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Abstract

Background: Alteration of the PI3K/AKT/mTOR pathway is a common genomic abnormality detected in triple-
negative breast cancer (TNBC). Everolimus acts synergistically with eribulin in TNBC cell lines and xenograft models.
This phase I trial was designed to test the safety and tolerability of combining eribulin and everolimus in patients
with metastatic TNBC.

Methods: The primary objective of this study was to evaluate the safety and toxicities of the combination. Patients
with metastatic TNBC who had up to four lines of prior chemotherapies were enrolled. The combination of eribulin
and everolimus was tested using three dosing levels: A1 (everolimus 5 mg daily; eribulin 1.4 mg/m2 days 1 and 8
every 3 weeks), A2 (everolimus 7.5 mg daily; eribulin 1.4 mg/m2, days 1 and 8 every 3 weeks), and B1 (everolimus 5
mg daily; eribulin 1.1 mg/m2 days 1 and 8 every 3 weeks).

Results: Twenty-seven patients with median age 55 years were enrolled. Among 8 evaluable patients who received
dose level A1, 4 had dose-limiting toxicities (DLTs). Among 3 evaluable patients treated with dose level A2, 2 had
DLTs. Among 12 evaluable patients who received dose level B1, 4 had DLTs. The DLTs were neutropenia, stomatitis,
and hyperglycemia. Over the study period, 59% had a ≥ grade 3 toxicity, 44% had ≥ grade 3 hematologic toxicities,
and 22% had grade 4 hematologic toxicities. The most common hematological toxicities were neutropenia,
leukopenia, and lymphopenia. Thirty-three percent had grade 3 non-hematologic toxicities. The most common
non-hematological toxicities were stomatitis, hyperglycemia, and fatigue. The median number of cycles completed
was 4 (range 0–8). Among 25 eligible patients, 9 patients (36%) achieved the best response as partial response, 9
(36%) had stable disease, and 7 (28%) had progression. The median time to progression was 2.6 months (95% CI
[2.1, 4.0]), and median overall survival (OS) was 8.3 months (95% CI [5.5, undefined]).

Conclusion: Eribulin 1.1 mg/m2 days 1 and 8 every 3 weeks with everolimus 5 mg daily was defined as the highest
dose with acceptable toxicity (RP2D). The combination is safe, and efficacy is modest. A post hoc analysis showed
that participants that used dexamethasone mouthwash stayed on treatment for one additional cycle.

Trial registration: ClinicalTrials.gov, NCT02120469. Registered 18 April 2014
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Background
Triple-negative breast cancer (TNBC) is an aggressive
subtype of breast cancer characterized by a lack of estro-
gen receptor, progesterone receptor, and human epider-
mal growth factor receptor 2 (HER-2) amplification and
accounts for approximately 15 to 20% of all breast cancer
[1–3]. TNBC is a heterogeneous disease comprised of sev-
eral molecular subtypes defined by gene expression profil-
ing [4–7]. TNBCs often become chemotherapy-resistant
upon relapse; hence, clinical outcome for patients with
metastatic TNBC (mTNBC) is particularly poor with a
median overall survival (OS) of approximately 13–16
months, largely due to the lack of effective targeted ther-
apy [2, 8, 9]. There have been recent breakthrough therap-
ies in subpopulations of patients with mTNBC, such as
poly ADP ribose polymerase (PARP) inhibitors olaparib
and talazoparib in patients with germline BRCA1 or
BRCA2 mutation [10–12]. Immune checkpoint inhibitors
targeting programmed death 1 (PD-1) or programmed
death ligand 1 (PD-L1) showed efficacy in PD-L1-positive
TNBCs [13–18]. Despite the progress being made, there is
an unmet need for novel targeted therapies to improve the
outcome of patients with mTNBC.
Phosphatidylinositol 3-kinase (PI3K)/AKT pathway alter-

ations are some of the most common genomic alterations
identified in breast cancer, and recently, the FDA granted
approval of PI3Kα-specific inhibitor alpelisib plus fulves-
trant in PIK3CA-altered ER-positive metastatic breast can-
cer [19]. The PI3K/AKT pathway alterations include the
loss-of-function of the tumor suppressor phosphatase and
tensin homolog (PTEN) [20, 21]. Overall, the activating
mutations of PI3K catalytic subunit alpha (PIK3CA)/AKT/
PTEN-altered tumors account for approximately 35% of pa-
tients with TNBC [21, 22]. It is also noted that the alter-
ation of this pathway increases in metastatic disease, which
suggests that PI3K pathway alterations may be associated
with chemotherapy resistance in TNBC [23, 24].
Eribulin mesylate is a synthetic analog of halichondrin B, a

natural product isolated from the marine sponge okadai
kadota [25]. It shows antitumor activity via a tubulin-based
anti-mitotic mechanism, which leads to G2/M cell cycle ar-
rest, disruption of mitotic spindles, and apoptotic cell death.
Eribulin inhibits cell growth in a wide range of cancer cell
lines including breast, colon, prostate, and ovarian cancer
[26]. Eribulin suppresses metastasis of breast cancer cells by
reversing the phenotype from epithelial-mesenchymal tran-
sition (EMT) to mesenchymal-epithelial transition (MET)
states [27]. In the EMBRACE trial, eribulin showed OS
benefit compared with conventional single-agent chemo-
therapy of physician’s choice in heavily pretreated patients
with metastatic breast cancer [28]. This result led to FDA
approval in 2011.
Everolimus inhibits cytokine and growth factor-dependent

cell proliferation by inhibiting the mammalian target of

rapamycin (mTOR), a key protein involved in the PI3K
pathway [29]. In both preclinical models and early clinical
trials in breast cancer, everolimus demonstrated promising
efficacy [30, 31]. Furthermore, a randomized phase III study
has indicated better clinical outcomes for the treatment of
metastatic hormone receptor-positive breast cancer in com-
bination with an aromatase inhibitor [32]. Paradoxically,
single-agent mTOR inhibition with everolimus enhances up-
stream receptor tyrosine kinase activity and activates down-
stream AKT activity [33, 34], which may explain the lack of
activity as a single agent in breast cancer. Increased efficacy
has been observed when everolimus is combined with
HER2-targeted therapy [35–37] or carboplatin [38, 39].
Our preclinical studies demonstrated the synergistic

effect of eribulin and everolimus in TNBC cell lines and
murine models [34]. In TNBC cell lines MDA-MB-468
and BT549, phosphorylation of AKT was suppressed by
eribulin. The combination of eribulin and everolimus re-
sulted not only in an increased reduction of p-S6K1 and
p-S6, but also a synergistic inhibition of cell survival
in vitro and enhanced suppression of tumor growth in
two mouse models. These findings provide a preclinical
foundation for targeting both the microtubule cytoskel-
eton and the PI3K/AKT/mTOR pathway in the treat-
ment of refractory TNBC [34].
We hypothesize that the combination of eribulin and

everolimus may be effective in patients with metastatic
TNBC resistant to anthracyclines and taxanes. Here, we
report the results of a phase I trial of everolimus and eri-
bulin in patients with mTNBC.

Methods
Study design
This study was a single-center phase I trial conducted in
patients with mTNBC resistant to anthracycline and/or
taxane. The primary objective was to evaluate the safety
and tolerability of everolimus and eribulin and to deter-
mine the recommended phase 2 dose (RP2D) of the com-
bination in patients with mTNBC who had received up to
four lines of prior chemotherapy for metastatic disease.
The secondary objective was to assess the activity based
on the response rate (RR) and progression-free survival
(PFS). Study treatment was provided until disease progres-
sion or unacceptable toxicity. The study was conducted
with the Declaration of Helsinki and Good Clinical Prac-
tice. This study is registered at the clinical trial website
ClinicalTrials.gov under number NCT02723877.

Patient population
This study was conducted between November 2014 and
March 2019 with an institutional review board (IRB) ap-
proval at the City of Hope National Cancer Center. In-
formed consent forms were signed by all patients prior
to study entry. Main patient eligibility criteria included
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the following: age ≥ 18 years; life expectancy of ≥ 3
months; ECOG performance status 0–2; histologically
confirmed TNBC (ER < 10%, PR < 10%, HER-2neu-
negative defined by IHC 0 or 1, or FISH-negative); 0–3
lines of prior chemotherapy for metastases; prior treat-
ment with anthracycline and/or taxane therapy including
(neo) adjuvant setting; adequate bone marrow reserve
(hemoglobin ≥ 9 g/dL, absolute neutrophil count (ANC)
≥ 1500/mm3, platelet count ≥ 100,000/mm3); adequate
renal function defined by creatinine ≤ 1.5× the upper
limit of normal (ULN); adequate liver function defined
by total bilirubin ≤ 1.5× ULN, alanine transaminase
(ALT), and aspartate transaminase (AST) ≤ 2.5× ULN (≤
5× ULN in patients with liver metastases); able to obtain
baseline computed tomography (CT), bone scan, or posi-
tron emission tomography (PET)/CT; and able to pro-
vide written informed consent. The mandatory use of
dexamethasone mouthwash (alcohol-free 0.5 mg/5 mL
dexamethasone solution) was amended at time of dose
level B1 to reduce oral mucositis based on SWISH study
results [40].
The main exclusion criteria included the following:

chemotherapy or radiotherapy within 2 weeks prior to
study entry; persisting ≥ grade 2 AE defined by NCI
CTCAE v4.0 at screening visit except alopecia; untreated
or unstable brain metastases; prior eribulin or everoli-
mus use; HIV; chronic hepatitis B or C (known from the
existing medical record); concomitant use with strong or
moderate CPY3A4/PgP inhibitors and CPY3A4/PgP in-
ducers; uncontrolled current illness including, but not
limited to, ongoing or active infection (≥ grade 2 based
on the NCI CTCAE v4.0); symptomatic congestive heart
failure, unstable angina pectoris, or myocardial infarction
within the past 6 months; cardiac ventricular arrhyth-
mias requiring anti-arrhythmic therapy; unable to take
oral medication; history of non-compliance to medical
regimens; and psychiatric illness or social situations that
would limit compliance with study requirements.

Baseline assessments
At screening visit, physical examination, vital signs, and
labs including complete blood cell count (CBC) and dif-
ferential, complete metabolic panels (CMP), and liver
function test (LFT) were performed and repeated every
3 weeks on day 1 of each cycle. A baseline electrocardio-
gram (EKG) was also obtained and repeated as clinically
indicated. All patients were screened for hepatitis B and
C infection. Urine or serum pregnancy test was also per-
formed at screening. For tumor response assessment,
CT scan of the chest/abdomen/pelvis and bone scan
were performed for response evaluation criteria in solid
tumor (RECIST1.1) evaluation. Brain MRI with contrast
was used if clinically indicated.

Study treatment
Three dosing levels of the combinations were tested. For
dose level A1, everolimus 5 mg daily and eribulin 1.4
mg/m2 days 1 and 8 every 3 weeks were given. For dose
level A2, everolimus 7.5 mg daily and eribulin 1.4 mg/m2

days 1 and 8 every 3 weeks were given. In dose level B1,
everolimus 5 mg daily and eribulin 1.1 mg/m2 days 1 and
8 every 3 weeks were given. A mandatory dexametha-
sone mouthwash consisting of 10 mL of alcohol-free
dexamethasone 0.5 mg/5 mL oral solution (swish for 2
min and spit, four times daily) was added to the protocol
in an amendment in 2017 when dose level B1 was
opened [40]. Other supportive medications, including
anti-emetics, were used according to the current stand-
ard of care guidelines. Patients were treated until pro-
gression or unacceptable toxicity occurred.

Statistical methods
The study utilized the toxicity equivalence range (TEQR)
design with a target equivalence range for dose-limiting
toxicities (DLTs) of 0.20–0.35. Toxicity levels of ≥ 0.51
were considered too toxic, and the dose that achieve this
level was closed. Patients entered the protocol in cohorts
of 3. This trial was considered complete when 12 evalu-
able patients were studied at a single dose level with a
toxicity level of < 0.51. The RP2D was determined as the
dose closest to the target of 0.25 below 0.51 based on
isotonic regression [39].
DLT was defined as (i) grade 3 febrile neutropenia, grade

3 neutropenia lasting for > 7 days, grade 4 neutropenia, and
grade 4 thrombocytopenia; (ii) any non-hematological tox-
icity ≥ grade 3, controllable grade 3 nausea and vomiting, <
5 days of grade 3 fatigue, triglycerides < 1500mg/dL which
recovers in 1 week, grade 3 lab abnormalities that are cor-
rectable to grade 2 or less with 24 h, and grade 3 hypergly-
cemia that is controlled to grade 2; (iii) treatment delays >
2 weeks as a result of unresolved toxicity during the first
cycle of therapy; and (iv) failure to complete at least 75% of
planned dose of either drugs during cycle 1 due to toxicity.
Toxicity was evaluated based on the National Cancer Insti-
tute Common Terminology Criteria for Adverse Events
(NCI CTCAE) v4.0.
Descriptive statistics were used to summarize the pa-

tient demographic characteristics and adverse events.
Rates and exact Clopper-Pearson 95% confidence inter-
vals were provided for DLTs at the RP2D and disease re-
sponse. PFS and OS were described using Kaplan-Meier
methods.

Tumor genomic profiling
Formalin-fixed paraffin-embedded (FFPE) tumor tissues
from patients who consented to tumor tissue analysis
were collected. DNA exome sequencing was performed
using the commercially available assay FoundationOne®

Lee et al. Breast Cancer Research          (2019) 21:119 Page 3 of 13



[41] (n = 9). For tumor RNA profiling, NanoString
nCounter® PanCancer Pathway (n = 20) and Breast Can-
cer 360™ Panel (BC360™) (n = 11) were performed for pa-
tients who had sufficient baseline FFPE tumor tissue.
PanCancer multiplex gene expression analysis was per-
formed using 770 genes from cancer-associated canon-
ical pathways including: MAPK, STAT, PI3K, RAS, cell
cycle, apoptosis, Hedgehog, Wnt, DNA damage control,
transcriptional regulation, chromatin modification, and
TGF-β. BC360™ panel analysis was performed for 770
genes across 24 key breast cancer pathways and pro-
cesses (PAM50 signature, TNBC signature, claudin-low
signature, tumor inflammation signature, and 38 unique
signatures with well-established roles in breast cancer
and immuno-oncology) [42]. Tumor sections were mi-
crodissected from the patients’ unstained slides, and
RNA was extracted using miRNeasy FFPE kit (Qiagen).
RNA concentration was assessed with the Nanodrop
spectrophotometer ND-1000 and Qubit 3.0 fluorometer
(Thermo Scientific, CA). RNA fragmentation and quality
control were further determined by 2100 Bioanalyzer
(Agilent, CA). RNA was hybridized with codeset from
gene panel at 65 °C for 16–20 h. Post-hybridization
probe-target mixture was purified and quantified with
nCounter Digital Analyzer, and all data analysis was per-
formed on nSolver (NanoString Technologies, WA). All
raw data from expression analysis were first aligned with
internal positive and negative controls then normalized
to the selected housekeeping genes included in the assay.
Differential gene expression patterns as well as pathway
and cell type scores with statistical analyses were per-
formed with nSolver software (NanoString Technologies,
WA). BC360™ signatures including PAM50 breast cancer
intrinsic subtype classifier and the tumor inflammation
signature were analyzed by NanoString. NanoString data
was analyzed for statistical significance using nSolver
analysis software. Box plots of differential expression
with associated p value calculation were generated using
Graphpad Prism 5.0 software (La Jolla, CA, USA).

Results
A total of 27 patients were enrolled and received treat-
ment from November 2014 to March 2019. The median
age of patients was 55 (range 36–76). Sixty-seven per-
cent (18/27) of participants were non-Hispanic and 33%
(9/27) were Hispanic (Table 1). Sites of metastases were
distant lymph nodes 67% (18/27), lung 56% (15/27), dis-
tant skin/subcutaneous tissue 41% (11/27), bone 41%
(11/27), liver 37% (10/27), pleura 33% (9/27), brain 7%
(2/27), and others 19% (5/27). The number of patients
receiving 0–1 lines of chemotherapy for metastases was
44% (12/27), and the number of patients receiving ≥ 2
lines of chemotherapy was 56% (15/27). Two of 27 pa-
tients were found to be HER-2/neu-amplified at the time

of confirmatory biopsy and were taken off study. These
two patients were not included in efficacy analysis but
were included in toxicity analysis (Fig. 1).

Treatment
Three dose levels of everolimus and eribulin were evalu-
ated: level A1 (everolimus 5 mg daily; eribulin 1.4 mg/m2

on days 1 and 8 every 3 weeks), level A2 (everolimus 7.5
mg daily; eribulin 1.4 mg/m2 on days 1 and 8 every 3
weeks), and level B1 (everolimus 5 mg daily; eribulin 1.1
mg/m2 on days 1 and 8 every 3 weeks) (Table 2). Ini-
tially, 4 patients received treatment on dose level A1.
One patient was not evaluable for dose escalation, due
to receiving < 75% drug as a result of an event that was

Table 1 Patient characteristics

Patients (N = 27)

Age 55 (36–76)

ECOG performance status

0 8 (30%)

1 15 (56%)

2 4 (15%)

Median BMI (range) 30 (19–48)

Race/ethnicity

White 18 (67%)

Asian/Pacific Islander 3 (11%)

Black 2 (7%)

Unknown 4 (15%)

Non-Hispanic 18 (67%)

Hispanic 9 (33%)

Initial tumor stage

I 3 (11%)

II 14 (52%)

III 6 (22%)

IV 4 (15%)

Lines of chemo for metastases

0–1 12 (44%)

≥ 2 15 (56%)

Sites of metastases

Distant lymph nodes 18 (67%)

Lung 15 (56%)

Distant skin/subcutaneous tissue 11 (41%)

Bone 11 (41%)

Liver 10 (37%)

Pleura 9 (33%)

Brain 2 (7%)

Others* 5 (19%)

*Others are the latissimus dorsi muscle, adrenal glands, ovary, and
contralateral breast
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unrelated to treatment. There were no DLTs in 3 evalu-
able patients, so the dose was escalated based on the
guidelines for the TEQR design. Four patients were
treated on dose level A2. One patient was found to be
HER2+ and was taken off study. A total of 2/3 evaluable
patients experienced DLTs in cycle 1, so dose level A2
was de-escalated to dose level A1 according to TEQR
guidelines. Six additional patients were treated at dose
level A1. Of those, 1 patient progressed without com-
pleting the first cycle and did not have a DLT, hence
unevaluable for dose escalation. Of the 5 evaluable pa-
tients, 4 experienced DLTs. Of the 8 patients evaluable
at dose level 1, 4/8 had DLTs (50%). The DLTs included
2 patients with grade 4 neutropenia, 1 patient with grade
3 mucositis, and 1 patient received less than 75% of
planned dose of everolimus due to persisting grade 2
mucositis. The protocol was amended to add a lower
dose level of B1, eribulin at 1.1 mg/m2 on days 1 and 8
every 3 weeks and everolimus 5 mg daily. Thirteen pa-
tients were treated at dose level B1. One patient was in-
eligible due to HER2+ disease on repeat of biopsy. Of
the 12 patients treated, the DLT rate at dose level B1

was 33% (4/12) with a 95% CI of 0.1, 0.65, thus complet-
ing the phase 1 part of the trial (Table 2). Dose level B1
(everolimus 5mg daily and eribulin 1.1mg/m2 on days 1
and 8 every 3 weeks) was determined to be the RP2D doses.
The median number of cycles completed was 4 (0–18).

Dose modification
Sixty-eight percent (17/25) of participants had a dose
modification or hold, including 56% (14/25) for eribulin
and 60% (15/25) for everolimus.

Toxicities
Of the 27 patients, 96% (26/27) had a grade ≥ 2 toxicity,
and 59% (16/27) had grade 3–4 toxicity attributed to
treatment. There were no grade 5 toxicities attributed to
treatment.

Hematologic toxicities
Of the 27 patients, 44% (12/27) had grade 3 and above
hematologic toxicities, including neutropenia (n = 10),
lymphopenia (n = 6), and leukopenia (n = 7) (Fig. 2a).

Fig. 1 Patient accrual and correlative analysis summary. A total of 27 patients were accrued and received treatment on the study. Two of the
patients’ on-treatment biopsy revealed HER2+ FISH-amplified tumor, and study treatment was terminated (patients were excluded from the
efficacy analysis but included in the toxicity analysis). mRNA profiling was performed for 20 patients with NanoString PanCancer Pathways
analysis and 11 patients for BC360™. FoundationOne ® genomic mutation profiles were available for 9 patients
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Non-hematologic toxicities
Of the 27 patients, 9/27 (33%) had grade 3 non-
hematologic toxicities, including oral mucositis (n = 3),
hyperglycemia (n = 3), and fatigue (n = 5). The counts of
maximum grade 2 and above for each participant were
listed for each event type where either a grade 3 or
above toxicity was experienced, or 2 participants experi-
enced a grade 2 (Fig. 2b). When dose level B1 was
opened, a mandatory dexamethasone (Dex) mouthwash
was added to reduce oral mucositis based on principle of
best medical practice and clinical trial data [40]. Of the
12 evaluable participants enrolled to dose level B1, 2 did
not use Dex mouthwash and 3 of the patients in the A1
dose used Dex mouthwash. A post hoc analysis was per-
formed to compare the number of cycles that patients
received in the Dex group with the non-Dex group. The
median number of cycles was higher by 1 cycle (from 3
to 4 cycles) in the participants that took Dex. This was
statistically significant using a Wilcoxon rank sum test
(Dex: n = 13; non-Dex: n = 12; p = 0.046).

Antitumor activity and survival
Of the 25 evaluable patients, 9/25 (36%) had a partial re-
sponse (PR), 9/25 (36%) achieved a best response of stable
disease (SD), and 7/25 (28%) had progression of disease
(PD). A total of 21/25 (84%, 95%CI [64%, 95%]) experi-
enced progression by RECIST1.1 or showed clinical pro-
gression. The median PFS was 2.6months (95%CI [2.1,
4.0]). Nineteen of 25 (76%, 95% CI [55%, 91%]) eligible

participants had event of death at the time of data cutoff
(25 March 2019), and the median OS was 8.3months
(95% CI [5.5, undefined]). The cause of death was disease
progression for 18 and failure to thrive for 1. Kaplan-
Meier curves for PFS and OS are shown in Fig. 3. Of the
24 participants that were off treatment, 17 (71%) were off
for progression, 4 (17%) for clinical progression, 2 (8%) for
toxicity, and 1 (4%) for lack of insurance coverage.

mRNA expression and response
NanoString PanCancer Pathway profiling was performed
for 20 patients who had sufficient FFPE from metastatic
biopsy. PanCancer Pathway with the grouping of pa-
tients’ best response analysis revealed a total of 22 differ-
entially expressed genes (DEGs) comparing PR (n = 7)
vs. SD+PD (n = 13) (linear fold change > 2 and p < 0.05).
Five DEGs (CDKN2A, WNT5A, CNTFR, DDIT4, and
SPP1) were downregulated in PR, and 17 DEGs were up-
regulated in PR. Of the 22 genes, 9 DEGs are involved in
the PI3K pathway (Table 3). It should be noted that sev-
eral immune-related genes including CD19, IL7R, IL6,
and CCR7 were upregulated in partial responders. A vol-
cano plot with differentially expressed genes (linear fold
change > 2 and p < 0.05) was used to compare SD+PD
and PR (Fig. 4a). Decreased CDKN2A expression (p =
0.02) (Fig. 4b) and increased CALML5 (p = 0.01) (Fig. 4c)
were associated with better response to therapy.
Further analysis using NanoString BC360™ analysis

was performed for 11 patients (due to limited sample).

Table 2 Dosing levels and DLTs
Dosing levels Number Evaluable DLT (%) DLT type

A1: everolimus 5 mg
daily; eribulin 1.4 mg/m2

days 1 and 8 every
3 weeks

10 8† 4 (50%) 1 patient: grade3
mucositis
2 patients: grade 4
neutropenia,
including one
with febrile
neutropenia
1 patient: received
less than
75% of planned
dose of everolimus
due to prolonged
grade 2 mucositis

A2: everolimus 7.5 mg daily;
eribulin 1.4 mg/m2 days 1
and 8 every 3 weeks

4 3* 2 (67%) 1 patient: grade
3 hyperglycemia
1 patient: grade
3 mucositis

B1: everolimus 5 mg daily;
eribulin 1.1 mg/m2 days 1
and 8 every 3 weeks

13 12‡ 4 (33%) 2 patients: grade
4 neutropenia
1 patient: grade
3 mucositis
1 patient: did not
receive 75%
of everolimus due
to persisting
grade 2 mucositis

†One patient progressed without completion of the first 2 cycles of therapy, hence unevaluable for DLT; 1 patient did not receive planned dose due to grade 3
hypoglycemia attributed to diabetes
*One patient was found to be HER2+ on repeat biopsy, deem ineligible
‡One patient was found to be HER2+ on repeat biopsy, deem ineligible
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Biologically significant pathways and single gene expres-
sion results are shown in Additional file 1: Figure S1.
Samples are grouped based on the initial stage (stage
II, stage III, and de novo stage IV), lines of therapy
> 2, PAM50 molecular subtypes (basal, HER2+, lu-
minal A, and luminal B), and TNBC subtypes (BLIA,
BLIS, LAR, and MES). BC360™ analysis revealed

diverse tumor and tumor microenvironment (TME)
pathway signatures with no observable pattern (Add-
itional file 2: Figure S2A). There was no clear associ-
ation of these variables and response to therapy, with
the exception of HER2-enriched subtype which was
associated with treatment resistance (p = 0.02) (Add-
itional file 2: Figure S2B).

Fig. 2 Summary of toxicities. a Hematological toxicities: 12/27 (44%) had ≥ grade 3 hematological toxicity, including neutropenia (n = 10),
lymphopenia (n = 6), and leukopenia (n = 7). b Non-hematologic toxicities: 9/27 (33%) had grade 3 non-hematological toxicity, including oral
mucositis (n = 3), hyperglycemia (n = 3), and fatigue (n = 5). The counts of maximum ≥ grade 2 for each participant was listed for each event type
(either ≥ grade 3 toxicity, or 2 participants experienced a grade 2 toxicity)
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Genomic mutation profiles
Nine patients had genomic mutation analysis through
FoundationOne®. Additional file 3: Figure S3 shows the
most frequent genomic alterations identified. Of the nine
patients analyzed, two patients (3 and 16) carried muta-
tions in the PI3K-Akt-mTOR pathway. Due to the

limited sample size, the association of genomic alteration
with clinical response or survival could not be assessed.

Discussion
Activation of the PI3K/AKT pathway contributes to the
resistance to anti-cancer agents including microtubule-

Fig. 3 Kaplan-Meier survival analysis. a Median PFS was 2.6 months (95% CI [2.1, 4.0]). b Median OS was 8.3 months (95% CI [5.5, undefined])
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targeting agents. Despite the high frequency of alter-
ations of PIK3CA/AKT/mTOR pathway, the presence of
these mutations does not translate to a significant re-
sponse to single agent PI3K inhibitors in early clinical
trials [43, 44]. This is likely attributed to multiple by-
pass signaling pathways. We hypothesized that targeting
both the microtubule cytoskeleton and the PI3K/AKT/
mTOR pathway would lead to a synergistic anti-tumor
effect. Our previous work showed synergistic inhibition
of the PI3K/AKT/mTOR pathway, which resulted in an
increased reduction of p-S6K1 and p-S6. The synergistic
suppression of cell survival was found in a number of
breast cancer cell lines in vitro and breast cancer mouse
models in vivo [34].
The current study demonstrated that the combination

of eribulin and everolimus is feasible and an effective

treatment for patients with mTNBC. Everolimus 5 mg
daily with eribulin 1.1 mg/m2 days 1 and 8 every 3 weeks
was determined to be the RP2D doses [45]. Disease re-
sponse rate was 36%. Tolerability of the combination im-
proved after mandatory Dex mouthwash was added for
dose level B1, which reconfirmed the SWISH data. Since
50% of DLTs in dose levels A1 and A2 were oral muco-
sitis, the mandatory use of dexamethasone mouthwash
may reduce DLTs in both dose levels.
Eribulin has been reported to have anti-tumor activity

with a manageable tolerability profile with side effects
consisting of neutropenia, fatigue, alopecia, nausea, and
anemia. In addition, there was a low incidence of periph-
eral neuropathy [46–48]. The Eisai Metastatic Breast
Cancer Study Assessing Physician’s Choice Verses E7389
(EMBRACE) clinical trial was a phase III trial of patients
with heavily pretreated metastatic breast cancer. Partici-
pants received eribulin (E7389) monotherapy or treat-
ment of physician’s choice (TPC). The patients in the
trial received a median of four prior therapies. Improve-
ment was seen in OS with HR 0.81, 95% CI [0.66–0.99],
p = 0.041. Median OS was 13.1 months in patients re-
ceiving eribulin vs. 10.6 months in TPC [28]. This study
led to the FDA approval of eribulin mesylate for the
treatment of breast cancer in patients who had failed
taxane- or anthracycline-based therapies.
The mTOR inhibitor everolimus has emerged as a po-

tential combination therapy drug for the treatment of
cancer unresponsive to conventional therapy [49]. When
used alone, everolimus can induce increased levels of p-
AKT via a negative feedback loop leading to resistance
of cells to mTOR inhibitors [50, 51]. Dual blockade of
mTOR and other PI3K pathway inhibitors results in syn-
ergistic decrease in cancer cell growth [33, 51, 52]. The
PI3K pathway has been shown to play a critical role in
TNBC. However, downstream of PI3K, mTOR inhibitor
alone does not demonstrate clinical benefit. Studies
combining chemotherapy with PI3K/AKT/mTOR path-
way inhibitors have shown efficacy [38, 53, 54].
In a phase II trial of everolimus and carboplatin in

metastatic TNBC, clinical benefit rate (CBR) was 36%
and medical PFS was 3 months [38]. Other clinical trials
have targeted different inhibitors in the PI3K pathway.
Recently, the LOTUS trial studied the oral AKT inhibi-
tor ipatasertib in TNBC. In this study, combination of
ipatasertib and paclitaxel showed longer PFS compared
to paclitaxel alone [53]. This improved PFS was observed
particularly in patients with PIK3CA/AKT1/PTEN-al-
tered tumors. The IPATunity130 trial is underway to
confirm these findings [55].
In the NanoString analysis, we identified the following

immune-related genes which were upregulated in pa-
tients who achieved partial responses: CD19, IL7R, IL6,
and CCR7. Due to the limited sample size, the result is

Table 3 NanoString PanCancer Pathways® differentially
expressed genes

mRNA Log2
fold
change

Standard
error
(log2)

Linear
fold
change

p value Gene sets

SPP1 − 2.96 0.804 0.129 0.0017 PI3K

CDKN2A − 2.05 0.805 0.242 0.0211 Cell cycle,
apoptosis,
tumor suppressor
gene

CNTFR − 1.98 0.702 0.253 0.0111 JAK-STAT

DDIT4 − 1.65 0.557 0.319 0.0848 PI3K

WNT5A − 1.49 0.702 0.355 0.0474 Hedgehog, Wnt

ITGA9 1.01 0.36 2.02 0.0116 PI3K

LAT 1.07 0.453 2.1 0.0297 Ras

IL7R 1.08 0.427 2.11 0.0214 JAK-STAT, PI3K

PPARGC1A 1.21 0.519 2.32 0.0312 Chromatin
modification

TSLP 1.23 0.544 2.34 0.0379 JAK-STAT

ID4 1.31 0.353 2.47 0.00163 TGF-β

TNR 1.33 0.602 2.52 0.0408 PI3K

RASGRP2 1.42 0.614 2.68 0.0336 MAPK, Ras

HNF1A 1.49 0.591 2.8 0.0223 Driver gene

COL2A1 1.59 0.606 3.01 0.0178 PI3K

EFNA2 1.69 0.626 3.22 0.0154 PI3K, Ras

CCR7 1.7 0.68 3.25 0.0229 Transcriptional
misregulation

IL2ORB 1.71 0.607 3.26 0.0116 JAK-STAT

WNT16 1.87 0.777 3.66 0.0277 Hedgehog,
transcriptional
misregulation, Wnt

CALML5 2.07 0.749 4.21 0.0127 Ras

IL6 2.51 0.707 5.71 0.00244 JAK-STAT, PI3K,
transcriptional
misregulation

CD19 2.62 0.764 6.13 0.00323 PI3K
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hypothesis-generating and requires further verification.
This finding is consistent with the observation that up-
regulation of immune-related genes in TNBC correlates
with better response to chemotherapy and improved
survival [56, 57].
The current dose-defining study did not reveal the

underlying mechanism predicting response to the
combination of eribulin and everolimus. mRNA pro-
filing and genomic analyses were performed, but with
limited sample size. Although no clear conclusions
were drawn, we observed an association between
HER2-enriched subtype and poor response to therapy.
Future studies targeting the PI3K-AKT-mTOR path-
way will provide more insight into the molecular pre-
dictors of response.

Conclusion
The combination of eribulin and everolimus is feasible
and an effective treatment in metastatic TNBC. This

phase I clinical trial defines the RP2D as eribulin 1.1 mg/
m2 (days 1 and 8) and everolimus 5 mg daily for further
study. A post hoc analysis showed that participants that
used dexamethasone mouthwash stayed on treatment
for one additional cycle.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13058-019-1202-4.

Additional file 1: Figure S1. BC360™ analysis (n=11): A) Relevant gene
signatures and biologically significant single genes are shown. Samples
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lines of therapy >2, molecular subtypes (PAM50: basal, HER2+, luminal A,
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showing differentially expressed signatures comparing SD+PD and PR
groups; B) HER2-enriched signature is up-regulated in SD+PD compared
with PR group (P=0.02).

Fig. 4 NanoString PanCancer Pathways® analysis (n = 20). a Volcano plot showing differentially expressed genes with linear fold change > 2 and
p < 0.05 comparing SD+PD and PR. b Decreased CDKN2A expression (p = 0.02) in responders. c Increased CALML5 expression (p = 0.01)
in responders
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