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Abstract

Background: There is a growing interest in delivering more personalised, risk-based breast cancer screening
protocols. This requires population-level validation of practical models that can stratify women into breast
cancer risk groups. Few studies have evaluated the Gail model (NCI Breast Cancer Risk Assessment Tool) in a
population screening setting; we validated this tool in a large, screened population.

Methods: We used data from 40,158 women aged 50–69 years (via the lifepool cohort) participating in Australia’s
BreastScreen programme. We investigated the association between Gail scores and future invasive breast cancer,
comparing observed and expected outcomes by Gail score ranked groups. We also used machine learning to rank Gail
model input variables by importance and then assessed the incremental benefit in risk prediction obtained by adding
variables in order of diminishing importance.

Results: Over a median of 4.3 years, the Gail model predicted 612 invasive breast cancers compared with 564 observed
cancers (expected/observed (E/O) = 1.09, 95% confidence interval (CI) 1.00–1.18). There was good agreement across decile
groups of Gail scores (χ2 = 7.1, p = 0.6) although there was some overestimation of cancer risk in the top decile of our
study group (E/O = 1.65, 95% CI 1.33–2.07). Women in the highest quintile (Q5) of Gail scores had a 2.28-fold increased
risk of breast cancer (95% CI 1.73–3.02, p < 0.0001) compared with the lowest quintile (Q1). Compared with the median
quintile, women in Q5 had a 34% increased risk (95% CI 1.06–1.70, p = 0.014) and those in Q1 had a 41% reduced risk
(95% CI 0.44–0.79, p < 0.0001). Similar patterns were observed separately for women aged 50–59 and 60–69 years. The
model’s overall discrimination was modest (area under the curve (AUC) 0.59, 95% CI 0.56–0.61). A reduced Gail model
excluding information on ethnicity and hyperplasia was comparable to the full Gail model in terms of correctly stratifying
women into risk groups.

Conclusions: This study confirms that the Gail model (or a reduced model excluding information on hyperplasia and
ethnicity) can effectively stratify a screened population aged 50–69 years according to the risk of future invasive breast
cancer. This information has the potential to enable more personalised, risk-based screening strategies that aim to
improve the balance of the benefits and harms of screening.
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Background
National guidelines and programmes for universal
age-based breast cancer screening were established in many
countries following trials showing reduced breast cancer
mortality [1–4]. However, increasing evidence on measur-
able risk factors for breast cancer [5, 6] and growing con-
cern about overdiagnosis [7, 8] and the appropriateness of
mammography for women with dense breasts [9, 10] has
fuelled interest in more personalised, risk-stratified screen-
ing protocols that better optimise the balance of the bene-
fits and harms of screening [11]. A number of countries
have established nationally co-ordinated screening pro-
grammes. Australia, for example, has a breast cancer
screening programme (BreastScreen Australia) offering free
biennial mammographies targeted towards women aged
50–74 years (extended from 50 to 69 years in mid-2015)
with participation of approximately 55% [12]. Similar pro-
grammes have been established in the UK, Canada, Europe,
and elsewhere. While risk-stratified screening intervals and
more intensive surveillance for high-risk women or women
with high mammographic density has been proposed [13],
there are no widespread protocols for tailored breast cancer
screening in Australia or internationally.
Risk-stratified screening protocols require accurate esti-

mates of risk using data that can be readily obtained by
population-based programmes. The Gail model [14–16] is
relatively simple, requiring minimal information on the
family history of cancer. The original model estimated ab-
solute risk of invasive and in-situ breast cancers [17], and
was later modified [18] and incorporated into the National
Cancer Institute’s Breast Cancer Risk Assessment Tool
(hereafter referred to as the Gail model) and used for pre-
dicting invasive breast cancer risk for women without a
personal history of breast cancer [19]. The Gail model has
performed well on white women residing in the US and
Europe [20–22], with poorer performance in women of
other ethnic backgrounds, such as African American, His-
panic, Asian, and Pacific Islander women [23–25]. In
Australia, the performance of the Gail model has been
assessed for high-risk women [26] and women younger
than 60 years of age [27].
The lifepool cohort comprises 53,800 women recruited

since 2010 primarily from the Australian population-
based mammography screening programme to facilitate
research into breast cancer screening, epidemiology, and
genetics. Using data from baseline questionnaires, we
generated Gail risk estimates for active breast cancer
screening participants in the historical target age range
for screening (50–69 years) and compared predicted and
observed risk of incident invasive breast cancer. In
addition, we evaluated risk estimates from reduced Gail
models, assessing the incremental benefit obtained by
adding variables to the model in order of diminishing
contribution to risk estimation.

Methods
Study participants
Lifepool commenced recruitment in May 2010, restricted
to women aged at least 40 years at enrolment. Up to
January 2015, recruitment was primarily through an in-
vitation included in appointment letters for women at-
tending subsequent rounds of screening at the
BreastScreen programme based in the Australian state
of Victoria (BreastScreen Victoria). Other methods of re-
cruitment were publicity at women’s health events, refer-
rals by participants to friends and family, and inclusion
as a research project on the national database Register4
[28] in July 2012. On enrolment, lifepool participants
complete a detailed ‘baseline’ questionnaire capturing
socio-demographic, lifestyle, and health-related informa-
tion. Further details on the cohort including the ques-
tionnaire and other material can be found on-line
(http://www.lifepool.org). The lifepool cohort is regularly
linked to BreastScreen Victoria records and to the Vic-
torian Cancer Registry to update information on the oc-
currence of any cancer diagnosed within the state of
Victoria.

Data provided for this analysis
Complete questionnaire data were provided for this
study for all participants who completed baseline ques-
tionnaire data up to 11 September 2016. Lifepool also
provided linked data comprising: 1) BreastScreen
Victoria screening episodes up to 27 June 2017 with in-
formation on screening dates and cancer diagnoses
(screen-detected or interval cancer, diagnosis date, inva-
sive or in situ); and 2) Victorian Cancer Registry breast
cancer diagnoses (date, invasive, or in situ) and, for
women with any cancer registration, death records (date,
cause of death). Lifepool also provided participant with-
drawals and ad hoc death notifications and cancer diag-
nosis outside Victoria. Data provision is described in
Additional file 1.

Statistical analyses
Gail scores
Gail risk scores were assigned using the source code
available on the National Cancer Institute website [19],
which generates the probability of breast cancer for
some specified integer year in the future (e.g. 5-year
risk), or to a fixed age in years for a study population.
To evaluate the Gail model as a potential tool for asses-
sing the risk of future breast cancer following a clear
screen, we restricted our analyses to women aged 50–69
years who had had a screening episode with a benign
final outcome within ±60 days of completing their base-
line study questionnaire (‘reference screen’) and, as per
the model’s specification, no personal history of invasive
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breast cancer, ductal carcinoma in situ (DCIS), or lobu-
lar carcinoma in situ (LCIS) prior to that screen.
We did not use the ‘family membership’ field in the

Gail model source code designed for generating scores
for groups of women (which would combine risk infor-
mation from identified family members in the study
group) as this information was unavailable in our data.
Most race/ethnicity categories within the Gail model did
not map to the ethnic profile of Australian women; as a
best approximation, women who self-reported any Asian
ethnicity were assigned to the Gail category ‘Asian-A-
merican’ (relabelled to ‘Asian’) and all other women to
the category ‘White’ (labelled ‘Mixed’).
We generated Gail 5-year probability of breast cancer

(‘scores’) for each woman and compared incident inva-
sive breast cancer outcomes by quantile groups of risk
(partitioned by group-level quintiles and/or deciles), for
three age ranges (50–69/50–59/60–69 years). Hazard
functions were censored to diagnosis (invasive or in
situ), death, or 31 December 2016 (whichever occurred
first). Quantile groups (i.e. quintiles and deciles) were
generated for each age range analysed to reflect how the
Gail model would assign women to risk groups if used
on specific age groups. Receiver operating curves (ROC)
were generated for outcomes against continuous Gail
scores for women with a minimum follow-up period of
3 years. To compare observed and estimated diagnoses,
we generated the Gail predicted probability of breast
cancer for each woman for her observation period by
linear interpolation between annual-year Gail estimates.
Of note, the order of Gail scores does not change with
the specified duration of future risk so that women
would be ranked the same if we described 1-year, 5-year
or 10-year risk. However, the expected number of can-
cers in this study are dependent on the follow-up time
for each woman, so that women with the same rank of
baseline risk but different observation periods (e.g. 3
years versus 6 years) would have a different probability
of a cancer being observed during the follow-up period.
We then summed these observation period-based prob-
abilities for each Gail 5-year risk quantile group to gen-
erate the expected number of cancers within that group,
and compared this with the observed number of cancers
using chi-squared tests and ratios of expected to ob-
served cancers (confidence intervals (CIs) calculated as
for Constantino et al. [29]). Statistical tests used Stata 15
software (StataCorp, College Stations, TX, USA).

Reduced variable Gail models
We evaluated Gail models using a reduced number of
input variables, starting with the most important pre-
dictor of cancer risk in this cohort as identified using a
machine learning approach. To maximise information to
train and validate machine learning, we extended the

dataset to all ages and women with invasive cancer diag-
nosed at the baseline mammogram (Fig. 1). The eight
Gail variables (‘features’) were ranked using the feature
importance function in XGBoost (version 0.72) imple-
mented in Python (version 3.4). We conducted 100 ex-
tractions of training and test datasets. For each
extraction, we randomly selected a test set (N = 6131)
comprising a representative balance of cases (women
who developed breast cancer) and controls (women who
did not develop breast cancer) and a corresponding
training set (N = 16,269) weighted to have a ratio of 1:9
cases to controls. The model was trained on each train-
ing dataset and validated on the corresponding test data-
set, generating 100 ranks of variable importance which
were then combined in a single ranking of variables ac-
cording to the number of times each variable appeared
in that ranking. Gail scores were calculated for each
model by step-wise addition of variables according to
that ranking (Models 1–8), with these scores then cate-
gorised into quantile groups and then evaluated under a
hazards framework as for the whole model.

Results
Cohort characteristics
A total of 40,158 women (75% of the cohort) were in-
cluded in our analyses. Major exclusions were: 2806
women who resided outside the state of Victoria at the
time of completing their questionnaire because their
subsequent diagnoses were unlikely to appear on Victor-
ian screening and cancer registry records; 988 women
who were not linked to screening records; 3085 women
who did not have a baseline screening mammogram
within 60 days of completing their questionnaire; and
169 women with a personal history of breast cancer
prior to their reference screen. We excluded a further
262 women who had had a breast cancer diagnosis (205
invasive and 57 DCIS) at their reference screen, and
5965 women outside the historical BreastScreen target
age range of 50–69 years at their reference screen for lo-
gistic regression analyses (however, these women were
included in the machine-learning sample). No women
remaining in the sample had a LCIS diagnosis at or prior
to their reference screen. Additional exclusions are pre-
sented in Fig. 1.
During a median follow-up of 4.3 years, 564 women

(1.4%) were diagnosed with invasive breast cancer
(Table 1). The median time from the reference screen to
diagnosis was 813 days (2.2 years), with a maximum of
5.3 years. Three women were diagnosed with incident
LCIS (one with subsequent invasive breast cancer within
the follow-up period), and 243 deaths from all causes
were reported of which eight were due to breast cancer.
Gail model variables for this group are described in
Table 2. Women who developed invasive breast cancer
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were older at enrolment, more likely to have first-degree
female relatives with breast cancer, and were more likely
to have had a breast biopsy. Approximately 3% of all
participants were of Asian ethnicity; however, it should
be noted that women in the ‘mixed’ group were ethnic-
ally heterogeneous. Nearly all women (95%) attended
screening during the follow-up period (Table 1).

Cancer incidence
Observed and expected diagnoses are shown as rates ac-
cording to decile groups of Gail model-predicted 5-year
risk in Fig. 2, with ratios of expected to observed inva-
sive cancers (E/O) according to quantile groups of pre-
dicted 5-year risk shown in Table 3. Overall, the model
was generally well calibrated with some evidence of
over-prediction in women at the highest level of risk;
612 cases were predicted compared with 564 cases ob-
served, corresponding to an expected-to-observed ratio
of 1.09 (95% CI 1.00–1.18). Expected and observed out-
comes by quintile groups differed significantly overall
(χ2 = 23.0, p < 0.0001). E/O did not differ significantly for

quantile groups Q1–Q4 and D9; however, the Gail
model overestimated risk for women in decile group
D10 (E/O 1.65, 95% CI 1.33–2.07), leading to a net over-
estimation in group Q5 (E/O 1.40, 95% CI 1.20–1.64).
Similar patterns persisted within age groups 50–59 and
60–69 years (E/O 1.08, 95% CI 0.96–1.23, and 1.09, 95%
CI 0.97–1.22, respectively).
Hazards ratios for invasive cancer incidence by Gail

model 5-year risk quantile groups are shown in Table 3.
Compared with women with a median-level risk (Q3),
women in the lowest two quintile groups had a 37–41%
decreased risk of invasive cancer (Q1 vs Q3: 0.59, 95%
CI 0.44–0.79, p < 0.001; Q2 vs Q3: 0.63, 95% CI 0.47–
0.84, p = 0.001) and those above the highest quintile had
a 34% increased risk (Q5 vs Q3: 1.34, 95% CI 1.06–1.70,
p = 0.014).
When compared with women with the lowest scores

(Q1), the risk of invasive cancer increased by quintile
group, being statistically significant for group Q3 and
above. Group Q5 had a 2.28-fold increased risk com-
pared to Q1 (hazard ratio (HR) 2.28, 95% CI 1.73–3.02,

Fig. 1 Flow chart demonstrating how the cohort used in analyses was derived from the original lifepool cohort
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p < 0.0001). Hazard functions followed a significant
trend across risk groups (χ2 = 52, p < 0.0001). The ROC
area under the curve (AUC) using continuous Gail
scores was 0.59 (95% CI 0.56–0.61) for women aged 50–
69, 0.59 (95% CI 0.55–0.62) for women aged 50–59, and
0.57 (95% CI 0.54–0.60) for women aged 60–69 years.

Reduced Gail model
Machine learning models ranked the importance of Gail
model variables as ordered in Table 4 (age being the
most important). Most variables were consistently
ranked for the 100 runs, except for ‘first live birth age’
and ‘age at menarche’ which exchanged places having a
62% frequency of ranking in second and third positions,
respectively. Hazard ratios for each quintile group were
found to vary as the first four variables were progres-
sively added (Models 1–5) but changed little with the
addition of further variables (Models 6–8); Model 5 (in-
corporating number of biopsies) led to a more accurate
ranking of observed outcomes than Models 1–4 (Fig. 3).
For Model 5, women in group Q5 had a 2.28-fold higher
risk of developing invasive breast cancer compared with
women in Q1 (95% CI 1.73–3.01) (Table 4). Of note,
when the number of first-degree relatives was added
(Model 4), the expected values increased greatly in the
upper decile but the observed values did not rise to
match (E/O for D10 was 0.99–1.03 for Models 1–3, then
1.51–1.66 for Models 4–8). Therefore, Model 4 appears
comparable to the full Gail model in terms of stratifying
women into risk groups.

Discussion
Comparing outcomes arising within a maximum of 6.5
years follow-up, we found that women aged 50–69 years
within the highest quintile of Gail risk scores (Q5) had
more than double the risk of invasive breast cancer com-
pared with women in the lowest quintile (Q1). Com-
pared with women in the median-risk group (Q3), Q1
had a 40% reduced risk and Q5 a 34% increased risk of
incident invasive breast cancer. This suggests that the
existing Gail model is suitable for assigning women into
groups at significantly different risk of invasive breast
cancer in the 5 years following a negative screen.
We found good overall agreement between expected

and observed cases of invasive breast cancer, confirming
absolute risk estimates over an average of 4.3 years of
follow-up except for women in the upper decile of Gail
scores; while these women were appropriately classified as
the highest-risk group, their absolute Gail risk scores over-
estimated the observed outcomes (Fig. 2 and Table 3).
This may be due to the exclusion of higher-risk women
such as women with cancer diagnosed at the first-round
or other prior screening episodes and/or women who at-
tend high-risk services rather than BreastScreen due to a
family history or identified increased genetic risk of breast
cancer. This latter theory is supported by the increase in
expected cancers in group D10 with the addition of family
history to the reduced Model 5, without a concomitant in-
crease in the observed number of cancers in that group.
Therefore, using the Gail model in this population is ex-
pected to rank women well into the quantile groups

Table 1 Summary characteristics of the lifepool participants by age groups

Characteristic Age at reference screen (years)

50–69 50–59 60–69

Number of subjects (N) 40,158 20,216 19,942

Dates

Reference screen (range) 1 Jul 2010 to 6
Oct 2014

1 Jul 2010 to 6 Oct
2014

1 Jul 2010 to 6 Oct
2014

Questionnaire completion (range) 1 Jul 2010 to 1
Oct 2014

1 Jul 2010 to 23
Sep 2014

31 Jul 2010 to 1
Oct 2014

Observation time, years (median, range) 4.3 (0.3–6.5) 4.3 (0.3–6.5) 4.3 (0.3–6.5)

Age

Reference screen, years (median, range) 59 (50–69) 55 (50–59) 64 (60–69)

Diagnosis, years (median, range) 63 (51–73) 58 (51–64) 67 (61–73)

Reference screening round (median, range) 5 (1–18) 4 (1–18) 7 (1–18)

Diagnoses (invasive breast cancer)

Number (%) 564 (1.4%) 244 (1.2%) 320 (1.6%)

Follow-up period

Time from reference screen to diagnosis, days (median, range) 813 (28–1938) 818 (28–1714) 807 (73–1938)

Women screened during the follow-up period (n, %) 38,060 (95%) 19,141 (95%) 18,919 (95%)

Of women screened during the follow-up period, number of screens per 2 years of
follow-up (median, range)

0.8 (0.3–2.0) 0.8 (0.3–2.0) 0.8 (0.3–1.9)
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examined; however, for women assigned to the highest de-
cile of risk (> 3% estimated 5-year risk) a more detailed
risk assessment or alternative models incorporating add-
itional family history information might be considered,
such as that proposed by Pfeiffer et al. [30]. The current
Gail model does not incorporate high-risk gene mutations
such as BRCA1/2; in Australia, such women are referred

to more intensive surveillance outside the BreastScreen
programme.
Of note, the ethnicity variable was ranked with low

importance in our machine learning models, reflecting
poor correspondence between Australian ethnicity
groups and the Gail ‘race’ variable values. A modified
ethnicity variable suited to the local population may

Table 2 Risk factors used to generate the Gail model scores among cases of women with invasive breast cancer and non-cases (i.e.
women without invasive breast cancer), aged 50 to 69 years within the lifepool cohorta

Gail model variable Group Non-cases
n = 39,594 (%)

Cases
n = 564 (%)

p valueb

Age at questionnaire (years) 50–54 8820 (22) 91 (16) < 0.001

55–59 11,152 (28) 153 (27)

60–64 10,968 (28) 158 (28)

65–69 8654 (22) 162 (29)

Age at menarche (years) ≤ 11 6709 (17) 105 (19) 0.038

12–13 19,995 (53) 300 (55)

≥ 14 11,224 (30) 143 (26)

Missing 1666 16

Age at first live birthc

(years)
< 20 3468 (9) 57 (10) 0.22

20–24 12,011 (30) 156 (28)

25–29 12,090 (30) 175 (31)

≥ 30 6413 (16) 111 (20)

Missing 2330 11

Nulliparous 3282 (8) 54 (10)

Number of first-degree relatives (mother, sisters, daughters)
who have had breast cancer

0 (or not reported) 30,531 (77) 390 (69) < 0.001

1 8067 (20) 158 (28)

2 933 (2) 16 (3)

3 61 (0) 0 (0)

4 2 (0) 0 (0)

Breast biopsy No 33,048 (86) 446 (82) 0.001

Yes 5158 (14) 100 (18)

Missing 1388 18

Number of breast biopsies 0 32,824 (87) 444 (82) 0.001

1 3949 (10) 77 (14)

2 1040 (3) 21 (4)

Missing 1781 22

Biopsy with atypical hyperplasia No 1490 (88) 23 (92) 0.76

Yes 209 (12) 2 (8)

Missingd 3459 75

Race/ethnicity Mixede 38,428 (97) 555 (98) 0.059

Asian 1166 (3) 9 (2)
aThe distribution of values for each variable is presented without inclusion of missing values
bExcluding missing. P-values for binary categories are from chi-square tests or Fisher’s exact test as appropriate; variables with three or more categories were
assessed using a non-parametric test for trend (Stata ‘nptrend’)
cData for assessment of this variable were not directly available; we used age at first full-term pregnancy for all women who had at least one live birth
dMissing shown only for women who responded ‘Yes’ to breast biopsy
eOther: women of non-Asian ethnicity
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improve risk classification, as breast cancer risk does dif-
fer by country of birth in the Australian population (for
example, age-standardised rates of 71 (95% CI 67–76)
per 100,000 women born in north-east Asia compared
with 120 (107–133) per 100,000 women born in the
USA or Canada) [31].
Using machine learning, a reduced model resulted in

hazard ratios comparable to the full Gail model, suggest-
ing that a simplified model (e.g. limited to age, first live
birth age, age at menarche, number of first-degree fe-
male relatives with breast cancer, and possibly history of
biopsy) could be equally effective in this population
while saving significant effort and resources. Unsurpris-
ingly, the stepwise addition of the variables ‘had biopsy’
made little difference since the number of biopsies was
already included. The ethnicity variable would hold
more value if the Gail model was modified to suit Aus-
tralian ethnicity categories.
The modest discriminatory accuracy of the Gail model

(AUC = 0.59) is consistent with a recent meta-analysis of
European validation studies (pooled AUC =0.58) [32],
confirming that risk information should be conveyed
clearly and carefully to ensure that it is understood to
apply to group-level rather than individual-level risk.
However, group-level estimates such a 5-year risk of less
than 1% for women in the lowest quintile versus more
than 3% for women in the upper decile (Table 3) are
meaningful for group-level health advice and interven-
tions, such as the potential value of more personalised
screening protocols targeted to specific risk groups.
This study has various strengths. Analyses are based

on data from a large prospective cohort of actively
screened participants, with questionnaires completed
during 2010–2014 and outcomes recorded up to end
2016, and therefore results are highly relevant to

contemporary screening populations and programmes.
Cancer outcomes were identified through direct linkage
with cancer registrations, and screening histories by dir-
ect linkage with the screening programme. We
accounted for censoring by using hazards models, and
we report outcomes for groups based on quintile and
decile values to demonstrate potential applications for
this tool not only to identify women at very high risk of
breast cancer but also to identify women at medium and
reduced risk of breast cancer.
Our study has several limitations. Firstly, we did not

have records of cancers diagnosed outside the state of
Victoria, although these are likely to be few. Secondly,
we did not have complete death records. Based on Aus-
tralian deaths data [33] (average death rates for 2010–
2012 by 5-year age group applied to observed
person-years to the end of 2016), the expected number
of all-cause deaths in this cohort is approximately 724
(versus 243 recorded deaths). Our ‘expected’ cancers will
therefore be slightly overestimated due to overestimated
exposure time to risk of breast cancer for women with-
out a cancer registered in Victoria. This may help ex-
plain why the expected number of cancers exceeded the
observed number. However, because other-cause death
is unlikely to be strongly associated with the Gail model
within the age group examined, confounding would be
minimal. Another limitation relates to the generalisation
to the whole screened population; our sample is drawn
from BreastScreen participants who consented to par-
ticipate in the lifepool cohort and these women may be
more willing and/or able than other BreastScreen partic-
ipants to provide the information required for the Gail
model.
This study contributes to the international body of evi-

dence on the validity of the Gail model as well as

Fig. 2 Expected and observed outcomes according to Gail scores generated by baseline questionnaires. Overall chi-squared test, p< 0.0001 (D1–D9
categories only; p= 0.57). D decile
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providing information on the model’s applicability in a
population breast screening setting. Although several
validation studies of Gail model predictions on prospect-
ive cohorts have been conducted [32], limited validation
studies have been performed on women attending rou-
tine breast cancer screening [14, 34–38]. This is the first
validation study applied to a population of breast cancer
screening participants in Australia.
As appropriate for validating a predictive tool, our

analysis excluded from our study group women with a
breast cancer diagnosis at or prior to their ‘baseline’ life-
pool recruitment screen; it is possible that the observed
rates of cancer would be slightly different if the risk tool
was applied to all women at first-round screening, or if
the risk tool was applied to the general population (e.g.
through general practice). Since its inception, the Gail
model has been modified to account for the variation in
breast cancer risk observed in various populations [23–
25]. Risk predication can be improved by combining the
Gail model with mammographic density [21, 34] and
genetic factors [27, 38]. Future work by our group will
extend the use of machine learning methods to generate
breast cancer risk prediction models based on lifepool
cohort data, optimally combining clinical, genetic, mam-
mographic density, and behavioural risk factors. We will
also report outcomes for younger and older women, by

mode of detection (screen, interval or other), and inci-
dence of DCIS as the lifepool cohort matures.

Conclusions
The findings from this study indicate that the Gail
model, or a simplified version of this model, is an effect-
ive tool for stratifying active breast cancer screening par-
ticipants aged 50–69 years to groups according to risk of
invasive breast cancer diagnosed up to 5 years following
risk assessment.

Additional file

Additional file 1: Table S1. Details of data provided by lifepool for this
study. (DOC 33 kb)
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