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Diffusion tensor imaging for characterizing
tumor microstructure and improving
diagnostic performance on breast MRI: a
prospective observational study
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Abstract

Background: Diffusion-weighted imaging (DWI) can increase breast MRI diagnostic specificity due to the tendency
of malignancies to restrict diffusion. Diffusion tensor imaging (DTI) provides further information over conventional
DWI regarding diffusion directionality and anisotropy. Our study evaluates DTI features of suspicious breast lesions
detected on MRI to determine the added diagnostic value of DTI for breast imaging.

Methods: With IRB approval, we prospectively enrolled patients over a 3-year period who had suspicious (BI-RADS
category 4 or 5) MRI-detected breast lesions with histopathological results. Patients underwent multiparametric 3 T
MRI with dynamic contrast-enhanced (DCE) and DTI sequences. Clinical factors (age, menopausal status, breast
density, clinical indication, background parenchymal enhancement) and DCE-MRI lesion parameters (size, type,
presence of washout, BI-RADS category) were recorded prospectively by interpreting radiologists. DTI parameters
(apparent diffusion coefficient [ADC], fractional anisotropy [FA], axial diffusivity [λ1], radial diffusivity [(λ2 + λ3)/2], and
empirical difference [λ1 − λ3]) were measured retrospectively. Generalized estimating equations (GEE) and least
absolute shrinkage and selection operator (LASSO) methods were used for univariate and multivariate logistic
regression, respectively. Diagnostic performance was internally validated using the area under the curve (AUC) with
bootstrap adjustment.

Results: The study included 238 suspicious breast lesions (95 malignant, 143 benign) in 194 women. In univariate
analysis, lower ADC, axial diffusivity, and radial diffusivity were associated with malignancy (OR = 0.37–0.42 per 1-SD
increase, p < 0.001 for each), as was higher FA (OR = 1.45, p = 0.007). In multivariate analysis, LASSO selected only
ADC (OR = 0.41) as a predictor for a DTI-only model, while both ADC (OR = 0.41) and FA (OR = 0.88) were selected
for a model combining clinical and imaging parameters. Post-hoc analysis revealed varying association of FA with
malignancy depending on the lesion type. The combined model (AUC = 0.81) had a significantly better performance
than Clinical/DCE-MRI-only (AUC = 0.76, p < 0.001) and DTI-only (AUC = 0.75, p = 0.002) models.

Conclusions: DTI significantly improves diagnostic performance in multivariate modeling. ADC is the most important
diffusion parameter for distinguishing benign and malignant breast lesions, while anisotropy measures may help
further characterize tumor microstructure and microenvironment.
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Background
Dynamic contrast-enhanced (DCE) breast MRI is estab-
lished to be the most sensitive tool for the detection of
breast cancer [1–5]. As a result, its utility in both screen-
ing and diagnostic setting has increased rapidly over the
past two decades. Although breast MRI specificity and
positive predictive value have improved since its incep-
tion, DCE MRI continues to result in many false posi-
tives and unnecessary biopsies [2, 6, 7]. In fact, recent
studies have demonstrated that as few as one in five bi-
opsy recommendations based on DCE MRI yield malig-
nancy [8–10]. These unnecessary biopsies can result in
increased health care costs, patient anxiety, and delays in
breast cancer treatment. Accordingly, identification of
MRI methods that complement DCE techniques and im-
prove breast MRI specificity without lowering its sensi-
tivity is an important area of active research.
Diffusion-weighted imaging (DWI) has emerged as an

adjunct to DCE-MRI that can improve the detection and
characterization of breast cancer [11–13]. DWI interro-
gates the in vivo mobility of water molecules, which in
turn may provide information on microstructural char-
acteristics of tissue, including cell density and presence
of macromolecules and cell membranes. Numerous prior
studies have shown that breast cancers feature impeded
diffusion and appear as the areas of hyperintensity on
DWI with correspondingly low apparent diffusion coeffi-
cient (ADC) compared to normal fibroglandular tissue
[14]. The best explored application of DWI for breast
cancer is decreasing the false-positive rate and increasing
the diagnostic specificity when used in addition to con-
ventional DCE-MRI [15, 16]. Although DWI is prone to
susceptibility and field inhomogeneity artifacts, diffusion
sequences can be acquired quickly and can help to iden-
tify lesions warranting biopsy [14].
Diffusion tensor imaging (DTI) is an extension of con-

ventional DWI that interrogates water motion in six or
more directions to characterize diffusion directionality
(anisotropy) in addition to ADC [17]. Water diffusion
within biological tissue is often anisotropic due to direc-
tionally dependent restriction imposed by microstructural
architecture. It is hypothesized that normal mammary
ducts allow water to diffuse more freely in a direction par-
allel to the walls of the ducts whereas proliferating neo-
plastic cells reduce diffusion anisotropy by blocking ducts
[18, 19]. Although there is a general consensus that malig-
nant lesions demonstrate reduced diffusion on DWI in
comparison with most benign and normal fibroglandular
tissues, there are conflicting results regarding the added
diagnostic utility of DTI parameters such as fractional an-
isotropy (FA), a measure of diffusion directionality in
which higher FA indicates more anisotropic diffusion ori-
ented along a single direction and lower FA indicates
more equal diffusion in all directions [18, 20–24]. Some

studies have reported lower FA in benign lesions com-
pared with malignant lesions, attributed to the differences
in microscopic composition and organization [20, 23–25],
while others found no such differences in FA [18, 21, 22].
The purpose of our study was to evaluate the DTI fea-

tures of suspicious breast lesions detected on 3 T MRI
and to determine whether DTI can statistically improve
diagnostic performance over conventional assessment.

Methods
Study population
This prospective study was approved by our Institutional
Review Board and was compliant with the Health Insur-
ance Portability and Accountability Act (HIPAA). All pa-
tients provided informed consent allowing us to review
the MRI images, medical records, and pathology results.
Enrolled patients were 18 years or older and underwent
3 T breast MRI, including DCE and DTI sequences, from
October 2010 to December 2013. DTI sequences were
appended to the standard clinical MRI examination;
therefore, enrolled patients did not undergo additional
MRI examinations. Patients with MRI-detected lesions
characterized as Breast Imaging Reporting and Data Sys-
tem (BI-RADS) category 4 or 5 who underwent core
needle biopsy (CNB) and/or surgical excision were eli-
gible for the study. Clinical indications for breast MRI
included high-risk screening, extent of disease evalu-
ation, and problem solving. In subjects with known
existing breast cancer, the eligible lesion must have been
distinct from the previously biopsy-proven cancer. Sub-
jects receiving neoadjuvant chemotherapy less than
6 months prior to MRI were excluded. Patients unable
or unwilling to provide informed consent or undergo
the entire MRI examination were also excluded.

MRI acquisition
Breast MRIs were performed using a 3 T Philips Achieva Tx
MRI scanner (Philips Healthcare, Best, The Netherlands)
with a dedicated 16-channel bilateral breast coil (Mammo-
Trak, Philips Healthcare, Best, The Netherlands). MRI
sequences were obtained in the axial orientation, and each
MRI exam included DWI, T2-weighted fast spin-echo,
T1-weighted non-fat-suppressed, and T1-weighted fat-
suppressed DCE-MRI sequences with one precontrast
and three post-contrast acquisitions. DCE-MRI was ac-
quired with T1-weighted fat-suppressed 3D fast gradi-
ent echo (eTHRIVE) sequences with parallel imaging
technique (sensitivity encoding; SENSE). The following
imaging parameters were utilized: repetition time (TR)/
echo time (TE), 5.9/3 ms; flip angle, 10°; matrix size,
440 × 660; field of view (FOV), 22 × 33 cm; in-plane
voxel size, 0.5 mm; and slice thickness, 1.3 mm. Post-
contrast sequences were acquired with k-space centered
at 120, 300, and 480 s after contrast injection. The contrast
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agent administered was 0.1mmol/kg body weight gadoter-
idol (ProHance, Bracco Diagnostics, Milan, Italy). The
DCE scan time was 2min and 57 s per acquisition.
In order to minimize disruption of the clinical portion

of breast MRI examinations, diffusion tensor imaging was
performed immediately following DCE imaging using a
2D diffusion-weighted single-shot spin-echo-prepared
echo-planar imaging (EPI) sequence with parallel imaging
and fat suppression (spectral attenuated inversion recov-
ery (SPAIR)) with the following parameters: SENSE reduc-
tion factor, 3; averages, 2; TR/TE, 5336/61ms; matrix,
240 × 240; FOV, 36 × 36 cm; in-plane voxel size, 1.5 mm;
slice thickness, 5 mm; and gap, 0. Diffusion gradients were
applied in six directions with b values of 0, 100, and 800 s/
mm2. The total diffusion imaging acquisition time was 3
min and 28 s.

Clinical MRI interpretation
Clinical interpretations for all MRI studies were per-
formed prospectively by fellowship-trained radiologists
specializing in breast imaging. Lesions were assessed
using American College of Radiology (ACR) BI-RADS
breast MRI lexicon [26], and lesion kinetic features were
measured using computer-assisted diagnosis (CAD) soft-
ware (CADstream v. 5.2.7, Merge Healthcare, Chicago,
IL). For DCE kinetics, enhancement curve types of per-
sistent, plateau, or washout were categorized for each
voxel by evaluating the change in signal intensity from
the initial (at 120 s) to the final (at 480 s) post-contrast
scan, with washout defined as > 10% decrease in signal
intensity, persistent > 10% increase, and plateau < 10%
change. Recorded lesion characteristics included the
number of lesions per patient, lesion type (focus, mass,
non-mass enhancement [NME]), size, DCE kinetic pat-
tern of worst curve type (defined as most suspicious,
with washout > plateau > persistent [26]), final BI-RADS
assessment and recommendation.
This information was entered into our clinical MRI

database. Because the clinical evaluation of DCE-MRI
images was performed prospectively, radiologists were
blinded to the result of histopathology at the time of in-
terpretation. DTI data was not reviewed by radiologists
for BI-RADS assessment. Histopathology results from
CNB and/or excision biopsy were later extracted from
the clinical record for the purposes of this study.

DTI post-processing
DTI analysis was performed offline by trained research sci-
entists who were blinded to the lesion pathology outcomes.
Diffusion tensor images were first spatially registered using
a commercially available 3D affine transformation algo-
rithm (Diffusion Registration tool, Philips Healthcare, Best,
The Netherlands), with b = 0 s/mm2 images as reference, to
minimize the artifacts due to motion and eddy current-

based image distortion [27]. Voxel-based DTI parametric
maps were then calculated and analyzed using in-house
custom semi-automated software developed in ImageJ (Na-
tional Institutes of Health, Bethesda, MD) based on stand-
ard methods [28]. With DTI, the MRI signal obtained with
diffusion weighting is reduced in intensity proportional to
the water mobility and is described by S = S0e

–bD, where S0
is the signal intensity without diffusion weighting, S is the
signal intensity with diffusion weighting, D is the diffusion
tensor, and b is the applied diffusion sensitization [17]. A
diffusion tensor matrix is derived for each image voxel and
diagonalized to obtain the diffusion tensor eigenvalues λ1,
λ2, and λ3 and scalar values describing the magnitude or
rate of diffusion along each of the three principal axes (from
largest to smallest) of the diffusion tensor ellipsoid (in
mm2/s). From those, a number of other rotationally invari-
ant DTI parameters can be calculated. ADC (also known as
mean diffusivity, MD, or averaged diffusivity, Dav), which
describes the degree of mobility or hindrance of water mol-
ecules, is given by:

ADC ¼ MD ¼ λ1 þ λ2 þ λ3
3

mm2=s
� � ð1Þ

(an alternative way to calculate ADC from the diffusion
tensors vs. conventional DWI that does not account for
anisotropy). Mean axial diffusivity is defined as λ1. Mean
radial diffusivity is defined as the average of λ2 and λ3.
FA is a unitless measure of the degree of directionality

of diffusion, ranging from 0 (completely isotropic) to 1
(completely anisotropic), given by:

FA ¼
ffiffiffi
3

p
ffiffiffi
2

p ∙

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1−ADCð Þ2 þ λ2−ADCð Þ2 þ λ3−ADCð Þ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 þ λ22 þ λ23

q

ð2Þ
Additionally, the empirical parameter λ1 − λ3 is a non-

normalized measure related to both diffusion mobility
and directionality, which has been reported in previous
studies to be significantly lower in malignant lesions
compared to normal fibroglandular tissue and benign
breast lesions [19, 22]. For qualitative interpretation,
combined diffusion-weighted images were also calcu-
lated as the geometric average of unidirectional b = 800
s/mm2 images.
A region of interest (ROI) corresponding to the BI-

RADS 4 or 5 lesion on DCE-MRI was manually defined
on DTI under the supervision of an experienced radiolo-
gist. This ROI was selected on the combined DWI at the
central slice of the lesion to include any hyperintensity
and to avoid obvious areas of cyst, necrosis, or fat by
referring to T1- and T2-weighted images. A semi-
automated thresholding tool enabled exclusion from the
ROI any voxels with very low DWI signal intensity
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corresponding to adipose or normal fibroglandular tis-
sue [29]. The ROI was propagated to all DTI paramet-
ric maps, and the mean voxel value was calculated to
characterize the lesion on each map. Propagating lesion
ROIs directly from DCE-MRI was not possible due to
the common spatial distortions inherent to echo-planar
imaging-based DTI datasets (caused by B0 field inho-
mogeneities). Examples of breast DTI parametric maps
are shown for several benign and malignant lesions in
Figs. 1, 2, 3, and 4.

Statistical analysis
An analysis was performed at the lesion level, and the
primary outcome was histopathological determination of
malignant vs. benign. Univariate associations between
malignancy and clinical, DCE-MRI, and DTI parameters
were explored using generalized estimating equations
(GEE)-based logistic regression to account for any cor-
relation between multiple lesions from the same woman.
The area under the receiver operating characteristic
(ROC) curve (AUC) and odds ratio (OR) were calculated
for each parameter. Any variable which appeared to be
right-skewed based on visual inspection of the histogram
was log-transformed prior to inclusion in the model. ORs
for continuous variables were scaled to correspond to the
difference per 1-SD increase in the variable. Spearman’s
rank correlation was used to examine the pairwise rela-
tionships between continuous variables.

Multivariate logistic regression models were devel-
oped using the least absolute shrinkage and selection
operator (LASSO), which is a machine learning tech-
nique that simultaneously performs variable selection
and parameter regularization to limit overfitting [30].
The LASSO penalty/regularization parameter was se-
lected to minimize the model deviance estimated using
leave-one-patient-out cross-validation. Three primary
models were generated based on (1) Clinical/DCE-MRI
parameters only, (2) DTI parameters only, and (3) the
combination of both sets of parameters. Due to sub-
stantial collinearity among the DTI parameters, the pri-
mary DTI-based models were developed considering
ADC and FA only. Sensitivity analyses to determine
how model performance was impacted by changes in
specific input variables were also performed where
ADC was replaced with axial and radial diffusivity and
where FA was replaced with λ1 − λ3. Model perform-
ance for discriminating between malignant and benign
lesions was summarized using the AUC after optimism
adjustment using the bootstrap to account for training
and testing using the same dataset [31]. The bootstrap
was also used to compare AUC estimates from different
models. Bootstrap resampling was performed by patient
rather than by lesion to account for the non-independ-
ence of lesions from the same patient.
An exploratory subgroup analysis of DTI parameters

within the lesion groups defined by size (< 1 cm and ≥ 1

Fig. 1 Malignant mass detected in a 47-year-old patient undergoing MRI to evaluate newly diagnosed cancer. a DCE post-contrast subtraction
image demonstrates an additional 20-mm round mass with irregular margins in the posterior right breast 6 o’clock (arrow), assigned a BI-RADS
category 4. DTI-derived parametric maps of b apparent diffusion coefficient (ADC), c fractional anisotropy, and eigenvalues d λ1, e λ2, and f λ3 are
shown for the lesion regions overlaid in color on the b = 800 s/mm2 image. ADC, λ1, λ2, and λ3 are in units of 10−3 (mm2/s). The mass
demonstrated low ADC (mean ADC = 1.09 × 10−3 mm2/s) with FA = 0.18, λ1 = 1.27 × 10−3 mm2/s, λ2 = 1.11 × 10−3 mm2/s, and λ3 = 0.87 × 10−3 mm2/
s. Biopsy revealed a malignant grade 1 invasive ductal carcinoma
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Fig. 2 Benign mass detected in a 45-year-old patient undergoing MRI for high risk screening. a DCE post-contrast image demonstrates an 18-
mm irregular mass with irregular margins in the left breast 7 o’clock (arrow), assigned a BI-RADS category 4. DTI-derived parametric maps of b
apparent diffusion coefficient (ADC), c fractional anisotropy, and eigenvalues d λ1, e λ2, and f λ3 are shown for the lesion regions overlaid in color
on the b = 800 s/mm2 image. ADC, λ1, λ2, and λ3 are in units of 10−3 (mm2/s). The mass demonstrated high ADC (mean ADC = 2.00 × 10−3 mm2/s)
and very low FA (FA = 0.10), with λ1 = 2.20 × 10−3 mm2/s, λ2 = 2.00 × 10−3 mm2/s, and λ3 = 1.80 × 10−3 mm2/s. Ultrasound-guided biopsy revealed
benign fibroadenoma

Fig. 3 Malignant non-mass enhancement detected in a 58-year-old patient undergoing MRI for high risk screening. a DCE post-contrast image
demonstrates a 33-mm linear heterogeneous non-mass enhancement in the posterior left breast 2 o’clock (arrow), assigned a BI-RADS category 4.
DTI-derived parametric maps of b apparent diffusion coefficient (ADC), c fractional anisotropy, and eigenvalues d λ1, e λ2, and f λ3 are shown for
the lesion regions overlaid in color on the b = 800 s/mm2 image. ADC, λ1, λ2, and λ3 are in units of 10−3 (mm2/s). The lesion demonstrated
moderate ADC (mean ADC = 1.47 × 10−3 mm2/s) with FA = 0.25, λ1 = 1.83 × 10−3 mm2/s, λ2 = 1.47 × 10−3 mm2/s, and λ3 = 1.11 × 10−3 mm2/s. MR-
guided biopsy revealed DCIS
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cm) and type (masses and non-masses) was conducted
to assess whether the relationships between the DTI pa-
rameters and malignancy differed between any of these
groups. This was done using GEE-based logistic regres-
sion models with interaction terms corresponding to the
comparisons of interest, specifically size × ADC, type ×
ADC, size × FA, and type × FA. Lastly, a post-hoc multi-
variate LASSO model was developed, which included all
Clinical/DCE-MRI parameters, DTI parameters, and the
same interactions between size, type, and DTI parame-
ters. All statistical calculations were performed using the
statistical computing language R (version 3.1.1; R Foun-
dation for Statistical Computing, Vienna, Austria).
Throughout, two-sided tests were used, with statistical
significance defined as p < 0.05.

Results
Patient cohort and lesion characteristics
Two hundred sixty-six women with 354 MRI-detected BI-
RADS category 4 or 5 lesions were enrolled in our study
prior to CNB and/or surgical excision. Of those, DTI was
not performed in the MRI examinations for 23 women
(24 lesions) and had technical or image post-processing is-
sues in 13 women (16 lesions). Another 31 women (69 le-
sions) were then excluded: 42 lesions lacked adequate
reference standard to determine the pathologic outcome,
and 27 lesions were not evaluable because poor image
quality or small lesion size precluded DTI measures.

Lastly, 5 women with 7 lesions were excluded for incom-
plete clinical data: 2 women (2 lesions) in whom BPE was
not evaluable due to prior mastectomy and 3 women (5 le-
sions) who did not have a recent mammogram available
to assess breast density. After all exclusions, there were
238 lesions in 194 women included in the analysis.
Patient and lesion characteristics are summarized in

Table 1. The median patient age was 51 years (range 23
to 83 years). The clinical indication for breast MRI was
screening or problem solving in 68 (35.1%) patients and
evaluating the extent of disease for newly diagnosed
breast cancer in 128 (64.9%) patients. The majority
(80.9%) of patients had a single BI-RADS 4 or 5 lesion
detected on MRI while 15.5% had 2 lesions and 3.6%
had 3 lesions. The median lesion diameter was 1.1 cm
(range 0.4 to 11.4 cm), and most lesions were masses
(n = 135, 56.7%), were classified as BI-RADS 4 (n = 218,
91.6%), and demonstrated washout on delayed phase
DCE images (n = 198, 83.2%). Ninety-five of 238 (39.9%)
lesions were malignant and 143 (60.1%) were benign. Le-
sion subtype information was available in 90 of 95 malig-
nancies, which is summarized in Table 1.

Performance of DCE-MRI and DTI parameters in
discriminating malignant and benign lesions
In univariate analysis, all clinical and DCE-MRI parame-
ters evaluated were significantly associated with malig-
nancy except for mass vs. non-mass lesion type (p = 0.98),

Fig. 4 Benign non-mass enhancement detected in a 40-year-old patient undergoing MRI to evaluate newly diagnosed cancer. a DCE post-
contrast image demonstrates a 20-mm focal heterogeneous non-mass enhancement in the middle right breast 9 o’clock (arrow), assigned a BI-
RADS category 4. DTI-derived parametric maps of b apparent diffusion coefficient (ADC), c fractional anisotropy, and eigenvalues d λ1, (e) λ2, and
(f) λ3 are shown for the lesion regions overlaid in color on the b = 800 s/mm2 image. ADC, λ1, λ2, and λ3 are in units of 10−3 (mm2/s). The lesion
demonstrated moderate ADC (mean ADC = 1.56 × 10−3 mm2/s) and high FA (FA = 0.39), with λ1 = 2.13 × 10−3 mm2/s, λ2 = 1.58 × 10−3 mm2/s, and
λ3 = 0.97 × 10−3 mm2/s. MR-guided biopsy revealed benign usual ductal hyperplasia
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as summarized in Table 2. From DTI, lower ADC was sig-
nificantly associated with malignancy (OR = 0.37 per 1-SD
increase, p < 0.001), as were axial (OR = 0.42, p < 0.001)
and radial (OR = 0.40, p < 0.001) diffusivity. Higher FA
was significantly associated with malignancy (OR = 1.45,
p = 0.007), though λ1 − λ3 was not (OR = 0.96, p = 0.77).
There was substantial collinearity among the DTI pa-

rameters, at least in part due to their definitions which
are all functions of the three diffusion eigenvalues. The
pairwise correlations of ADC with axial (r = 0.81) and
radial (r = 0.95) diffusivity were high, as was the correl-
ation between FA and λ1 − λ3 (r = 0.89). FA was corre-
lated with ADC (r = − 0.51), primarily through its
correlation with radial diffusivity (r = − 0.73) rather than
the axial component (r = 0.04). By contrast, λ1 − λ3 was
only weakly correlated with ADC (r = − 0.07) because
λ1 − λ3 was positively correlated with axial diffusivity
(r = 0.48) but negatively correlated with radial diffusivity
(r = − 0.36).
The multivariate LASSO models are summarized in

Table 3. The LASSO selected all of the Clinical/DCE-
MRI parameters except post-menopausal status and se-
lected only ADC (OR = 0.41 per 1-SD increase) for the
DTI-only model. In the combined Clinical/DCE-
MRI+DTI model, the LASSO selected both ADC (OR =
0.41) and FA (OR = 0.88). The Clinical/DCE-MRI model
(AUC = 0.76) and DTI-only model (AUC = 0.75) had
similar discrimination performance (ΔAUC = − 0.01, 95%
CI − 0.10 to 0.06, p = 0.54). The Clinical/DCE-MRI+DTI
model (AUC = 0.81) had significantly better performance

Table 1 Patient and lesion characteristics

Patients (N = 194) Value

Age, years 51 (23–83)

Menopausal status

Pre 93 (47.9)

Post 101 (52.1)

Indication

New cancer 126 (64.9)

Screening/problem solving 68 (35.1)

Breast density

Fatty 5 (2.6)

Scattered fibroglandular 47 (24.2)

Heterogeneously dense 108 (55.7)

Dense 34 (17.5)

Background parenchymal enhancement

Minimal 58 (29.9)

Mild 79 (40.7)

Moderate 37 (19.1)

Marked 20 (10.3)

Lesions per patient

1 lesion 157 (80.9)

2 lesions 30 (15.5)

3 lesions 7 (3.6)

Lesions (N = 238)

Largest diameter, cm

< 1.0 cm 98 (41.2)

1.0–1.9 cm 71 (29.8)

2.0–3.9 cm 38 (16.0)

≥ 4.0 cm 31 (13.0)

Type

Mass 135 (56.7)

NMLE 99 (41.6)

Focus 4 (1.7)

Delayed phase kinetics(most suspicious)

Persistent 6 (2.5)

Plateau 34 (14.3)

Washout 198 (83.2)

BI-RADS

4 218 (91.6)

5 20 (8.4)

Histopathology

Malignant 95 (39.9)

Benign 143 (60.1)

Cancer subtype (n = 90*)

Invasive 73 (81.1)

DCIS 17 (18.9)

Table 1 Patient and lesion characteristics (Continued)

Patients (N = 194) Value

Benign subtype (n = 143)

Fibroadenoma 25 (17.5)

Fibrocystic changes 21 (14.7)

Fibrosis 14 (9.8)

Usual ductal hyperplasia 12 (8.4)

Apocrine metaplasia 11 (7.7)

Lobular neoplasia (LCIS, ALH) 9 (6.3)

Papilloma 9 (6.3)

Adenosis 8 (5.6)

Pseudoangiomatous stromal hyperplasia 6 (4.2)

Inflammation 5 (3.5)

Atypical ductal hyperplasia 4 (2.8)

Fibroadenomatoid change 4 (2.8)

Normal breast tissue 4 (2.8)

Other miscellaneous 11 (7.7)

Values are median (range) or no. (%)
NME non-mass enhancement, DCIS ductal carcinoma in situ, LCIS lobular
carcinoma in situ, ALH atypical lobular hyperplasia
*Five malignancies did not have a cancer subtype available
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Table 2 Univariate analysis of patient and lesion characteristics (DCE+DTI) for discriminating between malignant and benign lesions

Pathology status* Univariate model

Malignant (N = 95) Benign (N = 143) AUC (95% CI) OR† (95% CI) p value

Clinical/DCE-MRI parameters

Age, years 54.7 ± 11.3 49.3 ± 11.8 0.63 (0.56–0.71) 1.60 (1.19, 2.16) 0.002

Post-menopausal 61 (64.2) 67 (46.9) 0.59 (0.52–0.66) 2.04 (1.14, 3.62) 0.016

MRI indication: known cancer 77 (81.1) 84 (58.7) 0.61 (0.55–0.67) 3.00 (1.54, 5.85) 0.001

Dense breasts 57 (60.0) 117 (81.8) 0.61 (0.55–0.67) 0.33 (0.18, 0.62) 0.001

BPE category (1–4) 1.9 ± 1.0 2.3 ± 0.9 0.62 (0.54–0.70) 0.65 (0.47, 0.88) 0.006

Lesion size, cm‡ 26.9 ± 27.1 16.3 ± 17.7 0.64 (0.57–0.71) 1.66 (1.27, 2.16) < 0.001

Mass vs. NMLE/focus 54 (56.8) 81 (56.6) 0.50 (0.43–0.57) 1.01 (0.58, 1.76) 0.98

Washout on delayed phase kinetics 87 (91.6) 111 (77.6) 0.57 (0.53–0.61) 3.14 (1.41, 7.00) 0.005

BI-RADS 5 vs. 4 17 (17.9) 3 (2.1) 0.58 (0.53–0.62) 10.17 (2.11, 49.10) 0.004

DTI parameters

Mean ADC, 10−3 mm2/s 1.26 ± 0.32 1.55 ± 0.30 0.75 (0.68–0.82) 0.37 (0.25, 0.54) < 0.001

Mean axial diffusivity, 10−3 mm2/s 1.62 ± 0.41 1.91 ± 0.36 0.73 (0.66–0.80) 0.42 (0.28, 0.64) < 0.001

Mean radial diffusivity, 10−3 mm2/s 1.08 ± 0.35 1.37 ± 0.33 0.74 (0.67–0.81) 0.40 (0.28, 0.59) < 0.001

Mean FA‡ 0.28 ± 0.15 0.23 ± 0.13 0.61 (0.53–0.68) 1.45 (1.11, 1.91) 0.007

Mean λ1 − λ3
‡, 10−3 mm2/s 0.69 ± 0.46 0.69 ± 0.40 0.52 (0.44–0.60) 0.96 (0.74, 1.25) 0.77

AUC area under the ROC curve, ROC receiver operating characteristic curve, OR odds ratio for malignancy, CI confidence interval
*Values are no. (%) or mean ± SD
†For continuous variables, ORs are scaled to show change per 1-SD increase in the corresponding variable
‡Variable was log-transformed prior to inclusion in the logistic regression model to reduce right-skewness
NS = variable was included as a candidate predictor but was not selected by the LASSO; A blank cell indicates that the corresponding variable was not included
as a candidate predictor in the model

Table 3 Multivariate LASSO models for discriminating between malignant and benign lesions

Odds ratios*

Clinical/DCE-MRI DTI only Clinical/DCE-MRI+ADC Clinical/DCE-MRI+DTI

Clinical/DCE-MRI parameters

Age, per 1-SD increase 1.23 1.16 1.17

Post-menopausal NS NS NS

MRI indication: known cancer 1.64 1.90 1.88

Dense breasts 0.45 0.64 0.61

BPE category, per 1-category increase 0.68 0.65 0.66

Lesion size†, per 1-SD increase 1.96 1.95 1.85

Mass vs. NMLE/focus 2.30 2.01 1.89

Washout on delayed phase kinetics 2.92 2.52 2.43

BI-RADS 5 vs. 4 4.47 2.56 2.36

DTI parameters

Mean ADC, per 1-SD increase 0.41 0.44 0.41

Mean FA†, per 1-SD increase NS 0.88

Bootstrap-adjusted AUC 0.76 0.75 0.81 0.81

(95% CI) (0.71, 0.83) (0.68, 0.82) (0.77, 0.88) (0.78, 0.88)

*For continuous variables, ORs are scaled to show change per 1-SD increase in the corresponding variable
†Variable was log-transformed prior to inclusion in the logistic regression model to reduce right-skewness
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than both the Clinical/DCE-MRI model (ΔAUC = 0.05,
95% CI 0.02 to 0.10, p < 0.001) and the DTI-only model
(ΔAUC = 0.07, 95% CI 0.03 to 0.13, p = 0.002). Corre-
sponding ROC curves are shown in Fig. 5. Since the OR
for FA was relatively modest at 0.88, the incremental im-
pact of FA was further examined. The performance of
the Clinical/DCE-MRI+DTI model was compared with a
Clinical/DCE-MRI+ADC model (including the same pa-
rameters but without FA), and the improvement in AUC
from adding FA was not significant overall (ΔAUC =
0.00, 95% CI − 0.01 to 0.02, p = 0.81). The performance
results from all of these models were very similar when
the models were re-fit using axial and radial diffusivity
instead of ADC and using λ1 − λ3 instead of FA.

Subgroup analysis of DTI parameters in small vs. large
and mass vs. non-mass lesions
An exploratory subgroup analysis was conducted of small
(< 1 cm, n = 98) vs. large (≥ 1 cm, n = 140) lesions and
mass (n = 135) vs. non-mass (NME n = 99; foci n = 4) le-
sions to assess how the DTI parameters were related to
malignancy within these lesion subgroups. In univariate
modeling, the predictive values of ADC and FA for malig-
nancy were not significantly different between small and
large lesions (p = 0.23 and p = 0.43, respectively) but were
different between masses and non-masses (p = 0.002 and

p = 0.006, respectively), Fig. 6. Specifically, ADC was more
strongly predictive of malignancy in masses (OR = 0.19,
p < 0.001) than non-masses (OR = 0.64, p = 0.060), while
FA was significantly predictive only for masses (OR = 2.02,
p < 0.001, Table 4) in univariate analysis.
Since both lesion type and size were related—non-

masses (82/103; 80%) were more likely to be large (> 1
cm) than masses (58/135; 43%, p < 0.0001)—and ADC
and FA were moderately correlated (r = − 0.51), they
were included together in a multivariate model to assess
their independent associations with malignancy in mass
and non-mass groups (Table 4). The predictive value of
FA remained significantly different between masses and
non-masses in the multivariate model (OR 1.62 vs.
0.54, p = 0.009). Interestingly, the OR values implied
opposite independent associations of FA with malig-
nancy in the two groups, with malignant masses having
higher FA values than benign masses but malignant
non-masses having lower FA than benign non-masses.
By contrast, the ORs for ADC were no longer signifi-
cantly different between masses and non-masses in the
multivariate model (OR 0.23 vs. 0.42, p = 0.20), with
lower ADC values associated with malignancy in both
lesion type groups.
We further explored why the FA association with ma-

lignancy varied between masses and non-masses. Of the

Fig. 5 Cross-validated ROC curves for Clinical/DCE-MRI-only, DTI-only, and Clinical/DCE-MRI+DTI models to discriminate malignant and benign
lesions. The bootstrap-adjusted AUC estimates were 0.76 (95% CI 0.71–0.83), 0.75 (95% CI 0.68–0.82), and 0.81 (95% CI 0.78–0.88), respectively. The
Clinical/DCE-MRI+DTI model had a significantly higher AUC than the Clinical/DCE-MRI model (p < 0.001) and DTI-only model (p = 0.002)
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Fig. 6 ROC curves for individual DTI parameters within the lesion subgroups defined by type or size. AUC estimates were significantly higher in
masses than non-masses for both ADC (AUC 0.84 [95% CI 0.77–0.91] vs. 0.63 [95% CI 0.52–0.75], p = 0.002) and FA (AUC 0.69 [95% CI 0.59–0.79] vs.
0.50 [95% CI 0.40–0.61], p = 0.013). By contrast, AUC estimates were not significantly different between large (≥ 1 cm) and small (< 1 cm) lesions
for both ADC (AUC 0.79 [95% CI 0.71–0.86] vs. 0.69 [95% CI 0.57–0.81], p= 0.18) and FA (AUC 0.64 [95% CI 0.55–0.73] vs. 0.62 [95% CI 0.49–0.75] p= 0.80)

Table 4 Exploratory modeling for the association of DTI parameters with malignancy in different lesion types

DTI variable Pathology status Univariate model Multivariate model*

Malignant Benign

No. Mean ± SD No. Mean ± SD OR (95% CI) p value OR (95% CI) p value

ADC, 10−3 mm2/s

Mass 54 1.19 ± 0.27 81 1.59 ± 0.30 0.19 (0.10–0.36) < 0.001 0.23 (0.13–0.43) < 0.001

Non-mass 41 1.35 ± 0.36 62 1.49 ± 0.30 0.64 (0.40–1.02) 0.060 0.42 (0.22–0.84) 0.013

(p = 0.002†) (p = 0.20†)

FA

Mass 54 0.31 ± 0.17 81 0.21 ± 0.12 2.02 (1.36–3.01) < 0.001 1.62 (0.97–2.71) 0.067

Non-mass 41 0.24 ± 0.11 62 0.26 ± 0.14 0.94 (0.64–1.38) 0.74 0.54 (0.29–1.01) 0.053

(p = 0.006†) (p = 0.009†)

*The multivariate model included ADC, FA, mass vs. non-mass type, log(lesion size), and interactions between mass/non-mass and ADC and FA; ORs were scaled
to show change per 1-SD increase in the corresponding variable; FA was log-transformed prior to inclusion in the logistic regression model to reduce right-skewness
†Wald test comparing the ORs corresponding to masses and non-masses
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malignant lesions, 51 of 54 (94.4%) masses were invasive
cancers compared to 22 of 36 (61.1%) non-masses (p <
0.001). FA was significantly lower in DCIS lesions com-
pared to invasive lesions (0.22 vs. 0.30, p = 0.026). On
the other hand, FA was significantly higher in benign
non-masses than in benign masses (0.26 vs. 0.21, p =
0.040). Among benign lesions, masses were most com-
monly fibroadenoma (25/83 [30.1%]), while non-masses
were most commonly fibrocystic change (15/60 [25.0%])
and usual ductal hyperplasia (10/60 [16.7%]).
To account for differential associations with malig-

nancy depending on the lesion subgroup, an additional
LASSO model combining Clinical/DCE-MRI parame-
ters, DTI parameters, and size- and type-DTI interac-
tions was then fit to assess the impact of incorporating
the subgroup analysis results into the modeling (Table 5).
This model allowed the ORs for ADC and FA to depend
on whether the lesion was large or small and whether it

was a mass or not. The resulting model with size- and
type-DTI interactions (AUC = 0.85, 95% CI 0.82 to 0.90)
demonstrated a substantial improvement in discrimin-
ation performance compared to the basic Clinical/DCE-
MRI model (ΔAUC = 0.09, 95% CI 0.04 to 0.13, p <
0.001) and a modest though statistically significant im-
provement compared to the Clinical/DCE-MRI+DTI
model without interactions shown in Table 3 (ΔAUC =
0.03, 95% CI 0.01 to 0.07, p = 0.018, Fig. 7).

Discussion
The results of our prospective study of women with sus-
picious 3 T DCE-MRI-detected BI-RADS 4 and 5 lesions
who underwent CNB and/or surgical excision showed
that the addition of DTI to conventional breast MRI
assessments may improve the ability to distinguish be-
tween benign and malignant lesions. Overall, malignan-
cies exhibited lower ADC, lower axial (λ1) and radial

Table 5 Multivariate Clinical/DCE-MRI+DTI LASSO model with type- and size-specific DTI parameters

Odds ratios*

Model without interactions Model with interactions†

Clinical/DCE-MRI parameters

Age, per 1-SD increase 1.17 1.20

Post-menopausal NS NS

MRI indication: known cancer 1.88 1.84

Dense breasts 0.61 0.50

BPE category, per 1-category increase 0.66 0.59

Lesion size‡, per 1-SD increase 1.85 2.18

Mass vs. NMLE/focus 1.89 2.28

Washout on delayed phase kinetics 2.43 3.07

BI-RADS 5 vs. 4 2.36 2.97

DTI parameters

Mean ADC, per 1-SD increase

Small non-masses 0.41 1.00

Large non-masses 0.41 0.35

Small masses 0.41 0.36

Large masses 0.41 0.13

Mean FA‡, per 1-SD increase

Small non-masses 0.88 0.47

Large non-masses 0.88 0.41

Small masses 0.88 1.17

Large masses 0.88 1.02

Bootstrap-adjusted AUC 0.81 0.85

(95% CI) (0.78, 0.88) (0.82, 0.90)

Small lesion, < 1 cm; large lesion, ≥ 1 cm
*For continuous variables, ORs are scaled to show change per 1-SD increase in the corresponding variable
†The model with interactions included addition terms corresponding to type × ADC, size × ADC, type × FA, and size × ADC, allowing all 4 subgroups (type × size) to
have different ORs for ADC and different ORs for FA; the model without interactions contains 12 regression parameters (including the intercept), and the model
with interactions contains 16 regression parameters
‡Variable was log-transformed prior to inclusion in the logistic regression model to reduce right-skewness
NS = variable was included as a candidate predictor but was not selected by the LASSO
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([λ2 + λ3]/2) diffusivity, and higher FA on DTI than be-
nign lesions. Further analysis demonstrated that FA as-
sociation with malignancy differed for masses and non-
masses, and among the diffusion parameters, ADC
contributed most significantly to the overall diagnostic
performance. Machine learning-based LASSO modeling
incorporating multiple clinical, conventional DCE and
DTI parameters achieved high diagnostic performance
in differentiating malignant from benign lesions
(AUC = 0.85).
Prior studies have demonstrated that lesion size and

worst delayed phase kinetics on DCE-MRI are significant
predictors of malignancy [32–34], and the results of our
study further validate the significance of these parame-
ters, with malignant lesions being larger and more likely
to demonstrate washout on delayed phase in both uni-
variate and multivariate analyses. As expected, BI-RADS
category 5 lesions were more likely to be malignant than
BI-RADS 4 lesions. Lesion type (mass vs. non-mass) was
not found to be a significant parameter. Other patient-
level characteristics associated with higher odds for le-
sion malignancy were older age, post-menopausal status,
lower BPE, and lower breast density. These findings
agree with established evidence of increasing risk of

breast cancer with age [29], as well as reduced mammo-
graphic breast density and BPE that go along with in-
creasing age [35]. Furthermore, higher BPE (moderate or
marked levels) has been shown to be associated with
higher abnormal interpretation (BI-RADS 0,3,4,5) and
biopsy rates and lower specificity (i.e., higher false-posi-
tive rate) [36].
The latest (fifth) edition of the ACR BI-RADS lexicon

contains descriptors for lesion morphology and contrast
kinetics but not for diffusion characteristics [26], which
reflects the current clinical practice of DWI being used
only in select imaging centers as an adjunctive technique
to conventional DCE-MRI. Results from multiple single-
center studies, including prior work at our institution,
have demonstrated the value of quantitative ADC mea-
sures in discriminating malignant from benign lesions
[15, 37]. Results of a recent multicenter trial further con-
firmed that by implementing an ADC cutoff, DWI has
potential to reduce the rate of unnecessary biopsies
prompted by conventional DCE-MRI [16]. The patho-
logic basis for impeded diffusion and lower ADC values
in malignant lesions has been proposed to arise in part
from the higher cellularity and more restricted extracel-
lular environment of breast cancers compared to benign

Fig. 7 Comparison between the cross-validated ROC curve for Clinical/DCE-MRI+DTI+interactions model and curves for Clinical/DCE-MRI-only and
Clinical/DCE-MRI+DTI models. The interaction terms were size × ADC, type × ADC, size × FA, and type × FA and allowed the model to have
different odds ratios for ADC and FA for each size × type subgroup. The bootstrap-adjusted AUC estimates were 0.76 (95% CI 0.71–0.83), 0.81
(95% CI 0.78–0.88), and 0.85 (95% CI 0.82–0.90), respectively. The Clinical/DCE-MRI+DTI+interactions model had a significantly higher AUC than
the Clinical/DCE-MRI+DTI model (p = 0.018)
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lesions, supported by imaging pathologic comparisons in
some studies [11, 23]. In our study, univariate analysis
identified ADC as a significant parameter, and LASSO
modeling selected ADC for both the DTI-only and
DCE+DTI models. Our findings add to a growing body
of evidence supporting the use of ADC as an independ-
ent biomarker for differentiating between malignant and
benign lesions.
In addition to the magnitude of diffusion provided by

ADC, other DTI parameters provide information on the
direction and anisotropy of diffusion, potentially allowing
for further characterization of the underlying breast tissue.
Although there is a general consensus in the literature
supporting impeded diffusion (reflected by low ADC) as a
feature of breast malignancies, there are conflicting results
regarding the added utility of other DTI parameters in dif-
ferentiating between malignant and benign lesions. FA is
the most studied DTI parameter aside from ADC, and
while some studies have reported higher FA in malignant
lesions compared with benign ones [20, 23–25], others
have found no significant difference [18, 21, 22]. The uni-
variate analysis in our study showed mean FA to be sig-
nificantly higher in malignant lesions compared to benign
lesions. Mean axial (λ1) and radial ([λ2 + λ3]/2) diffusivity
were also significantly lower in malignancies. On the other
hand, the empirical parameter λ1 − λ3, a proposed alter-
nate measure of diffusion directionality that has been re-
ported to be lower in malignant lesions compared to
normal breast tissue and benign lesions [19, 22], did not
significantly distinguish malignant and benign lesions in
our study.
Post-hoc subanalyses demonstrated interesting differ-

ences in FA association with malignancy based on the
lesion type of mass or non-mass. Higher FA was associ-
ated with malignancy for masses, while lower FA was
associated with malignancy for non-mass lesions in
multivariate modeling, which has not been previously
reported. Our findings suggest this opposite association
of FA with malignancy likely relates to biologic differ-
ences of the typical benign pathologies represented
within each lesion type. In our study, benign masses
demonstrated lower FA than benign non-masses.
Within masses, the most common false positives on
MRI are fibroadenomas, where FA has been reported to
be lower than for malignancies in multiple prior studies
in addition to ours [20, 23–25] and attributed to their
characteristic myxoid extracellular matrix and fibrous
stroma with absent or compressed tubular structures
[20]. On the other hand, within non-masses, common
benign pathologies such as ductal hyperplasia or pseu-
doangiomatous stromal hyperplasia (PASH) may grow
diffusely while maintaining some of the normal ductal
architecture and native FA levels of the intervening
fibroglandular tissue. Further investigation with more

detailed pathological assessment is needed to better
understand the microstructural and microenvironmen-
tal characteristics of breast lesions influencing diffusion
anisotropy measures and how this information may be
used to improve diagnostic accuracy. Regardless, our
findings suggest DTI anisotropy metrics must be con-
sidered in the context with lesion type for diagnostic
purposes.
The results of our multivariate LASSO analysis

showed that a model incorporating all clinical factors
(except menopausal status), DCE-MRI parameters, and
DTI parameters (ADC and FA) and accounting for inter-
actions achieved the best diagnostic performance in dif-
ferentiating malignant from benign lesions, represented
the highest AUC (0.85). Comparison of several multi-
variate models further demonstrated that among the
DTI parameters, ADC contributed most significantly to
the overall diagnostic performance and suggested FA
added incremental value only after accounting for the
interactions with lesion type. ADC maps can be acquired
using the standard DWI technique with three orthogonal
diffusion-sensitizing gradients, while multiple additional
gradient directions must be applied to acquire sufficient
data to reconstruct diffusion tensors in DTI. Our results
suggest that using only the less time-consuming stand-
ard DWI acquisition in conjunction with conventional
DCE-MRI may be sufficient for improving the diagnostic
performance.
Along with demonstrating potential clinical utility, the

study also identified that further technical developments
are needed to address breast DTI image quality issues.
Lesion evaluability on DTI was limited in part by tech-
nical issues inherent to the single-shot echo-planar im-
aging (EPI) technique. EPI is widely used for diffusion
imaging but suffers from limited spatial resolution,
spatial distortion, and frequent artifacts [38]. These is-
sues are further magnified for breast imaging due to the
particular challenges of off-isocenter imaging, air-tissue
interfaces, and significant fat content in the breast [14].
To mitigate these potential sources of error, exams
found on visual assessment to have significant imaging
artifacts were excluded from the study, but these issues
may still have contributed to reduced lesion evaluability
in the remaining exams, with 27/272 (10%) lesions with ad-
equate DTI quality and reference standard still deemed
non-evaluable. The results of recent multicenter breast
DWI trials also identified reliable image quality to be a
challenge, with 13 to 29% of cases being excluded for DWI
technical issues [16, 39, 40]. However, a range of emerging
technical advancements in DWI acquisition strategies hold
potential to improve image quality [41–44].
There are several strengths of our study. To our know-

ledge, our study contains the largest prospective cohort
of patients to date who have undergone breast DTI for
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detecting breast malignancy. After excluding lesions
without direct pathologic sampling and with other miss-
ing clinical data, 238 lesions included in our study were
available for statistical analysis. Our study featured a
prospective design, and interpreting radiologists and re-
search associates conducting quantitative DTI analyses
were blinded to the histopathologic results. All breast
MRIs in our study were performed at high-field strength
(3 T), which has been shown in prior studies to have im-
proved diagnostic performance compared to 1.5 T due
to superior signal-to-noise ratio (SNR), which can in
turn enable increased spatial resolution [45–47]. To in-
crease the robustness of our statistical analysis, we used
an advanced machine learning-based LASSO modeling
technique, which simultaneously performs variable selec-
tion and parameter regularization to limit overfitting,
along with bootstrap optimism adjustment to account
for training and testing using the same dataset.
There are also several important limitations to our

study. First, although our study contains the largest cohort
of breast DTI patients to date, it was performed at a single
institution, which may limit the generalizability of our re-
sults. DTI was performed with minimal six gradient direc-
tions and with 1.5 × 1.5 × 5 mm spatial resolution. It is
possible additional directions and/or higher spatial reso-
lution could better elucidate directionality in breast le-
sions; however, this would require additional acquisition
time and may incur additional motion and other artifacts.
In order to minimize disruption of the clinical portion of
breast MRI examinations and in case patients were not
able to tolerate the full examination, DTI was performed
after the completion of the standard MRI protocol includ-
ing DCE-MRI (approximately 10min after contrast injec-
tion). Although we have previously shown no significant
effect on breast tumor ADC measures using our imaging
protocol [48], which was also verified across multiple in-
dependent breast DWI studies [49], it may be preferable
to acquire DTI before contrast injection to avoid any pos-
sible confounding effects on other DTI parameters. Fur-
thermore, ROIs were manually defined on DTI maps for
each exam after comparing DCE-MRI and DTI. Propagat-
ing lesion ROIs directly from DCE images was not reliable
due to the spatial distortions common to EPI-based breast
DWI and DTI datasets (caused by field inhomogeneities).
Manual ROI definition is prone to operator dependence
and sampling error, especially for irregularly shaped
masses or NME. To address this limitation, we used a
semi-automated ROI tool to avoid non-tumor voxels,
which has been shown in a previous study to improve the
inter-reader reproducibility of breast lesion ADC values
without introducing bias vs. manual ROI measures [29].
Alternate ROI approaches such as sampling a small hot-
spot region could provide different performance results
for distinguishing benign from malignant lesions.

Conclusion
Evaluating a combination of clinical, DCE-MRI, and diffu-
sion parameters may improve the ability to distinguish be-
tween benign and malignant lesions on breast MRI,
thereby decreasing false-positive diagnoses and avoiding
unnecessary biopsies. ADC was the most important diffu-
sion parameter for distinguishing benign and malignant
breast lesions, supporting continued use of standard DWI
sequences for feasible clinical implementation. However,
our results suggest DTI may enable further biologic
characterization relating to variations in tumor micro-
structure and microenvironment, which warrants further
investigation.
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