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Abstract

Background: The H&E stromal tumor-infiltrating lymphocyte (sTIL) score and programmed death ligand 1 (PD-L1)
SP142 immunohistochemistry assay are prognostic and predictive in early-stage breast cancer, but are operator-
dependent and may have insufficient precision to characterize dynamic changes in sTILs/PD-L1 in the context of
clinical research. We illustrate how multiplex immunofluorescence (mIF) combined with statistical modeling can be
used to precisely estimate dynamic changes in sTIL score, PD-L1 expression, and other immune variables from a
single paraffin-embedded slide, thus enabling comprehensive characterization of activity of novel immunotherapy
agents.

Methods: Serial tissue was obtained from a recent clinical trial evaluating loco-regional cytokine delivery as a
strategy to promote immune cell infiltration and activation in breast tumors. Pre-treatment biopsies and post-
treatment tumor resections were analyzed by mIF (PerkinElmer Vectra) using an antibody panel that characterized
tumor cells (cytokeratin-positive), immune cells (CD3, CD8, CD163, FoxP3), and PD-L1 expression. mIF estimates of
sTIL score and PD-L1 expression were compared to the H&E/SP142 clinical assays. Hierarchical linear modeling was
utilized to compare pre- and post-treatment immune cell expression, account for correlation of time-dependent
measurement, variation across high-powered magnification views within each subject, and variation between
subjects. Simulation methods (Monte Carlo, bootstrapping) were used to evaluate the impact of model and tissue
sample size on statistical power.
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Results: mIF estimates of sTIL and PD-L1 expression were strongly correlated with their respective clinical assays
(p < .001). Hierarchical linear modeling resulted in more precise estimates of treatment-related increases in sTIL, PD-
L1, and other metrics such as CD8+ tumor nest infiltration. Statistical precision was dependent on adequate tissue
sampling, with at least 15 high-powered fields recommended per specimen. Compared to conventional t-testing of
means, hierarchical linear modeling was associated with substantial reductions in enrollment size required (n =
25➔n = 13) to detect the observed increases in sTIL/PD-L1.

Conclusion: mIF is useful for quantifying treatment-related dynamic changes in sTILs/PD-L1 and is concordant with
clinical assays, but with greater precision. Hierarchical linear modeling can mitigate the effects of intratumoral
heterogeneity on immune cell count estimations, allowing for more efficient detection of treatment-related
pharmocodynamic effects in the context of clinical trials.

Trial registration: NCT02950259.
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Background
Immunotherapy with anti-programmed cell death ligand
1 (anti-PD-L1, atezolizumab) was recently approved by
the Food and Drug Administration (FDA) for the indica-
tion of PD-L1-positive metastatic triple negative breast
cancer (TNBC) [1, 2]. However, novel combination
immuno-oncology (I-O) therapies will be required to
improve efficacy in other therapeutic settings, such as
for PD-L1-negative disease, or for less immunogenic
breast cancer subtypes such as luminal-type hormone
receptor-positive cancers. In an era when numerous I-O
agents are being developed clinically [3–5], one promis-
ing avenue to accelerate drug development is to develop
biomarkers to characterize immune cell (IC) and tumor
cell (TC) infiltrates, enabling a comparison of pharmaco-
dynamic effects of various I-O strategies. Here, we
describe a methodology that employs multiplex im-
munofluorescence (mIF) in conjunction with statistical
modeling to characterize IC infiltration and PD-L1
expression in the context of early-stage breast cancer
(ESBC) I-O clinical trials.
The mIF assay is of particular interest in breast cancer

because it may serve to complement two clinically devel-
oped I-O biomarkers, PD-L1 expression (by the Ventana
SP142 assay), and the hematoxylin and eosin (H&E)
stromal tumor-infiltrating lymphocyte (sTIL) score. The
SP142 PD-L1 assay is FDA-approved to identify patients
with PD-L1+ TNBCs who could potentially benefit from
the addition of atezolizumab to nab-paclitaxel [1, 6]. The
SP142 assay categorizes tumors as PD-L1+ if at least 1%
of the tumor area is occupied by PD-L1+ immune cells
(ICs). PD-L1 expression is thought to be dynamic, with
biological conditions and/or therapeutic interventions
potentially modifying the extent of PD-L1. While the
binary designation of PD-L1 status is clinically useful, its
ability to serve as a pharmacodynamic biomarker to as-
sess for dynamic PD-L1 change is limited by its semi-
quantitative nature and operator dependency. Likewise,

the H&E sTIL score uses pathologist estimation of pro-
portion of stromal area occupied by TILs on a single
H&E slide as a general gauge of tumor immunogenicity
[7]. Similar to PD-L1 testing, sTIL may be clinically
useful (as it correlates with survival, chemotherapy re-
sponse, and potentially immunotherapy response)
[8–12]; however, several barriers limit its use as a phar-
macodynamic biomarker, including suboptimal inter-
observer concordance related to underlying intratumoral
heterogeneity of sTILs [13]. Both PD-L1 and sTILs have
the limitation of being semi-quantitative assays and re-
quire a pathologist to visually estimate ICs, which may
sometimes be present in low abundance.
mIF enables estimation of IC counts in high resolution

across numerous high-powered magnification fields
(hereafter called regions of interest, ROI) and therefore
has the potential to produce more accurate and precise
estimates of sTILs and PD-L1 expression, relative to the
clinical assays. Furthermore, mIF permits more detailed
characterization of IC/TC interactions via single-cell
quantification of numerous phenotypic surface markers,
and spatial localization of cells into various tissue
compartments (i.e., tumor versus stroma). Here we use a
6-marker panel of CK, CD3, CD8, FoxP3, CD163, and
PD-L1 to visualize, quantify, and phenotype ICs and
TCs in ESBC specimens. IC densities and PD-L1 expres-
sion are repeatedly sampled across multiple ROIs on a
single slide, providing the opportunity to characterize
spatial heterogeneity. With appropriate statistical model-
ing, the repeated sampling of ROIs can be used to
improve both accuracy and precision of IC density and
PD-L1 expression estimates.
Here, we report mIF data from a phase Ib study of

IRX-2, a loco-regional cytokine therapy in early-stage
breast cancer (ESBC) [14]. IRX-2 contains various cyto-
kines (including interleukin (IL)-2, IL-1β, interferon-γ,
tumor necrosis factor-α, among others) delivered sub-
cutaneously in the distribution of regional lymphatics,
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and was previously shown to increase tumor lymphocyte
infiltration in pre-operative head and neck carcinomas
[15–17]. In the phase Ib breast cancer trial, IRX-2 was
injected in the peri-areolar tissue (modeled after sentinel
lymph node mapping) and was found to be well toler-
ated, achieving the primary safety endpoint as well as
showing evidence of enhanced IC infiltration and
lymphocyte activation (measured by RNA sequencing)
[14]. Using the paired biopsy and surgical excision speci-
mens from this trial, our objectives of this project were
(1) to propose a method for harmonizing mIF with the
PD-L1 SP142 and H&E sTIL clinical assays; (2) to illus-
trate how hierarchical linear modeling can enhance
statistical precision of IC density/PD-L1 expression esti-
mates; and (3) to evaluate the influence of ROI sample
size on overall statistical power to detect changes in ICs/
PD-L1 in the context of a clinical trial.

Methods
Parent clinical trial and sample acquisition
Samples were obtained from a pre-surgical phase Ib
combination immunotherapy clinical trial
(NCT02950259) [14]. The trial is completed, and de-
tailed results have been published, with demographic in-
formation summarized in Table 1 [14]. Briefly, patients
with ESBC (stage I-III) planned for definitive surgical
resection (either lumpectomy or mastectomy) were con-
sidered for enrollment at the Providence Cancer
Institute (Portland, OR) from May 2016 to May 2018
(n = 16). Inclusion criteria comprised any breast cancer
subtype, resectable primary tumor > 0.5 cm, Karnofsky
Performance Status of ≥ 70%, adequate organ function,
absence of steroid-dependent medical conditions, and
absence of prior immunotherapy. Diagnostic core biop-
sies and excisional tumor specimens were collected,
processed, and fixed in paraffin (FFPE) per standard-of-
care clinical pathology procedures. In this study, a
cytokine-based combination immunotherapy approach
(IRX-2) was evaluated for feasibility, safety, and immu-
nomodulatory activity (including flow cytometry analysis
of lymphocyte subsets, T cell repertoire analysis, and as-
sessment of IC infiltration). Treatment included a com-
bination of single, low-dose cyclophosphamide (300 mg/
m2 IV) to stimulate antigen presentation and deplete T-
regulatory cells, daily oral indomethacin (25 mg three
times daily, days 1–21) to modulate myeloid-derived
suppressor cells (MDSCs), and locoregional therapy with
the investigational agent, IRX-2 (2 mL subcutaneous
daily × 10). IRX-2 is a physiologically derived cytokine
mixture obtained by ex vivo stimulation (using phytohe-
magluttinin) of pooled donor peripheral blood leuko-
cytes, from which a stable cytokine mixture is obtained
under GMP conditions [18]. The cytokine mixture was
delivered subcutaneously adjacent the areola using a

method that recapitulated axillary sentinel lymph node
mapping, potentially allowing for transmission of cyto-
kines to the tumor-draining lymph node, the putative
site of antigen presentation. The study protocol was ap-
proved by the Providence Portland Medical Center IRB
committee and was conducted in accordance with the
ethical standards established by the Declaration of
Helsinki.

Stromal TIL scoring by routine hematoxylin and eosin
(H&E)
For each treated subject, 5 μm FFPE tissue sections were
cut from the core and excision specimens. H&E staining
was performed and reviewed by a breast pathologist to
confirm the presence of tumor and to evaluate fixation
quality. Tissue samples stained by conventional H&E
were digitally scanned with Leica SCN400F platform at
20X and maginfication 220x-400x to facilitate blinded
evaluation of sTILs using guidelines published by the
International Immuno-Oncology Biomarker Working
Group on Breast Cancer (i.e., sTILs working group) [7].
The average of sTIL scores of two blinded pathologists
were reported as the percentage of stromal area occu-
pied by lymphocytes within areas of invasive carcinoma,
excluding areas of carcinoma in situ, necrosis, normal
breast/adipose tissue, and biopsy trauma [7, 19].

PD-L1 positivity by Ventana SP142 assay
Additional 5-μm FFPE slides were stained for clinical
PD-L1 scoring using the SP142 assay (Ventana Medical
Systems Inc., Tucson, AZ, USA). ICs were scored by two
blinded pathologists using published guidelines [6, 20],
reported as the proportion of tumor area occupied by
PD-L1-staining ICs of any intensity. PD-L1 was scored
using the recommended standardized cutoffs (IC0- < 1%,
IC1- ≥ 1% to < 5%, IC2 ≥ 5% to 10%, and IC3 ≥ 10%) [6].
In metastatic TNBC, anti-PD-L1 therapy (atezolizumab)
is approved in combination with nab-paclitaxel for the
treatment of PD-L1 tumors, which corresponds with
scores of IC1-IC3 [1, 2]. To serve as internal control for
sTIL and PD-L1 score, a contemporary cohort of un-
treated stage I-III biopsy and matched surgical resection
samples (n = 14) were analyzed for PD-L1 and sTIL
score.

Multiplex immunofluorescence staining and image
acquisition
Additional 5-μm FFPE slides were stained for mIF.
Staining methods were validated by the EACRI IHC
Core at the Providence Cancer Institute (Portland, OR)
and are previously reported [21]. Briefly, sections were
deparaffinized and subjected to heat-induced epitope re-
trieval in Tris-EDTA buffer (pH 9.0). 6-plex panel mIF
was performed using the following antibodies: anti-
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FoxP3 (clone 236A/E7, dilution 1:400, Abcam), anti-PD-
L1 (clone E1L3N, dilution 1:1600, Cell Signaling), anti-
CD8 (clone SP16, dilution 1:400, Spring Bioscience),
anti-CD3 (clone SP7, dilution 1:600, Spring Bioscience),
anti-CD163 (clone MRQ26, dilution 1:4, Ventana), anti-

CK (clone AE1/AE3, dilution 1:3000, DAKO). Alterna-
tive PD-L1 clones are available and are not evaluated
here in the context of mIF (SP263, SP142, and 22C3);
however, the E1L3N clone was demonstrated to have
comparable staining results to these antibodies in a

Table 1 Sample summary and clinical results

Pre-treatment Post-treatment Fold change

ID TNM Ki67 Grade ER/PR HER2 sTIL
H&E
(%)

sTIL mIF*
(count/
pixel)

PD-L1 mIF*
(count/
pixel)

PD-L1
SP142

sTIL
H&E
(%)

sTIL mIF*
(count/
pixel)

PD-L1 mIF*
(count/
pixel)

PD-L1
SP142

sTIL
H&E

PD-L1
SP142

1 pT1c,
N1

11% 2 +/+
(100%/
100%)

– 8.75 0.48 0.07 IC0 12.5 0.59 0.13 IC0 + 0.4 0

2 pT2c,
pN2

19% 2 +/+
(96%/
90%)

– 13.75 1.35 1.04 IC0 20 1.53 0.87 n/a + 0.5 n/a

3 pT2,
N1

17% 2 +/+
(98%/
100%)

– 1.75 0.13 0.07 IC0 1.75 1.25 0.35 IC1 0 + 1

4 pT2N1 75% 3 −/−
(0%/0%)

+ 6.25 0.23 0.24 IC1 10 0.74 0.68 IC2 + 0.6 + 1

5 pT1c,
N1

7% 1 +/+
(98%/
92%)

– 3.75 0.88 0.18 IC0 5 0.34 0.09 IC1 + 0.3 + 1

6 T2, N1 73% 3 −/−
(0%/0%)

+ 18.75 0.84 0.01 IC0 18.75 0.94 0.40 IC0 0 0

7 T2, N1 55% 3 +/+
(98%/
100%)

– 18.75 1.18 0.54 IC1 20 1.24 0.64 n/a + 0.1 n/a

8 pT2,
N0

50% 3 +/+
(100%/
42%)

– 7.5 1.28 0.97 IC1 16.25 1.68 1.30 IC1 + 1.2 0

9 pT1b,
pN0

11% 2 +/+
(100%/
100%)

– 1 0.06 0.06 IC0 5 0.27 0.23 IC0 + 4 0

10 T1c,
N0

33% 2 +/+
(100%/
99%)

– 11.5 0.41 0.38 IC1 18.75 1.48 1.33 IC3 + 0.6 + 2

11 pT1c,
pN1a

38% 3 +/−
(69%/
0%)

+ 6.25 0.35 0.22 IC1 5 1.59 0.65 IC2 −0.2 + 1

12 pT2,
N0

12% 3 +/+
(98%/
100%)

+ 61.25 2.21 1.81 IC1 72.5 3.52 1.99 IC3 + 0.2 + 2

13 pT2,
pN0

87% 3 +/+
(100%/
7%)

– 31.25 1.69 0.06 IC1 55 1.77 0.98 IC3 + 0.8 + 2

14 N/A N/A 1 +/+
(100%/
100%)

– 1 n/a n/a n/a 1 n/a n/a n/a 0 n/a

15 pT1c,
N0

30% 2 +/+
(100%/
50%)

– 3.5 1.26 n/a IC0 7 1.14 0.76 IC2 + 1 + 2

16 pT1b,
N0

95% 3 −/−
(0%/0%)

– 1 0.38 0.03 IC0 13.75 0.99 0.06 IC3 +
12.8

+ 3

TNM stage by the TNM Classification of Malignant Tumors, Ki67% of Ki67-positive tumor cells, ER estrogen receptor, PR progesterone receptor, HER2 human
epidermal growth factor receptor 2, sTIL stromal tumor-infiltrating lymphocyte, H&E hematoxylin and eosin stain, PD-L1 programmed death ligand 1, SP142
Ventana PD-L1 assay, IC immune cell; *× 10−3
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recent clinical validation study [22]. Anti-mouse or
rabbit HRP (Biocare Medical) was used as the primary
antibody. TSA-conjugated fluorophores (PerkinElmer)
were used to visualize each biomarker: Opal 690 (PD-
L1), Opal 650 (CD8), Opal 620 (CD163), Opal 570 (CK),
Opal 540 (CD3), and Opal 520 (FoxP3). Three percent
H2O2 and microwave treatment in citrate buffer pH 6.0
was performed to prevent cross-reactivity. Tissue slides
were incubated with DAPI as counterstain and cover-
slipped with Prolong antifade mountant (Thermo Fisher
Scientific). Whole slides were scanned and digitized at ×
10 magnification (PerkinElmer Vectra 3.0) for gross
visualization of the tumor, with non-overlapping regions
of interest (ROIs) scanned at × 20 (0.36mm2) for quanti-
fication. ROIs were selected by a study pathologist and
included all available tumor-bearing areas containing at
least some ICs (> 100 mononuclear cells or more). Re-
gions with empty spaces due to large vasculature, cutting
artifacts, or other artifacts were avoided. The number of
ROIs per slide ranged from 8 to 32 (mean 16). The
workflow is graphically depicted in Fig. 1, and additional
details on method are furnished upon request.

Data analysis
InForm software (PerkinElmer, package 2.4) was used to
segment tumor regions (stroma versus tumor) and
phenotype cells based upon marker expression. Tech-
nical details on the method [23], step-by-step instruc-
tions [24], and examples of application in other ESBC
datasets are published [25]. Four representative ROIs for
each specimen were used for training and capturing the
heterogeneity of staining. The process can be summa-
rized in four steps. First, digital images were processed
and converted to data matrices according to optical
density. Second, the ROIs were segmented into tumor
and stromal compartments, which requires a manual
step of selecting several small representative areas (con-
taining 3–15 nuclei) for each compartment (using H&E
as a benchmark). InForm uses these selections to train
and segment the remaining regions, which were then
manually compared with H&E for accuracy. Third, cells
were labeled according to the most likely phenotype
using an Inform-based machine-learning algorithm
guided by manual selection of several cells per pheno-
type of interest. In this experiment, cells were catego-
rized according to the following phenotypes: tumor cells
(CK+), helper T cells (CD3+CD8−), cytotoxic T cells
(CD3+CD8+), regulatory T cells (T reg, CD3+FoxP3+),
macrophages (CD163+), and other stromal cells (DAPI+
only). PD-L1 expression was analyzed as both a continu-
ous variable (reporting mean quantitative immunofluor-
escence [QIF] intensity for each cell), as well as a binary
PD-L1+/− phenotype (described in the “Results” sec-
tion). Next, image reports and phenotype maps were

generated for each ROI. Finally, output files were gener-
ated containing per-cell observations with the following
features: patient identification number, sample type
(pre-treatment biopsy versus post-treatment excision),
ROI unique identifier, cellular phenotype, tissue com-
partment (tumor versus stroma) and areas for each com-
partment, Cartesian coordinates (x- and y-axes), and
mean cellular PD-L1 QIF intensity (illustrated in Fig. 1).

Statistical methods
An important goal was to evaluate a statistical approach
that could account for heterogeneity within different
areas of the tumor, thus improving reliability of estimat-
ing overall IC count and PD-L1 expression. A Poisson
generalized linear mixed model (GLMM) was used with
a log-linear effect of prevalence, an offset of log (area) to
make the expected number of cells proportional to the
area, using the function “glmer” in R package “lme4.”
This well-described model [26, 27] accounts for differ-
ences in stromal/tumor area within each ROI, correl-
ation of time-dependent measurements, and variation
among patients and ROIs when estimating the relative
influence of treatment exposure on IC density or PD-L1
expression. The model was selected as the best fit by
likelihood ratio test, AIC and BIC criterion based on the
observed data. The formal formula of the model can be
written as log (λij) = offset (log (Area)) + β0 + β1 Ti + bi +
bj(i), where λij = E (yij) is the mean of cell count, yij (e.g.,
CD3 cell counts) in the jth ROI of the ith subject, with
Ti being a binary variable indicating post- versus pre-
treatment, bi and bj(i) representing random effects per-
taining to ith subject and jth ROI. In the model, counts
are adjusted for the compartment area. Treatment-
associated effects (i.e., fold change [FC] in density from
pre- to post-treatment) with 95% confidence intervals
were estimated by exponentiation of the coefficient for
post-treatment.

Results
Evaluation of TILs by mIF
IRX-2 was previously shown to increase the mean H&E
sTIL score, upregulate PD-L1 expression, and upregulate
immune-related gene signatures [14]. We sought to de-
velop a method of measuring sTILs using mIF that
would closely recapitulate the H&E sTIL score
(sTILH&E), but potentially with greater precision com-
pared to the semi-quantitative clinical assays. The sTILs
working group guidelines define sTILs as all stromal
mononuclear cells, which include lymphocytes and
plasma cells but exclude other ICs such as macrophages,
with the score being a percentage of stromal area occu-
pied by these cells [7, 19]. To recapitulate this, we de-
fined the sTILmIF score as the sum of counts of all
stromal T cells (helper, cytotoxic, and regulatory)
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Fig. 1 (See legend on next page.)
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divided by stromal area (Table 2). Plasma cells are not
captured by this panel and may be present in ESBC, but
are usually clustered in sparse ROIs [28]. Results are il-
lustrated in Table 1 and Fig. 2a, b. sTILH&E and sample
mean sTILmIF scores (defined as mean sTILmIF across all
ROI) were correlated for both pre-treatment (r2 = 0.59,
p < .001) and excisional samples (r2 = 0.63, p < .001).
sTILmIF scores varied substantially across ROIs within a
sample, with a mean coefficient of variation (CV) of
0.61 (range 0.27–1.44), indicative of intra-sample
heterogeneity.
mIF allows for evaluation of treatment-related effects

on specific cell lineages across both stromal and tumor
compartments. Table 3 and Fig. 3 illustrate the effects of
IRX-2 on stromal and tumor cell density observed across
various lineages. We evaluated therapy-related fold
changes in cell count using the paired t-test versus ad-
justed counts using the hierarchical linear model. The
adjusted estimates of fold change using the hierarchical
linear model tended to be higher and with smaller p
values, relative to estimates of fold change using the

paired t-test. IRX-2 was associated with significant in-
creases in stromal cytotoxic T cells and helper T cells,
but no change in regulatory T cells or macrophages.
Within the tumor compartment, therapy was associated
with increases in cytotoxic T cells; however, this only
achieved significance using the hierarchical modeling ap-
proach. We also evaluated cellular ratios to evaluate for
therapy-related shifts in IC phenotype predominance
(supplemental table 1) and identified a reduction in the
macrophage/T cell ratio (median FC − 0.56, mean FC
−.091; range − 0.99 to + 3), and the regulatory T cell /cyto-
toxic T cell ratio (median FC − 0.78; mean FC − 0.58;
range − 0.90 to + 0.75).

Evaluation of PD-L1 expression by mIF
IRX-2 is associated with increases in PD-L1 expression
using the SP142 clinical assay (PDL1SP142) relative to un-
treated controls (Table 1). We sought to develop a
method of measuring PD-L1 using mIF (PDL1mIF) that
would closely recapitulate the PDL1SP142 score. By
SP142, pathologists visually classify individual ICs as

(See figure on previous page.)
Fig. 1 Illustration of mIF workflow and staining. Refer to supplemental figure 2, 3, 4 for example mIF images, validation staining, and examples of
QIF levels across phenotypes using the machine-learning based (InForm) phenotyping method. mIF: multiplex immunofluorescence; H&E:
hematoxylin and eosin; DCIS: ductal carcinoma in situ; Bx: biopsy; CK: cytokeratin; FOXP3: forkhead box P3; PD-L1: programmed death ligand 1;
ROI: region of interest; DAPI: 4′,6-diamidino-2-phenylindole; T reg: T-regulatory; T-S: tumor-stromal; QIF: quantitative immunofluorescence

Table 2 Summary of metrics and definitions

Metric Notation Formula Analysis level
(cell, ROI,
slide)

Attributes

Count/density metrics

sTIL
score

sTILH & E % of stromal area occupied
by TILs on one H&E slide

Slide Generalized metric for presence/absence of immune cells, prognostic in
breast cancer and predictive of chemotherapy benefit and potentially
immunotherapy benefit (references [10, 11])

mIF sTIL
score

sTILmIF
CountsCD3þ=sCD8þ=sFOXP3

areas
ROI Quantification of therapy-related changes in overall TILs. Analogous to the

H&E sTIL score and therefore may have potential as a prognostic/predictive
marker

Cell
count

CountCD8 #CD8+ ICs within ROI ROI

Cell
density

DensitysCD8 CountsCD8
Areas

ROI May be a more reliable measurement of IC quantity because it adjusts for
differences in stroma/tumor compartmentalization across tumor regions

PD-L1 metrics

SP142
PD-L1
score

PDL1SP142 % of tumor area occupied
by PDL1-positive ICs

Slide Categorical metric for ascertaining IC PD-L1 positivity, predictive of im-
munotherapy response (anti-PD-L1) in triple negative breast cancer

PD-L1
cell
intensity

QIFCD8 PDL1 mean whole cell QIF Cell Quantification of PD-L1 intensity on individual cells may be useful for evalu-
ating effect of therapies on dynamic PD-L1 expression on tumor or ICs

mIF PD-
L1 score

PDL1mIF CountPDL1þ IC
(CD3+ or CD163+ & QIF >
2.6)

ROI Quantification of overall number of PD-L1+ ICs. Analogous to the SP142
PDL1 score and therefore may have potential as a predictive marker

ROI region of interest, mIF multispectral immunofluorescence, sTIL stromal tumor-infiltrating lymphocyte, H&E hematoxylin and eosin, TILs tumor-infiltrating
lymphocytes; s stromal, IC immune cell, SP142 Ventana SP142 PD-L1 assay, PD-L1 programmed death ligand 1, QIF quantitative immunofluorescence
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PD-L1 positive versus negative, then estimate the total
tumor area occupied by PD-L1-positive cells. To recap-
itulate this method by mIF, an accurate per-cell QIF cut-
off for PD-L1 positivity would be necessary. We used
InForm software to create simulated chromogenic PD-
L1 images derived from individual ROIs of various mIF
samples. With these images, the study pathologist was
asked to classify 231 randomly selected ICs of various
PD-L1 QIF across 4 specimens, and with these classifica-
tions, a receiver operating characteristic (ROC) curve
was generated to determine the most accurate QIF cut-
off for per-cell PD-L1 positivity. The optimal QIF level
was 2.6, corresponding with an AUC of 0.97, sensitivity
of 91%, specificity of 99%, and classification accuracy of

95% (supplemental figure 1). Using the 2.6 cutoff, accur-
acy for individual specimens ranged from 92 to 100%
(mean 96%), suggesting that a QIF cutoff of 2.6 would
be adequate across tumor samples. We defined the
PDL1mIF score as the count of all ICs within an ROI
with QIF > 2.6. As illustrated in Table 3 and Fig. 2c, d,
we demonstrate a mean 3.14-fold increase of PDL1mIF

IC density related to treatment. PDL1mIF scores were
correlated with the PDL1SP142 assay, with average dens-
ities increasing concordantly according to SP142 IC cat-
egory (Fig. 2c, d). In a mixed effects model that accounts
for correlations across pre/post-treatment samples,
PDL1mIF for IC1 tumors was 2.99-fold higher (p = .04)
than IC0 tumors, and PDL1mIF for IC2/3 tumors was

Fig. 2 Harmonization of clinical sTIL and PD-L1 assays with mIF. Correlation scatterplot of sTIL (H&E) and sTIL (mIF) for pre-treatment (a) and post-
treatment (b) with fitted linear regression lines. Mean PD-L1 mIF score comparison between PD-L1 SP142 category (IC 0, IC1, IC2/3) for pre-
treatment (c) and post-treatment (d) using Jonckheere-Terpstra test. sTIL: stromal tumor-infiltrating lymphocyte; mIF: multiplex immunofluorescence;
IC: immune cell; PD-L1: programmed death ligand 1
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Table 3 IRX-related effects on various immune cell subpopulations within stromal and tumor tissue compartments
Summary statistics Unadjusted1 Adjusted2

Pre-IRX, mean density (SD)*
(count/pixel)

Post-IRX, mean density (SD)*
(count/pixel)

Fold change of mean
density (95% CI)

p value Fold change of mean
density (95% CI)

p value

Stroma

Any PD-L1

T cell (any
type)

0.85 (0.63) 1.27 (0.78) 1.8 (1.14 2.84) 0.015 2.01 (1.32 3.08) 0.001

Helper T cell 0.56 (0.47) 0.79 (0.59) 1.84 (0.97 3.48) 0.060 2.05 (1.14 3.70) 0.016

Cytotoxic T cell 0.22 (0.19) 0.42 (0.30) 2.18 (1.47 3.23) < 0.001 2.55 (1.80 3.61) < 0.001

Regulatory T
cell

0.07 (0.05) 0.07 (0.06) 0.92 (0.57 1.49) 0.729 0.91 (0.60 1.39) 0.659

Macrophage 0.24 (0.18) 0.19 (0.12) 0.86 (0.54 1.37) 0.498 0.86 (0.54 1.38) 0.534

PD-L1-positive†

T cell (any
type)

0.40 (0.57) 0.7 (0.59) 3.04 (1.48 6.23) 0.005 3.54 (1.86 6.76) < 0.001

Helper T cell 0.28 (0.44) 0.47 (0.46) 3.31 (1.45 7.57) 0.008 3.58 (1.76 7.29) < 0.001

Cytotoxic T cell 0.08 (0.11) 0.19 (0.21) 2.44 (1.28 4.63) 0.011 2.98 (1.74 5.08) < 0.001

Regulatory T
cell

0.05 (0.05) 0.05 (0.05) 1.39 (0.71 2.73) 0.311 1.38 (0.78 2.46) 0.272

Macrophage 0.12 (0.13) 0.14 (0.11) 1.66 (0.75 3.68) 0.192 1.63 (0.84 3.13) 0.147

Tumor

Any PD-L1

T cell (any
type)

0.16 (0.17) 0.15 (0.15) 1.04 (0.61 1.8) 0.865 1.07 (0.65 1.77) 0.794

Helper T cell 0.10 (0.11) 0.07 (0.07) 0.81 (0.52 1.24) 0.304 0.77 (0.49 1.22) 0.268

Cytotoxic T cell 0.06 (0.05) 0.08 (0.09) 1.26 (0.81 1.94) 0.282 1.36 (0.91 2.05) 0.134

Regulatory T
cell

0.02 (0.01) 0.02 (0.01) 0.72 (0.41 1.28) 0.242 0.79 (0.49 1.29) 0.346

Macrophage 0.04 (0.05) 0.03 (0.02) 0.71 (0.37 1.37) 0.282 0.65 (0.38 1.09) 0.105

PD-L1-positive†

T cell (any
type)

0.11 (0.17) 0.09 (0.09) 1.42 (0.71 2.87) 0.295 1.50 (0.86 2.63) 0.151

Helper T cell 0.08 (0.13) 0.05 (0.05) 0.98 (0.51 1.91) 0.955 1.07 (0.56 2.04) 0.831

Cytotoxic T cell 0.04 (0.04) 0.05 (0.05) 1.63 (0.80 3.31) 0.155 1.68 (1.06 2.64) 0.026

Regulatory T
cell

0.03 (0.05) 0.01 (0.01) 1.00 (0.49 2.05) 0.999 0.64 (0.32 1.29) 0.211

Macrophage 0.03 (0.05) 0.02 (0.02) 0.84 (0.51 1.39) 0.463 0.87 (0.51 1.49) 0.621

Stroma and tumor

PD-L1-positive†

PD-L1+ IC3 0.41 (0.53) 0.70 (0.54) 2.75 (1.36 5.53) 0.008 3.14 (1.68 5.87) < 0.001
1Paired t-test based on log-transformed density
2Poisson Generalized Linear Mixed-Effects Model (GLMM), with a log-linear effect of prevalence, an offset of log (area) (to make the expected number of cells
proportional to area), the fixed effect of time (pre vs post), and two random effects of patients and ROI, to account for the variation in patients and ROI
*× 10− 3; †PD-L1 > 2.6
T cell (any type) = combination of CD3+, CD8+, and FOXP3+ cell types; helper T cell = CD3+; cytotoxic T cell = CD8+; regulatory T cell = FOXP3+;
macrophage = CD163
PD-L1 programmed death ligand 1, CI confidence interval
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5.95-fold higher (p = .003) than IC0 tumors. Similar to
sTILmIF scores, PDL1mIF scores ranged widely across
ROI within samples (CV 0.78, range 0.3–1.29), highlight-
ing the importance of adequate ROI sampling to
characterize tumors.

Power analyses
Because of the computational labor associated with mIF,
it is of interest to ascertain how many ROIs must be an-
alyzed to adequately represent the entirety of the speci-
men. We evaluated whether fewer ROIs would be
sufficient to detect treatment-related change in a clinical
trial, using PD-L1mIF and sTILmIF scores as examples.
Holding patient sample size (n = 15) fixed, a Monte
Carlo simulation approach (n = 1000 simulations) was
employed to calculate power across various ROI sample
sizes, based on the Poisson hierarchical linear model de-
scribed in section “Statistical methods”, and the observed
data structure [i.e., effect sizes and variations obtained
post hoc from a pilot experiment] using the “simr”

package in R [29]. The analyses show that with 15 sub-
jects, on average, 22 ROIs within each subject would be
required to detect the treatment effect (FC = 3.14, 95%
CI = 1.68–5.87) for PD-L1mIF (Fig. 4a), and 24 ROIs
within each subject would be required to detect the
treatment effect (FC = 2.01, 95% CI = 1.32–3.08) for
sTILmIF (Fig. 4b), to attain at least 80% power at a sig-
nificance level of 0.05. A reduction in ROI sampling led
to a substantial decrease in statistical power to detect
changes in both PD-L1mIF and sTILmIF (Fig. 4a, b), likely
related to the high degree of variation in PD-L1mIF and
sTILmIF across ROIs within the same specimen. In our
experience, the range of evaluable ROIs per specimen
was 8–32 (mean 16), and therefore in the context of
similar trials, it would be advisable to evaluate as many
ROIs as possible on one slide to detect effects similar to
described. In studies evaluating smaller effect sizes,
greater sample sizes would be required.
We compared the hierarchical linear model with more

conventional methods of reporting treatment-related

Fig. 3 Forest plot of IRX-2 immunotherapy effects on lymphocyte subsets. PD-L1: programmed death ligand 1; CI: confidence interval

Sanchez et al. Breast Cancer Research            (2021) 23:2 Page 10 of 15



change in clinical trials. The most common conventional
method is to test fold changes in means using the paired
t-test. Using the above Monte Carlo method for the
hierarchical linear model, holding per-specimen ROI
fixed based on observed data structure, we estimated
that n = 11 patients would be required to detect a 3.14-
fold change in PD-L1mIF, and n = 13 patients would be
required to detect a 2.01-fold change in sTILmIF with
80% power at a significance level of 0.05 (supplementary
table 2). However, by the paired t-test approach [30], a
sample size of n = 13 would be required to detect similar
changes in PD-L1mIF (FC = 2.75, CV = 1.08), whereas a
sample size of n = 25 would be required to detect similar
changes in sTILmIF (FC = 1.80, CV = 0.83). These data

suggest that the hierarchical linear model is associated
with increased statistical power, or reductions in re-
quired subject enrollment size, in the context of com-
parative trials.
Finally, we evaluated the potential impact of ROI sam-

ple size on estimation of treatment-related changes in
sTILs or PD-L1 expression. Using a bootstrap method
assuming a clinical trial with n = 15 patients, fold change
estimates of sTIL and PD-L1 scores were simulated
1000 times across various ROI sizes to create a mean
and 95% CI of estimated FC. As illustrated in Fig. 4c, d,
ROI sample sizes of < 10 were associated with wide CIs,
whereas ROI sample sizes of > 15 were sufficient to
optimize accuracy.

Fig. 4 Power analyses illustrating the effects of ROI sample size. a, b Power curve according to ROI size, holding patient sample size (n = 15) fixed,
for the PD-L1 mIF biomarker (a) and the sTIL mIF biomarker (b) produced using a Monte Carlo simulation approach (n = 1000 simulations), based
on the generalized linear mixed effects model and the observed data structure [i.e., effect sizes and variations obtained post hoc from the pilot
experiment]. c, d Mean fold change and 95% confidence intervals based upon a bootstrap simulation method (1000 simulations) according to
ROI size, for the PD-L1 mIF biomarker (c) and the sTIL mIF biomarker (d). ROI: region of interest; FC: fold change; CI: confidence interval
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Discussion
Innumerable I-O strategies show promise in preclinical
breast cancer models either as monotherapy or in com-
bination with approved therapies (T cell agonists, trastu-
zumab, chemotherapy, radiotherapy, or targeted therapy)
[1–4, 31–33]. Pre-operative I-O clinical trials in ESBC
provide the opportunity to efficiently compare pharma-
codynamic activity using serial tissue-based comparative
biomarkers, while also providing pathologic outcomes as
a meaningful surrogate of disease-free recurrence [34].
mIF has been proposed as a promising biomarker, as it
has been shown to be concordant with clinical PD-L1
assays in ESBC [35], and in a recent meta-analysis
outperformed clinical PD-L1 testing, quantification of
tumor mutational burden, or gene expression profiling
in predicting immunotherapy response [36]. Here, we
provide additional guidance on how mIF can be used as
a pharmacodynamic biomarker in the context of ESBC
I-O pre-operative clinical trials. We show that mIF esti-
mates of PD-L1 expression and sTIL/IC density correl-
ate with the validated clinical assays, but with higher
resolution to measure treatment-related pharmacody-
namic changes. It has recently been suggested that both
PD-L1 and sTIL clinical assays be co-analyzed to en-
hance predictive/prognostic performance [37]. As illus-
trated in this manuscript, mIF provides granular detail
on single-cell PD-L1 expression across cellular pheno-
types, which can be used to categorize tumors based
upon ratios of PD-L1-expressing cells, phenotypic pre-
dominance patterns of PD-L1+ cells (i.e., macrophage v.
lymphocyte), and spatial patterning of PD-L1. As a fu-
ture direction of investigation, we propose that clinical
investigators prioritize the inclusion of mIF in clinical
trials in tandem with the clinical assays, so the unique
predictive/prognostic utility of these added data can be
adequately interrogated.
We identified several aspects of mIF that might be

useful in addressing the pitfalls of clinical H&E sTIL as-
sessment, which were recently summarized from the
RING studies [13]. First, by H&E, it was found that non-
lymphocyte cells or intraepithelial TILs could be
misclassified for sTILs by pathologists. mIF could sub-
stantially mitigate this source of error, by employing
multiple cell surface markers to accurately classify lym-
phocytes. Second, it was found that pathologists exhib-
ited different set-points/scales for quantifying sTILs by
H&E, resulting in substantial inter-observer discordance.
This pitfall could be in the future be mitigated by mIF
once the staining, imaging, and analysis workflow be-
comes harmonized across institutions. Efforts are on-
going via the National Institutes of Health Cancer
Immune Monitoring and Analysis Centers (CIMAC) to
standardize and validate a mIF workflow [38]. A third
source of error was heterogeneity of sTIL counts across

areas of the tumor. One proposed solution to mitigate
this error is to sample and average sTIL counts across
multiple ROIs [13]. Using mIF, it is feasible to estimate
sTIL counts across a large number of ROIs, and we
demonstrate that adequate ROI sampling is important
for stabilizing estimates of treatment-related changes in
sTILs in the context of clinical trials.
Statistical modeling has been underexplored as a

method for improving accuracy and precision of sTIL/IC
density estimation. To date, there is no universally
adopted approach for the statistical treatment of mIF
output data. By convention, many investigators collapse
ROI IC density estimates into a mean per-sample score,
which does not fully utilize the added information de-
rived from repeated sampling across ROIs. As an alter-
native, we demonstrate statistical modeling can improve
statistical power and minimize potential detrimental
confounding effects of intratumoral heterogeneity. As il-
lustrated in Table 3, statistical modeling was associated
with a narrowing of confidence intervals of IC estimates,
and smaller observed p values. Furthermore, compared
to conventional t-testing of means, the hierarchical lin-
ear modeling method reduced the required patient en-
rollment size from n = 25 to n = 13 to show an effect of
IRX-2 on sTILs.
We also illustrate how mIF can be also used to evalu-

ate more complex hypotheses related to I-O treatment
effect. For example, based upon preclinical models and
previous trials data, it was hypothesized that locoregio-
nal cytokine perfusion (IRX-2) would increase lympho-
cyte trafficking and facilitate PD-L1 upregulation within
the breast tumor via modulation of the JAK-STAT path-
way [17]. Using mIF, we confirmed that IRX-2 is associ-
ated with increases in sTILs and PD-L1 upregulation in
the tumor microenvironment, as well as a shift in the ra-
tio of cytotoxic T cells to CD163+ macrophages and
regulatory T cells. These findings are corroborated by
previously published data from gene expression profil-
ing, clinical SP142/H&E sTIL assays, and T cell receptor
DNA sequencing [14]. Based upon these encouraging
findings, we are conducting a trial to compare single-
dose anti-PD-1 +/− IRX-2 (n = 15 per arm) as an induc-
tion therapy to potentially enhance immune infiltration
prior to neoadjuvant chemotherapy plus pembrolizumab
in stage II-III TNBC (NCT04373031). In the future, the
spatial output data derived from mIF can be used to
evaluate spatial hypotheses, such as whether cytokine
therapy permits aggregation or penetration of tumors
into the tumor/stromal interface. Such a hypothesis
could be evaluated by comparing pre versus post-
treatment densities of buffer zones surrounding the
tumor/stromal interface.
Our approach is not without limitations. First, be-

cause the assay is limited to 7 markers, B cell
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markers were not included, and this may have influ-
enced the overall estimation of sTILs (since B cells
would be included in the H&E sTIL score). It is pos-
sible to customize mIF with different markers; how-
ever, careful attention must be paid to ensure that
each panel is properly validated using ESBC speci-
mens, and therefore for this pilot study, we opted to
use a previously validated panel for which we have
extensive experience and publication [21, 39]. Future
improvements in technology are anticipated to allow
for simultaneous measurement of additional markers.
A second limitation is the lack of a treatment control,
which precluded assessment of potential confounding
effects of time and/or biopsy trauma. This will be ad-
dressed in the ongoing randomized phase II trial. A
third limitation is the resource-intensive nature of our
approach, which requires acquisition and analysis of
all lymphocyte-bearing ROIs in a given sample. This
process may require 24 h of processing or greater per
specimen; however, we illustrate that the efforts are
worthwhile in the context of clinical research as they
may reduce sample size requirements. In clinical tri-
als, per-patient expenses, time, and effort are likely to
far outweigh the added time and cost required to
sample more ROIs. Future advances in technology
may permit more rapid acquisition and analysis of
whole-slide data, for example using the PerkinElmer
Polaris system, which is being validated by our group
and others. The fourth limitation is that breast cancer
subtypes and/or clinical settings may have unique
histologic and immunologic features and therefore
our power calculations may not be externally valid in
other settings. For example, baseline sTIL levels and
PD-L1 expression are lower in hormone-sensitive
breast cancers relative to TNBC, and therefore when
designing a clinical trial, the power analyses would
have to be repeated or modified to account for these
expected differences in baseline.
As a future direction, the described statistical mod-

eling can be amended to incorporate data on spatial
locations of each ROI and/or each cell, which has fur-
ther potential to improve estimation. For example, be-
cause IC densities of immediately adjacent ROIs may
be correlated, the accuracy of the model could be im-
proved after adjustment for spatial autocorrelation.
Similarly, topographical features such as leading inva-
sive margin of the tumor are expected to influence IC
densities and may be accounted for in the model
[13]. We are piloting advanced spatial modeling that
would enable adjustment of IC densities according to
spatial distance from observed topographical land-
marks, as well as more advanced methods to exclude
non-interpretable areas within ROI to improve
accuracy.

Conclusion
mIF may be used in the context of ESBC I-O trials to de-
tect dynamic changes in ICs and PD-L1 expression associ-
ated with treatment. Our mIF method is concordant with
H&E sTIL and SP142 PD-L1 clinical assays, but enhances
precision of these measurements by accounting for intratu-
moral heterogeneity. The statistical modeling approach
could also be evaluated as a method of improving perform-
ance of the H&E sTIL clinical assay. The method may also
be used to evaluate other features of the immune response,
such as treatment-related changes in cellular ratios, or im-
mune cell clustering patterns. Our approach requires valid-
ation, which is planned using specimens from a phase II
neoadjuvant phase II trial of pembrolizumab +/− IRX-2.
(NCT04373031). The method also has promise to be
explored as a predictive biomarker in the context of
neoadjuvant anti-PD-1/L1 plus chemotherapy, as PD-L1
expression alone did not predict benefit in this setting [40].
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Additional file 1: Table S1. Estimated cell count ratios. Table S2. Power
analysis using Monte Carlo simulation approach (n = 1000 simulations),
based on the generalized linear mixed-effects model and the observed
data structure [i.e., effect sizes and variations obtained post – hoc from a
pilot experiment]. Table S3. PD-L1 and sTIL scores for individual patients
with coefficients of variation.

Additional file 2: Figure S1. Receiver operating characteristic curve for
determining PD-L1 threshold. (A) Example images of high powered (20x)
ROIs, InForm pathology view (showing only PD-L1 expression by mIF)
counterstained with DAPI. Green is used here to label random cells that
could be visually classified as PD-L1 positive versus negative by the read-
ing pathologist, and used to ascertain an appropriate QIF cutoff for PD-L1
positivity. (B) Histogram of the distribution average per-cell QIF PD-L1
levels of 55,108 cells pooled from 24 ROI across 4 patients). (C) ROC curve
illustrating sensitivity and specificity for given PD-L1 QIF thresholds. A
threshold of ≥2.6 was selected, corresponding with sensitivity of 91%,
specificity of 99%, AUC of 0.97, and accuracy of 95%. ROI: region of inter-
est; PD-L1: programmed death ligand 1; mIF: multispectral immunofluor-
escence; DAPI: 4′,6-diamidino-2-phenylindole; QIF: quantitative
immunofluorescence; ROC: receiver operating characteristic; AUC: area
under the curve.

Additional file 3: Figure S2. Example of mIF staining and illustration of
QIF levels across phenotypes using machine-learning based (InForm) phe-
notyping method. PD-L1: programmed death ligand 1; DAPI: 4′,6-diami-
dino-2-phenylindole; CK: cytokeratin; FOXP3. (A) mIF images showing
CK+ tumor nests with CD8 expression (red), CD3 expression (green), and
yellow indicating co-expression; (B) expected expression patterns of
helper T cells, cytotoxic T cells, and regulatory T cells; (C-D) Mean quanti-
tative immunofluorescence of CD3 and CD8 for each of the phenotypes;
(E-G) Comparison of mean QIF expression patterns for various pheno-
types macrophage CD163 expression to other cells. CK: cytokeratin;
FOXP3: forkhead box P3; reg: regulatory; QIF: quantitative
immunofluorescence.

Additional file 4: Figure S3. mIF antibody validation. Antibody
validation was performed using conventional/standard chromogenic
stain on human FFPE tonsil tissue. TSA-Opal fluorescent stain was per-
formed on the adjacent slides. Images were acquired with a Vectra 3 Au-
tomated Quantitative Pathology Imaging system. FOXP3: forkhead box
P3; CK: cytokeratin; PD-L1: programmed death ligand 1.
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Additional file 5: Figure S4. mIF antibody validation, PD-L1 staining.
Antibody validation (aPD-L1; clone E1L3N) was performed using conven-
tional/standard chromogenic stain on human FFPE placenta tissue. TSA-
Opal fluorescent stain was performed on the adjacent slides. Images were
taken with a Vectra 3 Automated Quantitative Pathology Imaging system.
PD-L1: programmed death ligand 1; H&E: Hematoxylin and eosin.
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