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Abstract

Background: Screening mammography works better in fatty than in dense breast tissue. Computerized assessment
of parenchymal texture is a non-subjective method to obtain a refined description of breast tissue, potentially valuable
in addition to breast density scoring for the identification of women in need of supplementary imaging. We
studied the sensitivity of screening mammography by a combination of radiologist-assessed Breast Imaging
Reporting and Data System (BI-RADS) density score and computer-assessed parenchymal texture marker, mammography
texture resemblance (MTR), in a population-based screening program.

Methods: Breast density was coded according to the fourth edition of the BI-RADS density code, and MTR marker was
divided into quartiles from 1 to 4. Screening data were followed up for the identification of screen-detected and interval
cancers. We calculated sensitivity and specificity with 95% confidence intervals (Cl) by BI-RADS density score, MTR marker,
and combination hereof.

Results: Density and texture were strongly correlated, but the combination led to the identification of subgroups
with different sensitivity. Sensitivity was high, about 80%, in women with BI-RADS density score 1 and MTR markers 1
or 2. Sensitivity was low, 67%, in women with BI-RADS density score 2 and MTR marker 4. For women with BI-RADS
density scores 3 and 4, the already low sensitivity was further decreased for women with MTR marker 4. Specificity was
97-99% in all subgroups.

Conclusion: Our study showed that women with low density constituted a heterogenous group. Classifying women
for extra imaging based on density only might be a too crude approach. Screening sensitivity was systematically high
in women with fatty and homogenous breast tissue.
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Background cancer detected shortly after a normal mammogram of

Randomized controlled trials showed screening mam-
mography to reduce breast cancer mortality by early
detection of tumors before they give rise to symptoms
[1-4]. The sensitivity of screening mammography
depends, however, on the composition of the breast tis-
sue. Mammography works better in fatty than in dense
breasts [5]. In 2004, the personal experience of breast
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her dense breast led Nancy Cappello to campaign for
women’s right to be informed, if they had a dense breast
on their screening mammogram. The first breast density
notification law was passed in Connecticut, USA, in
2009, and notification is now a legal requirement in 38
states [6].

The Breast Imaging Reporting and Data System (BI-
RADS) forms the basis for the categorization of breast
density. The present fifth edition of BI-RADS distinguishes
between fatty, scattered, heterogenously dense, and ex-
tremely dense breast tissue [7]. Approximately 50% of
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women undergoing screening in the USA fall into one of
the two latter categories [8]. The legislation requires these
women to be informed about their dense breast tissue
and—varying by state—advised to have supplemental im-
aging undertaken, but no supplemental imaging modality
is yet considered standard of care for women with dense
breasts [9].

The BI-RADS density score is assessed by a radiolo-
gist, and concern has been raised as to whether the
breast density legislation could potentially lead to down-
grading of density, to avoid supplementary imaging, or
to upgrading of density, to minimize liability, leading to
a wish for development of automated breast density
evaluation systems [10]. Computerized assessment of the
parenchymal texture is a non-subjective method to ob-
tain a more refined description of the breast tissue [11],
and it might be a valuable tool to be used in addition to
the breast density scoring for identification of women in
need of supplementary imaging.

On this basis, we studied the sensitivity of screening
mammography by the combination of radiologist-assessed
BI-RADS density score and computer-assessed parenchy-
mal texture score. We used data from 55,000 women par-
ticipating in a population-based screening mammography
program in Denmark, where there is no breast density
legislation and where only the malignancy score of posi-
tive or negative of the screening mammograms forms the
basis for the referral of screened women for diagnostic
assessment.

Methods

Database

The Capital Region of Denmark offers biennial screening
to women aged 50—-69 years. Women are personally in-
vited to visit one of the five mammography screening
clinics in the region. The program uses the Siemens
Inspiration digital mammography equipment. At the
screening, the radiographer takes a craniocaudal (CC)
and a mediolateral oblique (MLO) view. For the present
study, we retrieved data on all screening mammography
examinations from 1 November 2012 to 31 December
2013. Within the study period, no woman was screened
more than once.

All mammography examinations were read and coded
independently by two trained radiologists. If the two
readers disagreed on the malignancy code, a consensus
code was made in a dialog between the two readers, and
if necessary, a third independent reader was brought in.

Breast density was coded according to the 2003 fourth
edition of the BI-RADS density code [12]. BI-RADS 1 is
fatty, where the breast is almost entirely fat (< 25% fibro-
glandular tissue); BI-RADS 2 is scattered (>25-50%)
fibroglandular; BI-RADS 3 is heterogenously (51-75%)
dense; and BI-RADS 4 is dense (>75%). If the two
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readers disagreed on the BI-RADS density code, the
highest code was used as the consensus code.

The fully automated planimetric mammography tex-
ture resemblance marker (MTR) was calculated using a
five-layer deep learning texture analysis convolutional
neural network (CNN) pipeline by Biomediq [13]. The
CNN and thus the MTR marker were trained to separate
women with a high risk of breast cancer from women
with a low risk of breast cancer, using a case-control
subset of the Preventicon Screening Unit in Utrecht, the
Netherlands [13]. The training cases included mammo-
grams from 285 women with screen-detected breast
cancer and mammograms from 109 women with interval
cancers, 384 cases in total. The controls comprised mam-
mograms from 3 age- and acquisition-matched healthy
women per case, 1182 in total. For screen-detected cases,
the mammogram from the contralateral breast was used
for the analysis and for interval cancers the latest available
mammogram from the contralateral breast. The laterality
of control mammograms was selected to match the case
laterality. The MTR marker was trained to separate cases
from controls. The images were recorded on a Hologic
Selenia FFDM system. We here applied this MTR marker
to a new dataset. Methodological and technical details and
large-scale validation of the MTR marker can be found in
[13, 14], respectively.

The MTR marker for the current study was the aver-
age of the MTR scores for the four available images
(left/right x CC/MLO). Using the median, minimum or
maximum value did not significantly change the results
(data not shown). The MTR marker was divided into
interquartile ranges, Q1-Q4 for the analysis.

Neither the BI-RADS density score nor the MTR
marker was used in the clinical management of women.

The outcome of screening and identification of inter-
val cancer cases was assessed by linkage to the Danish
Pathology Register [15]. Linkage between registers was
based on the unique personal identification numbers
allocated to all persons with a permanent address in
Denmark. Pseudo-anonymized linkages were used be-
tween Biomediq texture databases and the mammography
register.

Analysis

Women with a positive screening test and breast cancer
or ductal carcinoma in situ (DCIS) diagnosed within 6
months of the screening date were defined as screen-
detected cancers. Other women were followed up until
the next screening date or for 24 months whichever
came first, for simplicity called 24 months. Women with
a negative screening test and breast cancer/DCIS diag-
nosed within 24 months after the screening date or with
a positive screening test but a negative assessment diag-
nosed with breast cancer/DCIS within 7-24 months after
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the screening date were defined as interval cancers, i.e.,
cancers that were not detected at screening but became
symptomatic within 2 years and before the next screen.
Women with screen-detected cancers and women with
interval cancers together constituted all women with
breast cancer. Women with a positive screening test and
no diagnosis of breast cancer/DCIS were defined as false
positive, and women with a negative screening test and
no breast cancer/DCIS were defined as truly negative.
The two latter groups together constituted the truly
healthy women.

We calculated sensitivity (= screen detected/all women
with breast cancer) and specificity (= truly negative on
screening /truly healthy) with 95% confidence intervals
(CI) by BI-RADS density score, by MTR marker, and by
the combination of the two. SAS 9.4, copyright (c)
2002-2012 by SAS Institute Inc., Cary, NC, USA, was
used for the analysis.

Results

In total, 55,350 women were screened from 1 November
2012 to 31 December 2013. Full data were available for
54,997 women, of whom 28% had BI-RADS density
score 1, 40% score 2, 27% score 3, and 5% score 4. The
BI-RADS density score and the MTR marker were highly
correlated with the majority of women with BI-RADS
density score 1 having MTR marker 1 and the majority of
women with BI-RADS density score 4 having MTR
marker 4, p <0.00001 (Table 1 and Fig. 1).

Of the 54,997 women, 53,112 were true negative, 419
true positive, 1304 false positive, and 162 were false
negative, out of which 8 were false negative after a posi-
tive screening mammogram. The overall sensitivity was
72% (95% CI, 68-76), and the specificity was 98% (95%
CI, 97-98). Sensitivity decreased from 78% (95% CI, 69—
85) for women with BI-RADS density score 1 to 47%
(95% CI, 30—65) for women with BI-RADS density score
4. Specificity varied between 97 and 99% across all dens-
ity scores. Sensitivity was 76% (95% CI, 67-84) for
women with MTR marker 1 and 60% (95% CI, 51-68)
for women with MTR marker 4. The range of sensitivity

Table 1 Distribution of 54,997 screening examinations by BI-
RADS density score by MTR marker, Denmark, 2012-2013

MTR BI-RADS Total Percentage
1 2 3 4

1 10256 3569 217 55 13652 25

2 3618 7912 2000 122 13,640 25

3 1430 6072 5257 881 13608 25

4 340 4211 7352 1705 14097 26

Total 15644 21,764 14826 2763 54997 100

Percentage 28 40 27 5 100

Chi-square = 43,255.71 with a p value <0.00001 at df =9
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is thus broader by the BI-RADS density score than by
the MTR marker. Specificity varied between 97 and 98%
(Table 2).

Despite the strong correlation between the density
score and the texture marker, the combination of the
two markers led to the identification of some extra sub-
groups of women with low screening sensitivity. Screen-
ing in women with BI-RADS density score 2 and MTR
marker 4 had a sensitivity of only 67% (95% CI, 51-81).
In women with BI-RADS density scores 3 and 4, a large
proportion of the interval cancers had MTR marker 4,
and for women with these combinations, the test had a
sensitivity of only 61% (95% CI, 46-72) and 41% (95%
CI, 21-64), respectively (Table 3 and Fig. 2). Specificity
was 97-99% in all subgroups defined by the combination
of BI-RADS density score and MTR marker.

Discussion

Our study showed that the sensitivity of screening mam-
mography could be further differentiated by combining
density scoring with a texture marker. On the one hand,
the screening sensitivity was around 80% in women with
a fatty and homogenous texture of their breast tissue.
These women constituted about half of the screening
population. On the other hand, screening sensitivity was
down to 67% in women with a fatty breast but with a
heterogenous texture (= BI-RADS density score 2 and
MTR marker 4). These women constituted about 8% of
the screening population. Among women with dense
breasts, the sensitivity was also particularly low for
women with a heterogenous texture: 61% for BI-RADS
density score 3 and MTR marker 4, and 41% for BI-
RADS density score 4 and MTR marker 4. Screening
specificity was high in all subgroups resulting from the
combination of density and texture levels.

The high correlation between density and texture was
found also in a Dutch study, where density was assessed
automatically using the Volpara Density (version 1.5.0,
Volpara Health Technologies, Wellington, New Zealand)
[16] and where texture was assessed with the same Bio-
mediq MTR marker as used in the present study [13].
Nevertheless, adding the residuals (relative to density) of
the texture marker to a model with density improved
prediction of breast cancer risk in the Dutch data [14],
and the improvement was larger for interval than for
screen-detected cancers. This corresponds well to our
findings, where stratification within BI-RADS density
score categories using the MTR marker identified lower
sensitivity subgroups.

In a UK study, volumetric density was assessed by the
Volpare system, described above [16] and a texture scor-
ing algorithm developed by the authors [17]. In the valid-
ating part of their study, the results indicated that their
texture risk score for breast cancer added independent
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Fig. 1 Distribution of the screening population density score (BI-RADS) and texture marker (MTR)

predictive information to the volumetric percent density,
especially so for interval cancers, indicating that also in
their study the combination of density and texture has the
potential to improve screening sensitivity using, e.g., tar-
geted supplemental imaging.

Comparisons of screening outcomes between the USA
and Europe are difficult due to the variations in screen-
ing interval and definition of interval cancers. The US
Breast Cancer Surveillance Consortium (BCSC) from
2002 to 2011 showed for women aged 50-59 years, the
sensitivity vary from 89.6% for women with BI-RADS
density score 1 to 71.3% for women with BI-RADS
density score 4; the numbers for women aged 60-69
years were 92.5% and 65.5%, respectively [18]. The BCSC
sensitivity data were thus both at a higher level and with
a smaller range between BI-RADS density scores 1 and 4
than the Danish data. This was partly explained by the
predominantly annual screening in the USA versus the
biennial screening in Denmark, and consequently also
by counting of interval cancers during 1 year versus
2 years since the last screen.

From studies where efforts have been made to
standardize the data for comparison, screening in the
USA is known to have a lower specificity than screening
in Europe [18-20]. The BCSC data from 2002 to 2011
showed some variation in specificity across BI-RADS
density score, for women aged 50—59 years being 94.7%,
90.6%, 88.2%, and 90.5%, for scores 1 to 4, respectively,
and for women aged 60-69 years being 94.9%, 91.7%,
90.0%, and 92.5%, respectively [21]. In crude terms, 5
out of 100 women with BI-RADS density score 1, who
turned out to be free of breast cancer, were recalled for
extra examinations, while this was the case for 10 out of
100 for women with BI-RADS density scores 2—4. The
equivalent numbers on the Danish data reported here
were 1 out of 100 for women with BI-RADS density
score 1 and 2-3 out of 100 for women with BI-RADS
density scores 2—4. These differences in specificity ex-
plained in part the overall higher, and the more narrow
range, of sensitivity scores across BI-RADS density
scores in the BCSC than in the Danish data. The US
women declared breast cancer-free at screening were

Table 2 Distribution of 54,997 screening examinations by sensitivity, specificity, BIFRADS density score, and MTR MEAN score,

Denmark 2012-2013

True positive False positive

True negative

False negative Sensitivity, % Specificity, %

(95% Cl) (95% Cl)
All 419 1304 53,112 162 72 (68-76) 98 (97-98)
BI-RADS 1 88 204 15,327 25 78 (69-85) 9 (98-99)
BI-RADS 2 187 613 20,903 61 5 (70-81) 7 (97-97)
BI-RADS 3 127 420 14,222 57 69 (62-76) 7 (97-97)
BI-RADS 4 17 67 2660 19 47 (30-65) 8 (97-98)
MTR 1 86 242 13,742 27 76 (67-84) 98 (98-98)
MTR 2 (AR 338 13,166 37 75 (67-82) 8 (97-98)
MTR 3 133 358 1311 38 8 (71-84) 7 (97-98)
MTR 4 89 366 13,093 60 60 (51-68) 7 (97-98)
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Table 3 Sensitivity and specificity by the combination of density score (BI-RADS) and texture marker (MTR), Denmark 2012-2013

Measure True positive, False positive, True negative, False negative, Sensitivity, % Specificity, %
N (%) N (%) N (%) N (%) (95% Cl) (95% Cl)
BI-RADS 1 88 (0.56) 204 (1.30) 15327 (97.97) 25 (0.16) 78 (69-85) 99 (98-99)
MTR 1 52 (0.51) 138 (1.35) 10,054 (98.03) 12(0.12) 81 (70-90) 99 (98-99)
MTR 2 27 (0.75) 38 (1.05) 3542 (97.90) 11 (0.30) 71 (54-85) 99 (99-99)
MTR 3 8 (0.56) 24 (1.68) 1397 (97.69) 1(0.07) 82 (48-98) 98 (98-99)
MTR 4 1(0.29) 4(1.18) 334 (98.24) 1(0.29)
BI-RADS 2 187 (0.86) 613 (2.82) 20,903 (96.04) 61(0.28) 75 (70-81) 97 (97-97)
MTR 1 32 (0.90) 100 (2.80) 3425 (95.97) 12 (034) 73 (57-85) 98 (97-98)
MTR 2 63 (0.80) 238 (3.01) 7592 (95.96) 19 (0.24) 77 (66-85) 97 (97-97)
MTR 3 63 (1.04) 162 (2.67) 5831 (96.03) 16 (0.26) 80 (64-89) 97 (97-98)
MTR 4 29(0.69) 113 (2.68) 4055 (96.30) 14 (0.33) 67 (51-81) 97 (97-98)
BI-RADS 3 127 (0.86) 420 (2.83) 14,222 (95.93) 57 (0.38) 69 (62-76) 97 (97-97)
MTR 1 2(092) 4 (1.84) 209 (96.31) 2 (092 71 (52-86) 97 (96-98)
MTR 2 20 (1.00) 60 (3.00) 1913 (95.65) 7 (0.35)
MTR 3 55 (1.05) 150 (2.85) 5036 (95.80) 16 (0.30) 77 (66-87) 97 (97-98)
MTR 4 50 (0.68) 206 (2.80) 7064 (96.08) 32 (0.44) 61 (46-72) 97 (97-98)
BI-RADS 4 17 (062) 67 (242) 2660 (96.27) 19 (0.69) 47 (30-65) 98 (97-98)
MTR 1 0 0 54 (98.18) 1(1.82) 57 (29-82) 98 (97-99)
MTR 2 1(0.82) 2 (1.64) 119 (97.54) 0
MTR 3 7 (0.79) 22 (2.50) 847 (96.14) 5(0.57)
MTR 4 9 (0.53) 43 (2.52) 1640 (96.19) 13 (0.76) 41 (21-64) 97 (97-98)
N
Sensitivity, %
0 20 40 60 80 100 120
ALL —]—
BI-RADS 1 —)—
1/MTR1 —]—
1/MTR2 e ]
1/MTR3+4 I
BI-RADS 2 ——
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Fig. 2 Sensitivity of screening mammography by the combination of density score (BI-RADS) and texture marker (MTR)
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simply more tightly sorted as to possible malignancy on
their screening mammogram than the Danish women in
this group, and this was in particular true for US women
with dense breasts. It is on this basis understandable that
the potential benefits of supplementary screening for
women with dense breast, implied in the Breast Density
Legislation “must be carefully weighed against the
substantial risk of false-positive findings” [8], as 10 out
of 100 women entitled to this supplementary screening
would even without this experience a false-positive
screen during their routine screening examination. The
recently published small study by Mainprize et al. [22]
indicated that the addition of various biometric and
image-based parameters increased the predictability of
nonscreen-detected cancers.

The strength of our study was that the mammography
register included all mammograms taken in the target
population in the study period and that follow-up for
breast cancer and DCIS was complete. A limitation was
that a radiology-assessed density measure was used, and
we were not able to evaluate the possible impact of sub-
jectivity and inter-observer variation [23]. The density
and texture scores were not independent; for instance,
among the 5% of screened women with extremely dense
breasts, the majority, 62%, had the highest texture
marker. The MTR score was developed using images
from a Hologic Selenia FFDM system [13], while the im-
ages in our dataset came from a Siemens FFDM system.
To what extent this could have influenced the results is
not known.

Conclusion

Our study showed on the one hand a high screening
sensitivity in women with fatty homogenous breast tissue.
These women constituted around half of the screening
population. In the European context, where a double read-
ing of screening mammograms is the standard, our finding
might lead to considering single reading for these women.
On the other hand, the combination of BI-RADS density
score and MTR marker identified subgroups with low
sensitivity with finer granularity than the BI-RADS density
score alone indicating that this combination could help
targeting resources for supplementary screening.
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