is relatively insensi-
tive for overfitting and proved useful in previous re-
search [29]. Especially since the dataset is imbalanced,
overfitting is a potential danger. It was not in the scope
of this research to further assess different types of classi-
fication models. However, future research could be
directed towards other classification models, which in
potency could yield better results.
The feature extraction and selection method used in

this research was not pulled from literature but de-
signed by the authors. The slopes, local minima, and
local maxima were all extracted with an algorithm
from the mean spectra of the “pure” tissue types (e.g.,
fat, connective, IC, and DCIS). There was an imbal-
ance in the number of spectra used for calculating
the mean for each of the tissue types. Extending the
number of pure measurements, especially for the tis-
sue classes with a limited number of spectra, could
result in a different extraction of features. Once ex-
tracted, the features were selected based on the re-
sults of the GEE analysis and the floating feature
search. No other feature selection methods were eval-
uated in this research; however, potentially, a different
feature selection method could lead to a better
performance of the classification model.
The majority of the publications using DRS for margin

assessment evaluated the entire margin by using

multiple probes and classifying an entire margin as op-
posed to a single measurement [33, 34]. In the latter
case, spatial information is absent, and a fiber-optic
probe measurement is one single spectrum that is the
sum of the diffuse reflectance of multiple tissue types
present in the probed volume. Thus, assessing the influ-
ence of mixed tissue is more important in this case. The
number of publications that assessed point measure-
ments of measurement locations with a mixture of tissue
types is limited. A study by Kennedy et al. evaluated the
margin in a point-based method but excluded the mixed
tissue locations because the fractional composition of
the locations was not specified by histopathology [25]. A
publication by Pappo did include locations with a
combination of tumor tissue and healthy tissue [35].
In this paper, the MarginProbe is used similarly to
the point measurements in our study. The reported
sensitivity and specificity for locations with more
than 75% tumor tissue were 100% and 87% respect-
ively. However, including the mixed measurement
locations, their sensitivity and specificity dropped
both to 70%.
To assess the clinical value of DRS, the percentage of

malignant cells should be related to the volume of
malignant cells that is present in a measurement loca-
tion in the case of a positive resection margin. Besides, it
is important to recognize that the definition of a positive
resection margin has shifted over the years and is still
under debate [36]. Furthermore, there is a difference
between the definition of a positive resection margin for
DCIS [37], and the definition of a positive resection mar-
gin for IC [38]. Although both definitions have shifted
towards a more liberal definition for DCIS, this is still
more stringent than for IC. As discriminating the two
tissue types with DRS seems impossible, this might have
implications for what is detected by DRS as a positive
resection margin. Importantly, there is ongoing con-
troversy around the current definition of a positive
resection margin for DCIS and this could further shift
towards an even more liberal definition in the future
[5, 39–42]. There are some indications that a less
stringent interpretation of a positive resection margin
is safe for DCIS as long as post-operative radiother-
apy is not omitted [43].
Even though the number of positive resection margins

in breast-conserving surgery for IC and/or DCIS de-
creased over time, there is a lot to be gained by provid-
ing the surgeon with additional information to decreased
excised tissue volumes. This was shown in studies in
which intraoperative ultrasound was used for margin
assessment [44, 45]. However, this technology has not
emerged widely in clinical practice probably because it
requires additional skills from the surgeon and intense
collaboration between the radiology and surgical
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department [46, 47]. On top of that, it is not suitable for
the detection of DCIS as ultrasound imaging has limited
sensitivity for this tissue type [48].

Conclusions
This study investigated the potential of DRS for intraop-
erative resection margin assessment. First, we found that
except for two spectral features, all other 78 spectral
features were not significantly different between IC and
DCIS. It was concluded that because of this similarity in
optical characteristics DCIS can also be detected by
DRS. Secondly, developing different classification models
with different definitions of “healthy” and “malignant”
did not make a huge impact on the classification per-
formance of measurements with a mixture of tissue
types. When considering all measurement locations with
5% or more malignant cells as malignant, the MCC of all
models was similar (0.40 or 0.41). However, sensitivity
and specificity did vary between the models independent
of the percentage of malignant cells that was present.
Model III had a higher sensitivity and lower specificity
than the other three models (Model I, Model II, and
Model IV) which had a lower sensitivity and higher
specificity. These results should be related to what is
considered a positive resection margin and if a classifica-
tion model with higher sensitivity or higher specificity is
desired. Future research should thus be directed to in-
vestigating if the accuracy found in this research is suffi-
cient for the intraoperative detection of malignant tissue
and can thus improve the surgical treatment of breast
cancer.
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