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Abrupt involution induces inflammation,
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linking lack of breastfeeding with increased
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Abstract

Background: A large collaborative analysis of data from 47 epidemiological studies concluded that longer duration of
breastfeeding reduces the risk of developing breast cancer. Despite the strong epidemiological evidence, the
molecular mechanisms linking prolonged breastfeeding to decreased risk of breast cancer remain poorly understood.

Methods: We modeled two types of breastfeeding behaviors in wild type FVB/N mice: (1) normal or gradual involution
of breast tissue following prolonged breastfeeding and (2) forced or abrupt involution following short-term
breastfeeding. To accomplish this, pups were gradually weaned between 28 and 31 days (gradual involution) or
abruptly at 7 days postpartum (abrupt involution). Mammary glands were examined for histological changes,
proliferation, and inflammatory markers by immunohistochemistry. Fluorescence-activated cell sorting was used to
quantify mammary epithelial subpopulations. Gene set enrichment analysis was used to analyze gene expression data
from mouse mammary luminal progenitor cells. Similar analysis was done using gene expression data generated from
human breast samples obtained from parous women enrolled on a tissue collection study, OSU-2011C0094, and were
undergoing reduction mammoplasty without history of breast cancer.

Results: Mammary glands from mice that underwent abrupt involution exhibited denser stroma, altered collagen
composition, higher inflammation and proliferation, increased estrogen receptor a and progesterone receptor
expression compared to those that underwent gradual involution. Importantly, when aged to 4 months postpartum,
mice that were in the abrupt involution cohort developed ductal hyperplasia and squamous metaplasia. Abrupt
involution also resulted in a significant expansion of the luminal progenitor cell compartment associated with
enrichment of Notch and estrogen signaling pathway genes. Breast tissues obtained from healthy women who
breastfed for < 6 months vs = 6 months showed significant enrichment of Notch signaling pathway genes, along with
a trend for enrichment for luminal progenitor gene signature similar to what is observed in BRCAT mutation carriers
and basal-like breast tumors.
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Conclusions: We report here for the first time that forced or abrupt involution of the mammary glands following
pregnancy and lack of breastfeeding results in expansion of luminal progenitor cells, higher inflammation, proliferation,
and ductal hyperplasia, a known risk factor for developing breast cancer.
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Introduction

Global epidemiological studies link prolonged breast-
feeding with a decreased risk of developing breast can-
cer, in particular, triple-negative breast cancer (TNBC),
an aggressive cancer subtype with high mortality [1-9].
In fact, it is estimated that breastfeeding prevents 20,000
breast cancer deaths annually based on the current
breastfeeding rates [10]. Yet, a study conducted by our
group showed that only 16% of mothers received the in-
formation regarding this personal health benefit from
breastfeeding from health care professionals [11]. Epi-
demiological data also show that African-American
women have one of the lowest breastfeeding rates in the
USA (33% compared to 63% for non-Hispanic Caucasian
women) and have a disproportionate burden of develop-
ing TNBC, in particular basal-like breast cancer (BLBC)
[12]. The Breast Cancer Etiology in Minorities (BEM)
study showed that the TNBC risk was increased more
than twofold for women with high parity (= 3) and no or
short-term breastfeeding. The same study showed that
when compared to nulliparous women, those who breast-
fed =24 months over their lifetime had no increased risk
[13]. Additionally, even in women with BRCAI and
BRCA2 mutations who have an increased risk of develop-
ing TNBC [14-16], breastfeeding for more than a year re-
duces this risk by 32%, reiterating the potential impact of
prolonged breastfeeding on prevention [17].

The mechanism by which breastfeeding affects breast
cancer development is unclear. The human pregnancy-
lactation-involution cycle is a dynamic, multi-step
process. During pregnancy, the mammary epithelium
undergoes extensive proliferation and further differenti-
ates during lactation to produce milk. At the post-
lactation involution stage, the bulk of the mammary epi-
thelium undergoes programmed cell death, while a small
fraction of the cells remodels to a pre-pregnancy state
[18]. However, the remodeling process varies based upon
the length of breastfeeding. When breastfeeding is not
initiated after birth or is stopped abruptly within a short
time after initiation, the breast tissue undergoes forced
and abrupt remodeling (abrupt involution (AI)). When
breastfeeding occurs over a long period and ends grad-
ually as infants wean off their mothers’ milk, the breast
tissue remodels gradually over time (gradual involution
(GI)). While the molecular changes associated with
mammary gland involution following pregnancy and

lactation have been studied in murine models, these
studies have used a model in which pups were weaned
abruptly on postpartum days 10-14, simulating the ef-
fects of Al but not GI [19, 20]. To date, the molecular
changes occurring during Al have not been compared to
changes occurring in mammary glands that have under-
gone gradual involution following prolonged lactation
and gradual weaning. Given that gradual involution of
mammary glands is epidemiologically linked to de-
creased risk of breast cancer, this is an important area of
continued research.

We present here for the first time results of our study
identifying distinct histological and molecular changes in
mammary glands from mice undergoing Al compared to
those undergoing GI. We used FVB/N mice to model
abrupt and gradual involution and found higher prolifer-
ative and inflammatory markers and collagen deposition
in the AI cohort. Notably, glands undergoing Al subse-
quently developed ductal hyperplasia and squamous
metaplasia. Al glands also demonstrated persistent ex-
pansion of the mammary luminal progenitor (LP) cell
population, the putative cell of origin of BRCAI-associ-
ated and sporadic BLBC [21, 22]. Gene set enrichment
analysis (GSEA) of mammary LP cells obtained from Al
mice revealed distinct enrichment of pathways important
in stem cell maintenance and cell survival, an observa-
tion also demonstrated in breast tissue obtained from
parous women with no history of breast cancer who
breastfed cumulatively for less than 6 months. This was
not observed in women who breastfed longer. Com-
bined, we demonstrate a potential direct biological link
between the lack of breastfeeding and increased future
risk of developing TN/BLBC.

Materials and methods

Mouse model

All mice experiments were conducted in accordance
with a protocol approved by The Ohio State University,
University Laboratory Animal Resources, and Institu-
tional Animals Care and Use Committee. All mice were
of FVB/N genetic background (Jackson Laboratories,
USA, strain# 001800) maintained in-house in barrier
cages, under aseptic conditions, and given food and
water ad libitum. Post-pubertal virgin mice (8 weeks old,
parous group) were mated once and housed individually.
Within 24 h postpartum, litter size was standardized to 6
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pups. At 7 days postpartum, mice were randomized to
either GI or Al cohort. For the AI cohort, all pups were
removed on postpartum day 7 reflecting short-term
breastfeeding and abrupt weaning in humans. For the GI
cohort, 3 pups were weaned on postnatal day 28 and the
last 3 pups on day 31 reflecting prolonged breastfeeding
and gradual weaning that happens in humans (Fig. 1a).
Mice were euthanized on day 28, day 35, day 56, or
day120 postpartum following single parity, and mam-
mary glands were harvested for further analysis. For the
multiparity experiment, all the females went through
three rounds of pregnancies. After the first pregnancy,
all the females were paired again with males on day 31
postpartum and were assigned the same group (GI or
Al) as for the first pregnancy and the same schema of
pup removal for GI and AI cohorts were followed as de-
scribed (Fig. 1f). All the mice subjected to multiparity
were euthanized on day 56 postpartum, following the
third pregnancy considering the day of third partum as
day 0. Age-matched virgin nulliparous mice were used
as controls. Experimental animals were humanely eutha-
nized by CO, inhalation followed by cervical dislocation
before necropsy.

Mammary gland whole mount

Inguinal mammary glands were harvested and fixed in
Carnoy solution (60% ethanol, 30% chloroform, and 10%
acetic acid) overnight at room temperature, followed by
staining with Carmine alum solution (0.2% carmine,
0.5% potassium aluminum sulfate) overnight. Glands
were then sequentially dehydrated in graded alcohol,
cleared, and stored in xylenes. Cleared glands were
mounted using Cytoseal XYL and imaged by a Zeiss
Stemi SV11 microscope using Zen software (Zeiss).

Histological analysis and immunohistochemistry (IHC)
Mammary glands were fixed in a 10% neutral-buffered
formalin solution for 48 h following harvest and stored
in 70% ethanol. Formalin-fixed, paraffin-embedded
(FFPE) sections were stained with hematoxylin and eosin
(H&E) for histological analysis. Hyperplastic and meta-
plastic changes in mammary gland sections were evalu-
ated by blinded histopathologists. Specifically, H&E
sections were visually inspected for cell shape, overall
cellularity, mitotic figures, and abundance of alveolar
structures. All sections were immunostained with Ki67
to confirm hyperplasia.

Immunostaining of the FFPE sections was performed
using Bond Rx autostainer (Leica). Primary antibodies
used for IHC were anti-Ki67 (1:200, Abcam ab16667),
anti-pStat3(Y705) (1:100, Cell Signaling Technology
#9145), anti-ERa (1:2000, Abcam ab32063), anti-PR (1:
400, ThermoFisher RM9102S0), anti-CD3 (1:100, Abcam
ab16669), anti-aSMA (1:5000, Abcam ab124964), anti-
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CD45R/B220 (1:300 BD Pharmingen #550286), and anti-
F4/80 (1:500 Invitrogen MF48000). All the mice were es-
trous cycle staged, and mice at diestrous were excluded
from our analysis.

Masson trichrome stain

FFPE tissue sections were treated and rinsed sequentially
with Bouin’s solution (Sigma), Weigert’s iron hematoxylin
A and B mixture (Electron Microscopy Sciences), Biebrich
Scarlet-Acid Fusion (Sigma), phosphomolybdic/phospho-
tungstic acid solution (Sigma), and aniline blue (Sigma).
Sections were then dehydrated, cleared, and mounted
using synthetic resin. Stained sections were imaged using
Vectra 3.0 Automated Quantitative Pathology Imaging
System.

PicroSirius Red stain

Deparaffinized, cleared, and hydrated FFPE tissue sec-
tions were incubated in Weigert’s iron hematoxylin A
and B mixture (Electron Microscopy Sciences), followed
by PicroSirius Red staining according to the manufac-
turer’s protocol (Abcam). Stained sections were mounted
using Cytoseal XYL (Thermo Scientific) and imaged
using Vectra 3.0 Automated Quantitative Pathology Im-
aging System. For polarized microscopy pictures, Zeiss
Axioskop system equipped with a polarizing filter and
QICLICK-F-M-12 CCD camera was used.

Single cell suspension of mouse mammary epithelium
and fluorescence-activated cell sorting (FACS)

Mouse mammary glands were harvested, and single cell
suspension of the mammary epithelium was prepared as
described previously [21, 23]. Briefly, single cell suspen-
sion of the mammary glands was enriched for lineage-
negative (Lin") epithelial cells using EasySep™™ Mouse
Epithelial Cell Enrichment kit (Stem Cell Technology)
excluding the Lin" cells, specifically hematopoietic (bio-
tinylated CD45 and TER119), endothelial (biotinylated
CD31), and immune (biotinylated BP-1) cells. The nega-
tively selected cell population was enriched for luminal
epithelium (LE) and mammary stem cell (MaSC)-
enriched/basal epithelium (MaSC-enriched). For FACS
analysis, Lin~ populations were labeled with CD24-PE,
CD29-FITC (BD Pharminogen), and CD61-APC (Invi-
trogen) while their respective isotypes (Thermo Fisher,
eBioscience) were used as negative controls. Cell suspen-
sions were incubated with the appropriate antibodies for
30 min on ice. Cells were resuspended in FACS buffer
(1 mM EDTA, 1% HI-FBS, and 25 mM HEPES, pH 7.0 in
1x phosphate-buffered saline) and sorted on a FACS BD
LSR II Flow Cytometer (BD Biosciences). Data was ana-
lyzed using Flow]Jo software (https://www.flowjo.com).
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Fig. 1 Mouse mammary glands undergoing abrupt involution are histologically different from gradually involuted glands. a Experimental
workflow for modeling pregnancy, lactation, and involution in mice. GI gradual involution, Al abrupt involution. b Representative images of H&E-
stained mammary gland sections harvested on day 28 (d28), ¢ day 35 (d35), and d day 56 (d56) postpartum, following Gl and Al. High-
magnification pictures are shown in the inset. (n = 3, scale bar =100 uM) e Representative images of Ki67-immunostained sections of mammary
glands harvested on d28 and d56 following Gl and Al (n = 3, scale bar =100 uM). % Ki67-positive epithelial cells are represented in the bar
diagram. f Experimental workflow for modeling multiparity, lactation, and involution in mice. g Representative images of H&E-stained mammary
gland sections from Gl and Al mice harvested on day 56 postpartum following third pregnancy. The lower panel shows high-magnification
picture of the boxed region in the upper panel (n =4, scale bar= 100 uM). h Representative images of Ki67-immunostained sections of mammary
glands from multiparous mice harvested on d56 following third pregnancy (n =4, scale bar =100 uM). % Ki67-positive epithelial cells are
represented in the bar diagram. Error bars represent standard error of the mean. The linear mixed model was used to calculate significance

RNA isolation and microarray analysis

RNA was isolated using Trizol reagent according to the
manufacturer’s protocol (Invitrogen). RNA concentra-
tion and quality were assessed using Nanodrop RNA
6000 nano-assays and Bioanalyser. For mouse gene ex-
pression analysis, RNA samples were hybridized to Affy-
metrix GeneChip® Mouse Transcriptome Array 1.0
platform (Affymetrix Inc, Santa Clara, CA) at the Micro-
array Shared Resource Facility, at The Ohio State Uni-
versity Comprehensive Cancer Center.

Human gene expression data analysis

To analyze gene enrichment in parous women who
breastfed < 6 months vs. > 6 months, we utilized gene ex-
pression data obtained from women who were undergo-
ing reduction mammoplasty and were enrolled in the
tissue collection study (OSU-2011C0094). Detailed re-
productive and other demographic data were also collected
at the time of enrollment (Additional file 1: Table S2). Be-
cause of the limited number of samples available, we con-
sidered the total number of month breastfed for all
pregnancies (cumulative no. of months) and did not match
for number of pregnancies. Briefly, reduction mammoplasty
samples were collected from healthy women and snap fro-
zen in liquid nitrogen. Total RNA isolated from the flash
frozen breast tissue was then subjected to gene expression
analysis using Human Transcriptome Array 2.0 (Affymetrix
Inc, Santa Clara, CA). The affymetrix gene expression data
was deposited in NCBI GEO database (GSE102088) [24].
Gene set enrichment analysis (GSEA; http://software.broad-
institute.org/gsea/msigdb/index.jsp) was performed using
this published data set [24], querying the C2 curated, hall-
mark 34 gene sets, and Lim_Luminal Mammary Progeni-
tor gene sets (Additional file 1: Table S3) [21] within the
Molecular Signatures Database (MSigDB).

Imaging quantification and scoring

Images of tissue sections harvested from multiple mice
(numbers indicated in figure legends) were first captured
using Vectra 3.0 and analyzed in inForm®. Routinely, 20
random fields per tissue sections were used for quantifi-
cation, and all analyses were performed blinded. For the
analysis of Ki67, phospho-Stat3(Y705), ERa, and PR,

images were segregated into epithelial and stromal com-
partments, and when needed, into a third compartment
for exclusion (i.e., inside the lumen). For trichrome and
Picrosirius Red, images were segregated into collagen and
non-collagen compartments; for F4/80, CD3, and CD45r,
entire images of tissue sections were analyzed. A positive
signal threshold for each staining parameter was estab-
lished before quantification. For quantification of Ki67,
F4/80, phospho-Stat3(Y705), ERa, PR, CD3, and CD45r
positivity, percent DAB-positive cells in the epithelium,
stroma, or both were assessed. For trichrome and Picro-
Sirius Red staining, the total percent positive area was
used for quantification. Due to the heterogeneity of ERa
stain intensity, we used H-score [1 x (% cells 1+) + 2 x (%
cells 2+) + 3 x (% cells 3+)] for quantification.

Statistical analysis

For normally distributed endpoints, or log-transformed
data when necessary for variance stabilization, a two-
sample ¢ test or paired ¢ test was used to compare Al vs
GI groups. Linear mixed models were used to account
for the variance-covariance structure due to repeated
measures, such as multiple image data. p values were ad-
justed for multiple comparisons using Holm’s method.
The proportion of mice with hyperplastic and metaplas-
tic lesions at day 120 was compared using Fisher’s exact
test. GSEA was used to identify pathways and gene sets
differentially overrepresented in Al and GI cohorts; false
discovery rate (FDR) g values were used for multiple
comparison adjustment. A p value <0.05 or a g value <
0.25 was considered statistically significant. All statistical
analyses were performed using SAS/STAT software, v9.2
(SAS Institute) or R3.3.1.

Results

Abrupt involution induces histological changes and
increased proliferation

Involution following pregnancy and lactation is accom-
panied by massive cell death and remodeling of the breast,
a process that is similar in humans and mice [25, 26]. To
address histological changes post-involution, we modeled
two types of mammary gland involution, gradual involu-
tion (GI) and abrupt involution (Al), in wild type mice of
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pure FVB/N background (Fig. la). Mammary gland
morphology determined by whole mount and H&E ana-
lyses revealed massive expansion of milk-producing alveoli
on postpartum day 7 when all mice were breastfeeding 6
pups (Additional file 1: Figure Sla). All pups were re-
moved from the dams assigned to Al cohort on postpar-
tum day 7. Twenty-one days after removal of all pups in
the AI cohort, i.e, on postpartum day 28, the Al glands
had remodeled to a near pre-pregnancy state, as evidenced
by the absence of glandular secretions within the lumen,
and repopulation of stromal adipocytes (Fig. 1b). In con-
trast, the GI cohort, who were still gradually weaning 6
pups at day 28, exhibited alveolar structures (Fig. 1b) and
higher Ki67-positive epithelial cells (p =0.004, Fig. le),
suggesting continued remodeling of the tissue. Mammary
glands of Al and GI mice on day 35 postpartum (4 days
after removal of the last 3 pups from the GI cohort)
showed alveolar regression and adipocyte repopulation
(Fig. 1c). On postpartum day 56 when both GI and Al
glands had completed involution, thick fibrous stroma
around ducts was present in Al glands only (Fig. 1d).
These histological characteristics at day 56 accompanied a
twofold increase in epithelial proliferation in AI compared
to GI glands (Ki67, p = 0.008, Fig. 1e). None of these mice
were in diestrous at the time of harvest. Gross anatomical
differences between Al and GI glands were not apparent on
postpartum day 35 or day 56 (Additional file 1: Figure S1b—
d). Comparison of alveolar regression and adipocyte repopu-
lation between GI and Al glands at different time points re-
vealed higher epithelial to stromal ratio in GI glands only at
day 28 postpartum as expected (Additional file 1: Figure Sle,
3.5-fold, p < 0.001). However, epithelial to stromal ratio was
higher in day 35 and day 56 Al glands (Additional file 1:
Figure Sle, 1.6- and 2.5-fold respectively, p < 0.001).

To address multiparity and determine if abrupt involu-
tion after each parity would further modulate these
changes, we took females through three rounds of preg-
nancy with subsequent GI or Al after each pregnancy
(Fig. 1f). The mammary glands of stage-matched multip-
arous mice in the AI cohort exhibited denser ductal
lobules (Fig. 1g) and a markedly higher rate of prolifera-
tion than those in the GI cohort on day 56 postpartum
(6-fold, p<0.0001, Fig. 1h). Here again, the epithelial to
stromal ratio was higher in the AI glands (Additional file 1:
Figure S1f, 3-fold, p <0.001). These data demonstrate
Al following pregnancy results in distinct histological
changes and higher proliferation which were not ob-
served in GI glands.

Abrupt involution induces inflammatory changes

The mammary gland upon involution undergoes exten-
sive alveolar cell death, followed by a controlled influx of
macrophages and other immune cells for clearance of
excess extracellular matrix and phagocytic removal of
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dead cells, residual milk, and debris [26]. To assess if Al
affects macrophage infiltration and immune response
differently than GI, we analyzed Stat3 activation and im-
mune cell infiltration. Stat3 is critical for lysosome-
mediated programmed cell death during involution [27].
While there was minimal phospho-Stat3 (Y705) in lac-
tating mammary glands (Additional file 1: Figure S2a),
on postpartum day 28, we observed a sharp induction of
Stat3 phosphorylation in both mammary epithelium and
stroma of Al and GI glands (Fig. 2a). Importantly, des-
pite complete involution of Al glands at this time point,
we observed small but significantly higher phospho-Stat3
(Y705)-positive epithelial cells in Al compared to GI
glands at day 28 (p = 0.006, Fig. 2a). By day 56, phospho-
Stat3 (Y705) was reduced markedly in GI glands, while it
remained elevated in both compartments of the Al glands
suggesting a sustained inflammatory state (epithelium:
2.2-fold, stroma: 3-fold, p < 0.001, Fig. 2a).

Macrophage (F4/80) infiltration in both GI and Al
mammary glands was high and comparable at day 28
postpartum, but it was significantly higher in AI com-
pared to GI glands at day 56 postpartum (2.0-fold, p =
0.006, Fig. 2b). Similarly, B cell (CD45r) and T cell
(CD3) infiltration was comparable at day 28 postpartum,
but significantly higher in AI glands compared to GI
glands at day 56 postpartum (2.5-fold, p < 0.001 and 1.9-
fold, p < 0.001, respectively, Fig. 2c, d).

Furthermore, global gene expression analysis of total
RNA from GI and AI mammary glands harvested on day
28 postpartum and GSEA analysis querying for hallmark
[28] gene sets within the MSigDB revealed negative en-
richments of immune-related genes in the GI glands
(Additional file 1: Table S1). Negative “normalized en-
richment score” for gradual involution reflects upregula-
tion of gene sets in abrupt involution. Among the top 10
gene sets, 4 out of 10 are immune related, all statistically
significant (p < 0.001) and FDR g < 0.003 for all.

In summary, the AI mammary glands display persistent
upregulation of inflammatory markers and stromal remodel-
ing consistent with chronic wound healing [29, 30] in con-
trast to GI mammary glands, which display a transient and
tightly regulated immune response with minimal scarring.

Abrupt involution induces periductal collagen deposition
The mammary stroma or extracellular matrix (ECM)
contains different cell types, matrix proteins, and fibers
that collectively support mammary development [31].
One of the key components of this ECM is collagen.
Higher collagen deposition is associated with a higher
risk of developing breast cancer [19, 32]. In particular,
deposition of high molecular weight type I collagen has
been associated with pro-tumorigenic properties [33].
We performed trichrome staining that revealed a signifi-
cant increase in collagen deposition in day 56 Al glands
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Fig. 2 Abruptly involuted glands are highly inflammatory and immune reactive when compared to gradually involuted glands. Representative
images of Gl and Al mammary gland sections harvested on day 28 and day 56 postpartum and immunostained for a pStat3(Y705) and b F4/80.
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represent standard error of the mean. Linear mixed models were used to calculate significance
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compared to matched GI glands (1.7-fold, p=0.012,
Fig. 3a), while it was comparable in day 28 glands. Picro-
Sirius Red staining confirmed this observation and
showed a similar increase in collagen deposition in Al
glands at day 56 (1.4-fold, p =0.002, Fig. 3b). However,
additional analysis of PicroSirius Red-stained glands by
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exploiting its birefringence property [34, 35] revealed the
ratio of type I to type III collagen was significantly
higher in day 28 Al glands (2.5-fold, p =0.005, Fig. 3c),
despite total deposition being comparable to day 28 GI
glands. These data demonstrate a distinct pattern of
stromal remodeling during AL

Trichrome

%Periductal Collagen

30 p=0.002

PicroSirius Red

%Periductal Collagen

, Type lll Collagen (PS Red)

used to calculate significance

Fig. 3 Collagen deposition in mammary glands increases with time following abrupt involution. Representative images of a trichrome- (n =3,
scale bar =100 pM) and b PicroSirius Red-stained FFPE sections of mammary glands harvested on d28 and d56 postpartum, quantified in the
adjacent bar diagrams (n = 3, scale bar = 100 uM). ¢ Representative images of PicroSirius-stained sections imaged and analyzed for type | (yellow)
and type Il (green) collagen using polarized light microscopy (n =5 for day28 Gl, all other n =6, scale bar =100 uM). Ratio of type | to type Ill
collagen in the Gl and Al glands are quantified in the bar diagram. Error bars represent standard error of the mean. Linear mixed models were

0-257 p=0.005

Ratio of Type | (yellow) to
Type Il (green) collagen
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Abrupt involution increases steroid hormone signaling

The importance of estrogen signaling in mammary gland
development and its role in breast cancer have been
studied in detail [36, 37]. Here we sought to determine if
estrogen signaling was differentially altered due to invo-
lution status. Specifically, we assessed levels of ERa and
PR in mammary glands by IHC. As shown previously,
we observed a moderate level of both epithelial and stro-
mal ERa expression in mammary glands of 10-week vir-
gin nulliparous mice (Additional file 1: Figure S2b) and
in lactating glands (Additional file 1: Figure S2d) [38].
On day 28, both epithelia and stroma of AI glands were
strongly positive for ERa and significantly higher than
those of GI glands (~ 3.0-fold, p < 0.001, Fig. 4a), as well
as lactating glands. On day 56, the percentage of ERa-
positive cells returned to baseline and was comparable
between Al and GI glands (Fig. 4a). There was also a
1.9-fold increase in PR-positive epithelial cells in day 28
Al vs GI glands (p <0.0001, Fig. 4b), whereas it was
comparable at day 56 (Fig. 4b). Similar to ERa, PR
expressing cells were higher in the AI mammary glands
at both time points compared to the lactating glands
(Additional file 1: Figure S2e). Combined, these data
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suggest Al glands are subjected to a critical window of
higher estrogenic signaling, a known risk factor for de-
veloping breast cancer in women [39].

Abrupt involution results in ductal hyperplasia of the
mammary glands

To determine the long-term effect of AI on mammary
gland morphology, we analyzed GI and Al glands har-
vested at postpartum day 120. We observed multiple hy-
perplastic and metaplastic lesions in Al glands, with no
such changes observed in the day 120 GI glands (Fig. 5a).
Specifically, 4 out of 5 AI mice showed a moderate in-
crease in ductal structures in the mammary glands that
was consistent with ductal hyperplasia (p = 0.048, Fig. 5a).
Three of the five mice showed squamous metaplasia
within foci of ductal hyperplasia (p =0.167, Fig. 5b, c).
This striking observation was accompanied by an increase
in collagen deposition (1.6-fold, p =0.006, Fig. 5d), cell
proliferation (3.4-fold, p < 0.0001, Fig. 5e), macrophage in-
filtration (1.4-fold, p < 0.001, Fig. 5f), and T cell infiltration
(1.75-fold, p < 0.001, Fig. 5g) in the Al glands compared to
the GI glands.
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Fig. 4 Abruptly involuted glands are exposed to prolonged steroid hormone signaling. a Representative images of GI and Al mammary gland
sections harvested on day 7 (d7, lactating gland), day 28, and day 56 postpartum and immunostained for ERa. H-score of ERa-positive cells in the
epithelium and stroma is quantified in the bar diagram (n =3, scale bar= 100 uM). b Representative images of Gl and Al mammary gland sections
harvested on day 7, day 28, and day 56 postpartum and immunostained for PR (n = 3, scale bar = 100 uM). Epithelial PR stain is quantified in the
bar diagram. Error bars represent standard error of the mean. Linear mixed models were used to calculate significance
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(See figure on previous page.)

Fig. 5 Precancerous changes occur over time in the Al glands. a Representative pictures of H&E-stained sections from Gl and Al glands harvested
on day 120 postpartum (n =5 per group, scale bars= 100 uM, upper panels). The marked area in the upper panel is shown at higher
magnification in the lower panels (scale bar =50 uM). The arrows indicate alveolar hyperplasia. b Representative pictures of squamous metaplasia
in the Al glands indicated by asterisks (upper panel, n =5, scale bar = 50 pM), magnified in the lower panels (scale bar =25 pM). ¢ Bar diagram
showing incidences of hyperplasia (black), metaplasia (hatch), and both (black and hatch) in the Gl and Al glands, with normal represented in
gray. d Representative images of trichrome-stained FFPE sections of Gl and Al mammary glands harvested on day 120 postpartum; the
percentage of periductal collagen is quantified in the adjacent bar diagram (n = 3, scale bars = 100 uM). e Representative pictures of Ki67-
immunostained sections of mammary glands harvested on day 120 postpartum following Gl and Al (n = 3, scale bars = 100 uM). Ki67-positive
epithelial cells are quantified in the bar diagram. f Representative image of Gl and Al mammary gland sections harvested on day 120 postpartum
and immunostained for F4/80-positive cells (n =3, scale bars =100 uM) and g CD3-positive cells (scale bars = 100 uM). High-magnification pictures
are shown in the inset. The bar diagrams show quantitative difference in the expression of the immune markers between the Gl and Al glands.
Error bars represent standard error of the mean. Linear mixed models were used to calculate significance

Abrupt involution disrupts the mammary epithelial cell
hierarchy

Given the dysregulated hormone receptor expression in
our model and the importance of estrogen signaling in
the maintenance of mammary epithelial lineages [40],
we hypothesized that epithelial subpopulations may be
altered in mice undergoing Al. A hierarchy of stem and
progenitor cells is well-defined for mouse mammary epi-
thelium throughout pregnancy, lactation, and involution
[41]. Cells committed to luminal lineage were characterized
by CD24*CD29' immunophenotype, while cells committed
to mammary stem cell (MaSC)-enriched/basal lineage were
CD24*CD29" (Fig. 6a, b, left panels). The luminal popula-
tion was further gated based on expression of CD61 into
mature luminal (ML, CD24*CD29"°CD617) and luminal
progenitor (LB, CD24°CD29°CD61%)  subpopulations
(Fig. 6a, b right panels, Additional file 1: Figure S3) [21].
Specifically, we analyzed tissue during the following time
points: (1) puberty (6weeks), as the majority of ductal
growth during puberty is driven by LP cells [41]; (2) adult
virgin nulliparity (10-12 weeks) when ML cells occupy the
bulk of glandular epithelia; (3) lactation (day 7 postpartum)
when basal/myoepithelial cells predominantly populate the
mammary fat pad; and (4) days 21, 28, 56, and 120 postpar-
tum representing different stages of involution and remod-
eling of the mammary gland.

Strikingly, Al glands interrogated at all four time
points postpartum demonstrated a marked expansion of
the LP population compared to the GI glands (Fig. 6c).
Specifically, there was a 25-fold increase in LP popula-
tion at day 21 (0.4% GI vs 10% AI), 6-fold increase at
day28 (2% GI vs 12% AlI), 3.5-fold increase at day 56 (4%
GI vs 14% Al), and 7-fold increase at day 120 (2% GI vs
14% AI) (Fig. 6¢, Additional file 1: Figure S4). MaSC-
enriched population gradually decreased in both cohorts,
with the concomitant increase in ML cell compartment.
Importantly, the percentage of LP cells in Al glands was
comparable to that in the pubertal gland, while the per-
centage in GI glands was comparable to that of 10-week
virgin glands (Additional file 1: Figure S4). These data

demonstrate that glands undergoing abrupt, but not grad-
ual remodeling following pregnancy have an altered epi-
thelial composition with a persistent increase in LP cells.

Notch signaling pathway genes are positively enriched in
abruptly involuted mammary tissue obtained from mice
and parous women
To further ascertain the difference in the LP population
from AI and GI mice, we analyzed gene expression in
sorted LP cells from both glands. Heatmap showing dif-
ferential gene expression in LP cells isolated from GI
and Al glands is shown in Fig. 7a. GSEA querying the
C2 curated gene sets and hallmark [28] gene sets within
the MSigDB revealed enrichment of several pathways in
the Al vs. GI LP cells (Fig. 7b). There was a statistically
significant enrichment of Notch pathway genes in Al
glands compared to GI glands (NES=1.67, p<0.001,
Fig. 7c). There was also a statistically significant positive
enrichment of the known upregulated genes in LP gene
signature [21] in the AI glands (NES 2.25, p=0.035,
Fig. 7d, Additional file 1: Figure S5). While not signifi-
cant, a trend in the enrichment of Sonic hedgehog sig-
naling pathway was also observed in mouse LP cells
from Al glands (Fig. 7e). Interestingly, hallmark gene set
for both estrogen early response genes and estrogen late
response genes were enriched in the LP cells from Al
glands when compared to those from GI glands (NES =
2.18 and 1.858 respectively, p < 0.001, Fig. 7f, g). This data
demonstrates that increased expression of ERa and PR in
day 28 Al glands led to an increase in estrogen signaling.
To determine if the gene expression changes observed
in our mouse model are recapitulated in parous women
who did not breastfeed, we compared gene expression in
normal breast tissue obtained from premenopausal
women with no history of breast cancer who breastfed
for > 6 months (GI, 7 =16) versus those who breastfed
for < 6 months (Al, n =16) (Additional file 1: Figure S6).
Samples were obtained from women enrolled in an IRB-
approved tissue collection protocol to undergo reduction
mammoplasty who consented to provide tissue for



Basree et al. Breast Cancer Research (2019) 21:80

Page 12 of 18

a
A 10{8e |Luminal | A 10°4s3s ML |y
<1o-'- 1047
E L
<t | w
[NELY c [%
o | £10°3 210°73
£ £ 9
O (s 01 PR 9 o043
o N 472 o
a4 Q3 E Q3
-10% 504 | 16.3 10%4 ° 0
A40° 0 10°  10°  10° A10° 0 10°  10¢  10°
Comp-FITC-A -~ Comp-APC-A -~
Cd
CD29 CD61
C
10wk Day7
6wk virgin  nulliparous lactation
(n=3) (n= 3) (n=3)
0.8

® ML (CD24+/CD29lo/CD61-)
B LP (CD24+/CD29Io/CD61+)
@ MaSC-enriched (CD24+/CD29hi)

\

mammary stem cell-enriched population

Fig. 6 Abrupt involution expands the luminal progenitor cell population and disrupts the epithelial cell hierarchy. FACS analysis of CD24 and
CD29 expression in lineage-negative population of the mammary gland (left panel) and CD24 and CD61 expression in the luminal cell population
(right panel) in a Gl and b Al mammary gland. ¢ Pie chart showing distribution of mammary epithelial subpopulation in 6-week-old virgin mice
and 10-week-old nulliparous mice, on lactating day 7 (d7), and on postpartum day 21, day 28, day 56, and day 120 as indicated in the Gl and Al
cohort. Mammary glands from 6- and 10-week-old virgin mice were used as controls. ML mature luminal cells, LP luminal progenitor cells, MaSC

o

1 a4 " o1
< LP
N
o
(&)

i Q4 1 Q4 Q3
1034 512 134 10540 0
405 0 10°  10* 108 40° 0 10°  10¢  10°
Comp-FITC-A Comp-APC-A
CD29 CDeé61
Day 21 Day 28 Day 56 Day120
 (n=3) (n=7) (n=5) (n=3)
0.4~ _10.6 _2

30

68

J

research. Detailed reproductive and other demographic
data were also collected at the time of enrollment (OSU-
2011C0094) (Additional file 1: Table S2). This time
frame of breastfeeding was selected based on epidemio-
logical studies showing benefit from at least 6 months of
breastfeeding [2, 4, 7, 8]. Within this data, GSEA re-
vealed a strong positive enrichment for Notch signaling
pathways in women who breastfed for < 6 months when
compared to those who breastfed for =6 months
(Fig. 8a). The FDR g values for this pathway was 0.20
and p value was 0.039. This finding illustrates that in
our cohort more than 3 in 4 women who breastfed for
<6 months share this phenotype. Furthermore, women
who breastfed for <6 months demonstrated a trend to-
wards positive enrichment of LP gene signature (Fig. 8b),
FDR g value =0.30, p value =0.3. Taken together, our
data suggests that breastfeeding for less than 6 months is
associated with distinct molecular changes in breast tis-
sue, i.e. enrichment for stem cell self-renewal and
growth signaling pathways.

Discussion

Population studies provide extensive evidence that
among parous women, prolonged breastfeeding protects
against the risk of developing breast cancer, particularly
TN/BLBC [2, 9, 17, 42]. The large collaborative analysis
of data from 47 epidemiological studies from 30 coun-
tries including 50,302 women with breast cancer and 96,
973 controls concluded that for every 12 months of life-
time duration of breastfeeding, breast cancer risk re-
duces by 4.3% (95% CI 2.9-5.8; p <0.0001) [1]. A more
recent meta-analysis of 32 studies done in 2013 showed
that parous women who breastfed had a 14% reduced
risk of developing breast cancer when compared to par-
ous women who did not breastfeed and this was even
greater (28%) for women who breastfeed for over 12
months cumulatively irrespective of number of births
[43]. While it has long been believed that parity reduces
risk of breast cancer, recent evidence suggests that this
is primarily for ER-positive subtype [44]. For TNBC, par-
ity may actually increase the risk of developing cancer,
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but this risk can be modulated by breastfeeding [2, 7,
45-48]. In a case series study, parous women who never
breastfed had a risk of developing TNBC that was 2.18
times (95% CI 1.52, 3.12) higher than nulliparous women
[48]. In addition, the results from AMBER consortium
study showed that among parous women, the risk of de-
veloping ER-negative breast cancer increased markedly
by increasing parity among women who never breastfed
(odds ratio 1.22 for one birth vs 1.68 for four or more
births) [7]. However, to date, the morphological changes
associated with gradual involution occurring after pro-
longed breastfeeding and how it protects from breast
cancer, particularly TNBC, is not well-elucidated.
Pioneering work studying the mechanism underlying
mammary gland involution and its association with
breast cancer used mouse models in which pups were
weaned abruptly on postpartum day 10 [19, 20]. A de-
tailed mechanism of events following abrupt involution

has been elucidated using this model. We followed the
same weaning strategy to induce abrupt involution, as
pups were removed abruptly while the dam was actively
nursing the pups. This model mimics a situation of
abrupt involution in humans (e.g., return to work, ill-
ness), whereby the breast has undergone alveologenesis
to produce milk but following birth, breastfeeding was
stopped abruptly within a short time. Our study is novel
in that it compared the effects of abrupt involution of
mammary glands with gradual involution that occurs
following prolonged breastfeeding. For most strains of
mice, pups start feeding on solid food typically around
16 days and are weaned by day 21. In order to ensure
uniformity of our prolonged lactation, we ensured that
each dam was kept with 6 pups in separate cages. In
addition, we weaned the pups three at a time at day 28
and day 31 to produce the effect of gradual weaning. We
have developed this model to mimic human
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breastfeeding patterns based on duration and weaning
with or without a preceding gradual decline in breast-
feeding (GI vs AI). We report here the distinctly variable
impact of Al vs GI on the mammary glands of FVB/N
mice that could alter the future risk of developing breast
cancer.

Increased stromal collagen, particularly type I collagen,
is associated with regions of high breast density [49] and
is one of the strongest independent risk factors for de-
veloping breast cancer [50-52]. Al resulted in increased
collagen deposition in mouse mammary glands, with
higher type I to type III collagen ratio, suggesting that
duration of breastfeeding following each pregnancy
could impact mammographic density. Elegant studies
have shown increased type I collagen deposition in invo-
luting glands and have been implicated as mediators of
inflammation and macrophage recruitment [53-55].
Higher collagen density is also associated with increased
proliferation of the mammary epithelium, ERa receptor
expression, and function [32, 56]. Current evidence
shows that persistent ERa signaling is critical for the de-
velopment of ERa-negative breast cancers [57] and that
ERa/PR-positive luminal epithelial cells play a key role
in the expansion of ERa/PR-negative progenitor cells
[58-60], the putative cell of origin for BLBC [21]. Our
observation of higher collagen deposition, increased ex-
pression of ERa, and proliferation index in Al glands
when compared to GI glands suggests that lack of or
short-term breastfeeding can lead to a pro-tumorigenic
environment. Furthermore, on longer follow-up at day
120, AI glands developed hyperplasia and squamous
metaplasia. This is a very interesting finding supporting
the link between lack of breastfeeding and higher risk of
developing breast cancer as ductal hyperplasia is a well-
known non-obligate precursor of human breast cancer
[61]. Multiple studies have shown that evolution of
breast carcinogenesis is a multi-step process by which
intermediate hyperplastic lesions, such as usual hyper-
plasia undergo various grades of atypia and develop into
atypical ductal hyperplasia, ductal carcinoma in situ, and
invasive cancer. Current literature demonstrates usual
ductal hyperplasia increases breast cancer risk by 1.5-
and 2-fold [61, 62]. This adds a new dimension to the
conventional thinking that postpartum mammary gland
involution is highly tumorigenic [63-65] and instead
demonstrates that GI may confer protection against a
tumorigenic and pro-inflammatory environment seen in
acutely remodeling mammary glands. In fact, GSEA ana-
lysis of global gene expression revealed negative enrich-
ment of immune-related pathways in the GI glands
supporting the protective effect of prolonged breastfeeding.
We plan to confirm our findings through the identification
of specific signaling pathways that are activated only in the
Al glands leading to the pro-tumorigenic environment.
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Furthermore, we plan to expose the Al mice to anti-
inflammatory agents to determine if these pathways are
downregulated and abrogate the hyperplastic changes.

Analysis of the epithelial cell hierarchy revealed a clear
and persistent expansion of mammary LP cells in Al
glands. This is an important observation, as BLBC asso-
ciated with BRCAI mutations [16, 66] shows similar
lineage commitment defects that occur prior to tumori-
genesis [67]. Furthermore, a similar increase in the LP
population has been reported in healthy BRCAI muta-
tion carriers, who are at high risk of developing BLBC
[21].

Our findings demonstrated that breast tissue from
healthy, premenopausal women who breastfed for <6
months showed a positive enrichment of genes within
Notch signaling pathways that regulate mammary stem
cell function and luminal cell-fate commitment [68].
This observation lends further evidence that lack of or
short duration of breastfeeding may drive LP expansion,
supported by the strong trend towards enrichment in
the LP gene signature seen in this cohort of women.

A potential limitation to this study is the small sample
size for gene expression analysis from breast tissue and
variability within each group with respect to time
elapsed since breastfeeding and tissue sampling, despite
endpoints meeting statistical significance. Although the
two groups (breastfed <6 months vs >6 months) were
well-matched with respect to age, ethnicity, age at me-
narche, and age at first birth, we acknowledge that the
distribution of BMI was not well-balanced, and this may
have impacted the findings. Further studies are under-
way to obtain normal breast tissue from parous women
with known breastfeeding history and controlled for all
parameters. Another caveat is that although we show
distinct histological features that are potentially precan-
cerous in the abruptly involuted glands, we do not re-
port invasive tumor development. Our goal was to
determine how short-term and prolonged breastfeeding
differentially impacted the breast microenvironment that
alters the future risk of developing breast cancer. Future
studies will address the development of invasive cancer,
using our models of involution.

Taken together, we have shown that aberrant expan-
sion of LP cells with increased stemness in an inflamma-
tory milieu can lead to a pro-tumorigenic environment
in the Al glands. This, associated with an increase in
proliferation observed in Al glands along with ductal
hyperplasia, increases the likelihood of developing som-
atic mutations over time (such as loss of BRCAI, Pten,
and/or p53) that could ultimately give rise to basal-like
malignancy. Our data showing hyperplastic lesions only in
the abruptly involuted and not in the gradually involuted
glands supports the epidemiological data that breastfeeding
impacts the risk of developing breast cancer.
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Conclusions

Prolonged breastfeeding can help reduce the risk of de-
veloping breast cancer including aggressive subtypes.
Our preclinical work provides novel insight into the
known link between breastfeeding and breast cancer.
We observed distinct pro-tumorigenic changes in mouse
mammary glands that underwent abrupt involution that
was not observed in the gradually involuting glands
demonstrating the potential protective effects of pro-
longed breastfeeding in parous women. Our findings can
therefore help strengthen the efforts in promoting the
initiation and maintenance of breastfeeding for at least
6 months [69, 70]. Further delineation of this mechanis-
tic link in the future will help to develop prevention
measures for mothers who are unable to breastfeed.
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