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Abstract

Background: Tamoxifen treatment greatly reduces a woman’s risk of developing a second primary breast cancer.
There is, however, substantial variability in treatment response, some of which may be attributed to germline
genetic variation. CYP2D6 is a key enzyme in the metabolism of tamoxifen to its active metabolites, and variants in
this gene have been associated with reduced tamoxifen metabolism. The impact of variation on risk of contralateral
breast cancer (CBC) is unknown.

Methods: Germline DNA from 1514 CBC cases and 2203 unilateral breast cancer controls was genotyped for seven
single nucleotide polymorphisms, one three-nucleotide insertion-deletion, and a full gene deletion. Each variant has
an expected impact on enzyme activity, which in combination allows for the classification of women as extensive,
intermediate, and poor metabolizers (EM, IM, and PM respectively). Each woman was assigned one of six possible
diplotypes and a corresponding CYP2D6 activity score (AS): EM/EM (AS = 2), EM/IM (AS = 1.5), EM/PM (AS = 1), IM/IM
(AS = 0.75), IM/PM (AS = 0.5), and PM/PM (AS = 0). We also collapsed categories of the AS to generate an overall
phenotype (EM, AS ≥ 1; IM, AS = 0.5–0.75; PM, AS = 0). Rate ratios (RRs) and 95% confidence intervals (CIs) for the
association between tamoxifen treatment and risk of CBC in our study population were estimated using conditional
logistic regression, stratified by AS.

Results: Among women with AS ≥ 1 (i.e., EM), tamoxifen treatment was associated with a 20–55% reduced RR
of CBC (AS = 2, RR = – 0.81, 95% CI 0.62–1.06; AS = 1.5, RR = 0.45, 95% CI 0.30–0.68; and AS = 1, RR = 0.55, 95% CI
0.40–0.74). Among women with no EM alleles and at least one PM allele (i.e., IM and PM), tamoxifen did not
appear to impact the RR of CBC in this population (AS = 0.5, RR = 1.08, 95% CI 0.59–1.96; and AS = 0, RR = 1.17,
95% CI 0.58–2.35) (p for homogeneity = – 0.02).

Conclusion: This study suggests that the CYP2D6 phenotype may contribute to some of the observed variability
in the impact of tamoxifen treatment for a first breast cancer on risk of developing CBC.
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Introduction
The high incidence of breast cancer in the United States,
coupled with a high rate of survival, places an increasing
number of women at risk of contralateral breast cancer
(CBC) [1]. CBC is the most common malignancy among
breast cancer survivors, accounting for nearly 40% of all
second cancers [2]. Tamoxifen treatment for a first primary
breast cancer greatly reduces a woman’s risk of developing
CBC [3–6]. However, there is substantial variability in
treatment response, some of which may be attributed to
germline genetic variation in drug metabolism.
CYP2D6 is a key enzyme in tamoxifen metabolism and

has been central to the pharmacogenetic investigation
of tamoxifen treatment response. Focus has been placed
on CYP2D6 because it is responsible for the metabolism
of tamoxifen to its two primary active metabolites, 4-
hydroxytamoxifen and endoxifen. Compared to tamoxifen,
these metabolites have over 100-fold higher affinity for the
estrogen receptor (ER), and 30-fold to 100-fold greater
potency in suppressing estrogen-dependent tumor cell
growth [7, 8]. Carriers of certain variants in CYP2D6
have been shown to have reduced enzyme activity and
lower circulating levels of active metabolites [9].
Given these effects on tamoxifen metabolism, studies

have examined the impact of variation in CYP2D6 on
breast cancer recurrence and mortality, with mixed results
[10–27]. These studies have not addressed the impact
of variation in CYP2D6 on risk of CBC. It is currently
unknown whether germline variation in CYP2D6 modifies
the association between tamoxifen treatment and risk of
CBC. Given the relationship between tamoxifen and risk
of CBC, this is potentially a critical clinical issue. The ob-
jective of this study was to examine the impact of genetic-
ally inferred CYP2D6 phenotype on the association
between tamoxifen treatment for a first breast cancer and
the risk of CBC in a large population-based case–control
study.

Materials and methods
Study population
The Women’s Environmental Cancer and Radiation Epi-
demiology (WECARE) Study is a multicenter, population-
based case–control study where cases are women with
asynchronous CBC and controls are women with unilateral
breast cancer (UBC). Case–control recruitment for the
WECARE Study was conducted in two phases: WECARE I
(2001–2004) and WECARE II (2009–2012). Participants
were identified through eight population-based cancer regis-
tries: Los Angeles County Cancer Surveillance Program;
Cancer Surveillance System of the Fred Hutchinson Cancer
Research Center (Seattle, WA, USA); State Health Registry
of Iowa; The Cancer Surveillance Program of Orange
County/San Diego—Imperial Organization for Cancer
Control (Orange County/San Diego, CA, USA); the Greater

Bay Area Cancer Registry (San Francisco Bay Area Region
and Santa Clara Region, CA, USA); and the Sacramento
and Sierra Center Registries (Sacramento Region, CA,
USA). These cancer registries all contribute to the National
Cancer Institute (NCI) Surveillance, Epidemiology and
End Results (SEER) program in the United States. Patients
were also recruited from the Ontario (Canada) Cancer
Registry and the Danish Breast Cancer Cooperative
Group Registry, supplemented by data from the Danish
Cancer Registry. All study participants provided written
informed consent, and the study protocol was reviewed
and approved by the Institutional Review Board at each
recruitment site and the ethical committee systems in
Denmark and Ontario. Across the eight cancer registries a
total of 2354 CBC cases and 3599 UBC controls were
identified as being eligible and were approached for the
study. The final number of participants who completed
the interview and provided a biospecimen for DNA
analysis was 1518 (64%) cases and 2208 (61%) controls.
Reasons for nonparticipation have been described in detail
[28]. An additional nine participants were excluded from
the current analysis due to low quality or quantity of
DNA (four cases, five controls), resulting in a final sample
size of 1514 CBC cases and 2203 UBC controls.
Details of recruitment procedures, eligibility, and the

study questionnaire have been described previously, and
were nearly identical for the two study phases [29].
Briefly, all women were diagnosed prior to age 55 years
between 1985 and 2010 with a first primary invasive
breast cancer (stage I–III). Cases were diagnosed with a
second primary CBC (in situ or invasive for WECARE I
and invasive only for WECARE II) at least 1 year later.
Controls also had no history of any second cancer diag-
nosis up to their reference date. The reference date for
cases was the CBC diagnosis date, while for controls this
was defined by adding the interval between the first
breast cancer and the CBC for the matched case to the
date of (first) breast cancer diagnosis for the control.
Cases must also have been living in the same study
reporting area for both diagnoses, while controls were
required to be living in the cancer-reporting area of their
(first) breast cancer diagnoses on their reference dates.
Additionally, controls must not have undergone prophy-
lactic mastectomy of the unaffected contralateral breast.
Study eligibility was restricted to women who were alive
when contacted and were able to provide informed consent,
complete a telephone interview, and donate a blood or saliva
sample for DNA extraction. Controls were matched to cases
(2:1 for WECARE I and 1:1 for WECARE II) on year of
birth in 5-year strata, year of diagnosis in 4-year strata,
cancer registry region, and race/ethnicity. In WECARE I,
cases and controls were further counter-matched based on
cancer registry-reported radiation treatment such that
two members of each case–control trio had received
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radiation treatment for their first breast cancer and the
other member had not [29]. Counter-matching was not
used in WECARE II; this was taken into account in all
statistical analyses, as detailed in the following. The selec-
tion of case–control trios in this way for WECARE I is
reflected in the frequency of radiation treatment by case–
control status such that the frequencies cannot be directly
compared. For this reason, weighted frequencies are pro-
vided (Table 1).

Data collection
WECARE Study participants were interviewed by tele-
phone using a structured questionnaire that was designed
to obtain information about events occurring before the
diagnosis of the first primary breast cancer, as well as
events that occurred during the at-risk period. The at-risk
period was defined as beginning at least 1 year after diag-
nosis with a first breast cancer and ending at the second
diagnosis in CBC cases, or the corresponding reference
date for UBC controls. The study questionnaire included
questions about personal demographics, medical history,
family and reproductive history, hormone use, body size,
smoking status, and alcohol intake. Additionally, medical
records, pathology reports, and hospital charts were used
to collect detailed treatment information (i.e., chemother-
apy, hormonal therapy, and radiation therapy) for the first
primary breast cancer, any recurrences experienced prior
to the reference date, and tumor characteristics of the first
primary tumor (e.g., ER status, histology).

Genotyping
Germline DNA was isolated from blood using standard
phenol–chloroform extraction methods or from saliva
using the manufacturer’s recommendations (Genotek,
ON, Canada). Samples were genotyped for seven single
nucleotide polymorphisms (SNPs), one three-nucleotide
insertion-deletion (indel), and a full gene deletion (Table 2),
accounting for most of the clinically significant variants in
CYP2D6 [30]. Genotyping was conducted in the Molecular
Epidemiology Laboratory at Memorial Sloan Kettering
Cancer Center using PCR-based methods.
Variants were tested using Agena iPlex chemistry and

the MassArray system (Agena Bioscience, San Diego CA,
USA), with assays designed using the Agena Cx online
tools (currently https://agenacx.com), and a method simi-
lar to that reported by Falzoi et al. [31], with an independ-
ent preamplification of CYP2D6 in a long-range PCR. The
PCR products were verified on a 1% agarose gel. One
microliter of the amplified product was used for genotyp-
ing using specific primers and cycling conditions (Add-
itional file 1). Products were purified enzymatically,
extended and desalted, and then spotted onto 384 Spec-
troCHIP bioarrays (Agena Bioscience). Cluster plots
were evaluated with the TyperAnalyzer application

(MassARRAY v3.4). Assays were considered optimal ac-
cording to degree of clustering, absence of signal in the
blanks, and reproducibility. Quality control (QC) pro-
cedures were similar to those published elsewhere [32,
33], and included 5% intraplate duplicates for each plate,
0.5% interplate duplicates, and at least two independent
readers for review and interpretation of cluster plots and
results. Samples with known genotypes from the Coriell
Institute were also included as controls during the assay
development. Samples with weak signals were repeated.
Full CYP2D6 deletion (CYP2D6*5) analysis was con-

ducted with a modified three-primer-based, long-range
PCR using primers described by Okubo et al. [34] to
ensure gene specificity. Genomic DNA (30 ng) was
amplified in a reaction mix containing 1× Takara LA-Taq
PCR buffer with 2.5 mM Mg2+ (Clontech, Mountain View,
CA, USA), 0.5 mM dNTPs (Life Technologies, Carlsbad,
CA, USA), 0.5 μM of each primer, and 0.4 units of Takara
LA Taq DNA Polymerase (Clontech), in a total volume of
8 μl. Cycling included denaturation at 94 °C for 1 min,
25 cycles of 98 °C for 20 s and 70 °C for 6min, annealing
at 70 °C for 6min, and a final hold at 4 °C. PCR products
were run on 1% e-gels (Invitrogen, Carlsbad, CA, USA),
and band sizes were determined against molecular weight
markers to evaluate CYP2D6 presence (4.7 kb band) or
deletion (CYP2D6*5, 3.5 kb). QC procedures included use
of control samples from the Coriell Institute, 5% intraplate
and 0.5% interplate duplicates, as well as negative (sterile
distilled water) controls.

CYP2D6 activity score and phenotype assignment
CYP2D6 nomenclature came from the American College
of Medical Genetics and Genomes (ACMG) Standards and
Guidelines [35] and PharmVar (Pharmacogene Variation
Database, www.Pharmvar.org/gene/CYP2D6 (Table 1). Al-
leles were classified into three categories based on their an-
ticipated impact on CYP2D6 activity (normal, CYP2D6*1
and CYP2D6*2; reduced, CYP2D6*9, CYP2D6*10, and
CYP2D6*41; and inactive, CYP2D6*3, CYP2D6*4,
CYP2D6*5, and CYP2D6*6) [9] and assigned activity scores
(AS) of 1, 0.5, and 0, respectively. The scores for the two al-
leles carried by each woman were summed in order to as-
sign an overall AS which could range from 0 to 2. One
exception to this is the instance of individuals carrying two
IM (reduced activity) alleles. In order to distinguish be-
tween two combinations that would otherwise have had the
same overall AS of 1.0, we left individuals classified as EM/
PM with an AS of 1 and assigned IM/IM women an AS of
0.75 (instead of the AS of 1.0 they would otherwise have
received) [26]. In this way, women were classified as: EM/
EM (AS = 2), EM/IM (AS= 1.5), EM/PM (AS= 1), IM/IM
(AS= 0.75), IM/PM (AS= 0.5), and PM/PM (AS= 0) [26,
36, 37]. Analyses were also conducted collapsing across
some categories of the AS to generate an overall
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Table 1 Characteristics of CBC cases and UBC controls and those treated and not treated with tamoxifen from the WECARE Study
population who were also screened for CYP2D6 variants

Variable CBC cases
(N = 1514)

UBC controls
(N = 2203)

Tamoxifen treatment
(N = 1250)

No tamoxifen
treatment (N = 2467)

Age at first diagnosis (years), median (range) 46 (24–54) 48 (24–54) 48 (24–54) 45 (23–54)

Age at reference date (years), median (range) 53 (27–73) 54 (28–73) 54 (28–73) 51 (27–71)

Length of at-risk period (years)a, median (range) 6.3 (1.0–19.8) 6.0 (1.0–19.3) 6.0 (1.0–19.3) 5.8 (1.0–19.8)

Study area, N (%)

Iowab 201 (13) 314 (14) 170 (14) 345 (14)

Californiac 655 (43) 963 (44) 634 (51) 984 (40)

Seattled 223 (15) 317 (14) 249 (20) 291 (12)

Denmarke 279 (18) 452 (21) 57 (5) 674 (27)

Canadaf 156 (10) 157 (7) 140 (11) 173 (7)

Year of first breast cancer diagnosis, N (%)

1985–1988 238 (16) 466 (21) 122 (10) 582 (24)

1989–1992 414 (27) 643 (29) 328 (26) 729 (30)

1993–1996 425 (28) 630 (29) 353 (28) 702 (28)

1997–2008 437 (29) 464 (21) 447 (36) 454 (18)

Race/ethnicityg, N (%)

Non-Hispanic white 1330 (88) 1971 (89) 1070 (86) 2231 (90)

Hispanic white 68 (4) 93 (4) 59 (5) 102 (4)

Black 54 (4) 75 (3) 47 (4) 82 (3)

Asian 45 (3) 52 (2) 61 (5) 36 (1)

Other 17 (1) 12 (1) 13 (1) 16 (1)

Age at menarche (years), N (%)

Never had menses 3 (0) 6 (0) 1 (0) 8 (0)

< 13 722 (48) 962 (44) 622 (50) 1062 (43)

≥ 13 786 (52) 1233 (56) 625 (50) 1394 (57)

Unknown 3 (0) 2 (0) 2 (0) 3 (0)

Number of full-term pregnancies, N (%)

None 320 (21) 408 (19) 246 (20) 482 (20)

1 271 (18) 340 (15) 200 (16) 411 (17)

2 556 (37) 839 (38) 444 (36) 951 (39)

3 255 (17) 386 (18) 237 (19) 404 (16)

≥ 4 107 (7) 225 (10) 118 (9) 214 (9)

Unknown 5 (0) 5 (0) 5 (0) 5 (0)

Menopausal status at first diagnosish, N (%)

Premenopausal 1119 (74) 1669 (76) 865 (69) 1923 (78)

Postmenopausal 387 (26) 520 (24) 377 (30) 530 (21)

Unknown 8 (1) 14 (1) 8 (1) 14 (1)

First-degree family history of breast cancer, N (%)

No 999 (66) 1697 (77) 901 (72) 1795 (73)

Yes 496 (33) 466 (21) 325 (26) 637 (26)

Adopted/unknown 19 (1) 40 (2) 24 (2) 35 (1)
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Table 1 Characteristics of CBC cases and UBC controls and those treated and not treated with tamoxifen from the WECARE Study
population who were also screened for CYP2D6 variants (Continued)

Variable CBC cases
(N = 1514)

UBC controls
(N = 2203)

Tamoxifen treatment
(N = 1250)

No tamoxifen
treatment (N = 2467)

Stage of first primary breast cancer, N (%)

Local 1059 (70) 1436 (65) 747 (60) 1748 (71)

Regional 446 (29) 756 (34) 493 (39) 709 (29)

Unknown 9 (1) 11 (1) 10 (1) 10 (0)

Histology of first diagnosis, N (%)

Nonlobular 1334 (88) 1978 (90) 1061 (85) 2251 (91)

Lobular 179 (12) 222 (10) 186 (15) 215 (9)

Unknown 1 (0) 3 (0) 3 (0) 1 (0)

ER status of first diagnosis, N (%)

Positive 793 (52) 1248 (57) 1047 (84) 994 (40)

Negative 467 (31) 560 (25) 129 (10) 898 (36)

Other/unknowni 254 (17) 395 (18) 74 (6) 575 (23)

Chemotherapy for first diagnosis, N (%)

No 696 (46) 919 (42) 485 (39) 1130 (46)

Yes 818 (54) 1284 (58) 765 (61) 1337 (54)

Radiation treatment for first diagnosisj, N (%)

WECARE I

No 362 (51) 265 (50) 139 (25) 488 (32)

Yes 346 (49) 1130 (50) 424 (75) 1052 (68)

Unknown 0 (0) 0 (0) 0 (0) 0 (0)

WECARE II

No 275 (34) 258 (32) 195 (28) 338 (36)

Yes 531 (66) 549 (68) 491 (71) 589 (64)

Unknown 0 (0) 1 (0) 1 (0) 0 (0)

Hormone treatment for first diagnosis, N (%)

None 960 (63) 1263 (57) NA NA

Tamoxifen 465 (31) 785 (36)

Other hormonal treatmentk 89 (6) 153 (7)

Unknown 0 (0) 2 (0)

CBC contralateral breast cancer, UBC unilateral breast cancer, WECARE Women’s Environmental Cancer and Radiation Epidemiology, ER estrogen receptor, NA
not available
aBeginning at least 1 year after first diagnosis and extending to the date of CBC diagnosis of cases
bThe State Health Registry of Iowa
cFour study centers: Los Angeles County Cancer Surveillance Program; The Cancer Surveillance Program of Orange County/San Diego-Imperial Organization for
Cancer Control; Greater Bay Area Cancer Registry (San Francisco Bay Area Region and Santa Clara Region); and Sacramento and Sierra Center Registries
(Sacramento Region)
dCancer Surveillance System of the Fred Hutchinson Cancer Research Center
eThe Danish Breast Cancer Cooperative Group Database supplemented by the Danish Cancer Registry
fThe Ontario Cancer Registry
g‘Asian’ includes Japanese, Chinese, and Filipino; ‘Other’ includes other Asian as well as all other races/ethnicities
hWomen were classified as premenopausal if they reported having menstrual periods or being pregnant within 2 years of initial diagnosis
i‘Other/unknown’ category consists of women where no laboratory test was given, the test was given and the results are unknown, or the test was given and the
results were borderline; estimates not reported. Start date for ER reporting in Surveillance Epidemiology and End Results was January 1, 1990
jProportion of individuals treated and not treated with radiation. In WECARE 1, cases and controls were counter-matched based on cancer registry reported
radiation treatment such that two members of each case–control trio had received radiation treatment for their first breast cancer diagnosis. Proportions for
controls in WECARE 1 are weighted to reflect this selection. Proportions for cases in WECARE 1 (because all cases were included) and both cases and controls in
WECARE II (because counter-matching was not used in WECARE II) are not weighted
kOther hormonal therapies include: raloxifene/Evista, tormifene/Fareston, anastrozole/Arimidex, letrozole/Femara, aromasin/Exemestane, aminoglutethimide/
Cytradren, gosereline/Zoladex, leuprolide/Lupron, faslodex/Fulvestrant, and megestrol acetate/Megace
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inferred phenotype. Women were classified as EM if they
had at least one EM allele (i.e., AS ≥ 1), IM if they had no
EM alleles and at least one IM allele (e.g., AS = 0.5–0.75),
or PM if they had two PM alleles (i.e., AS = 0) [27].

Statistical analysis
Rate ratios (RRs) and 95% confidence intervals (CIs)
for the association between tamoxifen treatment and
risk of CBC in our study population were estimated
fitting conditional logistic regression models, stratified
by CYP2D6 AS. Rate ratios can be interpreted as a
relative risk (e.g., ratio of risks) of CBC in
tamoxifen-treated versus untreated women in our
study population. Models were adjusted for: age at
first diagnosis, histology, stage, and ER status of first
diagnosis, first-degree family history of breast cancer,
chemotherapy for first breast cancer, radiation treat-
ment for first breast cancer, hormonal therapy other
than tamoxifen for a first breast cancer, number of
full-term pregnancies before first diagnosis, and age at
menarche. Because treatment for a first breast cancer
could induce menopause, menopausal status and age
at menopause 2 years prior to first diagnosis were
used. To account for the counter-matching in WECARE
I, we included a log-weight covariate offset term. For
WECARE II participants who were matched in pairs (with-
out counter-matching on radiation treatment), we assigned
the value of 1 to be the offset term. We used the likelihood
ratio test to test for homogeneity of treatment effect across
AS/phenotypes. A sensitivity analysis was conducted
restricting model fitting to Caucasian women (N = 1335
CBC cases and N = 1980 UBC controls) to address the
issue of ancestral differences in genotype frequencies. All
statistical analyses were conducted using SAS 9.4 (SAS In-
stitute Inc., Cary, NC, USA).

Results
Table 1 presents the characteristics of the women in-
cluded in this analysis. The median age at diagnosis for
both cases and controls was 46 years, and the majority
of women were premenopausal at the time of first breast
cancer diagnosis (74% of cases and 76% of controls). Just
over half of all first breast cancers in cases (52%) and
controls (57%) were ER-positive. Of the 793 cases with
an ER-positive first primary breast cancer, 389 (49.1%)
received tamoxifen. A slightly higher proportion of con-
trols with an ER-positive breast cancer was treated with
tamoxifen (53%). An additional 57 cases and 97 controls
with an ER-positive first breast cancer were treated with
hormonal medications other than tamoxifen (e.g., raloxi-
fene, aromatase inhibitors). This left 839 (347 cases and
492 controls) women with an ER-positive first breast
cancer who did not receive any hormonal treatment.
Notably, 45 (9.6%) and 84 (15%) ER-negative cases and
controls, and 31 (12.2%) and 43 (10.9%) cases and con-
trols with unknown ER status, also received tamoxifen.
All minor allele frequencies (MAFs) were comparable to

the expected frequencies in a predominantly Caucasian
study population (Additional file 2). Genotyping call rates
were high and ranged from 99.0 to 99.9% with intraplate
and interplate concordance of 95% or greater. Although
some variants were found to deviate from Hardy–Weinberg
equilibrium (HWE), these results may not be meaningful
given the absence of an unaffected control group.
First, we examined the effect of tamoxifen treatment for

a first primary breast cancer on the risk of CBC, according
to the individual CYP2D6 AS levels. Among women with
AS ≥ 1, those treated with tamoxifen for a first primary
breast cancer had a 20–55% lower risk of CBC (AS = 2,
RR = 0.81, 95% CI 0.62–1.06; AS = 1.5, RR = 0.45, 95% CI
0.30–0.68; and AS = 1, RR = 0.55, 95% CI 0.40–0.74) rela-
tive to those not treated with tamoxifen (Table 3). Among

Table 2 Summary of genotyped CYP2D6 variants and associated phenotype

Allele SNP (RefSeq)a Variant CYP2D6 activity Activity score valueb Phenotype

CYP2D6*1 NA Wild type Normal 1 EM

CYP2D6*2 rs16947, rs1135840 2850C > T, 4180G > C Normal 1 EM

CYP2D6*3 rs35742686 2549delA Inactive 0 EM

CYP2D6*4 rs3892097 1846G > A, Inactive 0 PM

CYP2D6*5 NA Full gene deletion Inactive 0 PM

CYP2D6*6 rs5030655 1707delT Inactive 0 PM

CYP2D6*9 rs5030656 2615_2617del AAG Reduced 0.5 IM

CYP2D6*10 rs1065852, rs1135840 100C > T, 4180G > C Reduced 0.5 IM

CYP2D6*41 rs28371725 2988G > A Reduced 0.5 IM

SNP single nucleotide polymorphism, RefSeq reference sequence, NA not applicable, EM extensive metabolizer, PM poor metabolizer, IM intermediate metabolizer
aWhere more than one SNP is listed for a given allele, a variant at only one loci needed to be present to classify an individual as having that allele
bActivity score (AS) calculated as the sum of the activity score value for each allele held by an individual for a range of values from 0 to 2. One exception to this is the
instance of individuals carrying two IM (reduced activity) alleles, where we provided a distinction between individuals classified as EM/PM (AS = 1), IM/IM (AS = 0.75),
and IM/PM (AS = 0.5)
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individuals with no EM alleles and at least one PM
allele, tamoxifen use was not associated with a reduction
in the risk of CBC (AS = 0.5, RR = 1.08, 95% CI 0.59–1.96;
and AS = 0, RR = 1.17, 95% CI 0.58–2.35) (p for homogen-
eity = 0.02). When AS categories were grouped to classify
individuals based on overall phenotype (EM, AS ≥ 1; IM,
AS = 0.5 or 0.75; PM, AS = 0), women with at least one
fully functional (EM) allele (i.e., AS ≥ 1) treated with tam-
oxifen had nearly a 40% lower risk of CBC relative to
those not treated with tamoxifen (RR = 0.63, 95% CI 0.51–
0.78). Conversely, women classified as IM or PM (i.e.,
AS < 1) treated with tamoxifen were not at a lower risk
of CBC (RR = 0.95, 95% CI 0.57–1.56 and RR = 1.18,
95% CI 0.59–2.37, respectively). However, these results
(by AS phenotype) were not statistically significantly
different (p for homogeneity of 0.09). Restricting the
analyses to women with an ER-positive first primary
breast cancer, to women who were premenopausal at
first diagnosis, or to Caucasian women did not alter the
results (Additional files 3, 4, and 5).

Discussion
Prior studies have examined the association between
CYP2D6 phenotype and breast cancer recurrence, recur-
rence-free survival, and breast cancer-specific and overall
survival, with mixed results. A recent meta-analysis found
a small but statistically significant increase in tumor

recurrence in women who were classified as poor metabo-
lizers (HR = 1.25, 95% CI 1.06–1.47) [38], although results
were variable (and not statistically significant) when criteria
for study inclusion were modified to include additional
studies. The mixed findings of these prior studies [21–25]
suggest that, although CYP2D6 variation has been shown
to influence tamoxifen metabolism, the impact of this
variation on recurrence and survival is likely null or small
[9, 27]. Indeed, current recommendations do not support
routine genotyping of CYP2D6 to guide tamoxifen
treatment decisions [39]. The current study, however, is
the first to address the impact of this genetic variation
on risk of CBC following tamoxifen treatment for the
first primary breast cancer.
The results of this study suggest that the CYP2D6

phenotype could modify the association between tam-
oxifen treatment for a first primary breast cancer and
risk of CBC. While women with CYP2D6 AS ≥ 1 (i.e.,
EM) who were treated with tamoxifen had a lower risk
of CBC relative to those not treated with tamoxifen (RR
= 0.63, 95% CI 0.51–0.78), women classified as having
AS < 1 (i.e., IM or PM) who were treated with tamoxi-
fen were not at lower risk of CBC (RR = 0.95, 95% CI
0.57–1.56 and RR = 1.18, 95% CI 0.59–2.37, respect-
ively). Although these results are not statistically sig-
nificantly different (p for homogeneity = 0.09), the
overall trend appeared to be consistent. The exception is

Table 3 Association between tamoxifen treatment and risk of CBC stratified by CYP2D6 activity score in the WECARE Study
populationa

Activity scoreb No tamoxifen treatment Tamoxifen treatment

Cases
N (%)

Controls
N (%)

RR
(95% CI)

Cases
N (%)

Controls
N (%)

RRc

(95% CI)
pd

2 395 (38) 549 (39) Reference 193 (42) 300 (38) 0.81 (0.62–1.06) 0.02

1.5 192 (18) 205 (14) Reference 65 (14) 141 (18) 0.45 (0.30–0.68)

1 317 (30) 436 (31) Reference 128 (28) 235 (30) 0.55 (0.40–0.74)

0.75 30 (3) 32 (2) Reference 20 (4) 23 (3) 0.64 (0.26–1.58)

0.5 58 (6) 98 (7) Reference 38 (8) 54 (7) 1.08 (0.59–1.96)

0 57 (5) 98 (7) Reference 21 (5) 32 (4) 1.17 (0.58–2.35)

Phenotypee

EM 904 (86) 1190 (84) Reference 386 (83) 676 (86) 0.63 (0.51–0.78) 0.09

IM 88 (8) 130 (9) Reference 58 (12) 77 (10) 0.95 (0.57–1.56)

PM 57 (5) 98 (7) Reference 21 (5) 32 (4) 1.18 (0.59–2.37)

CBC contralateral breast cancer, WECARE Women’s Environmental Cancer and Radiation Epidemiology, RR rate ratio, CI confidence interval, EM extensive
metabolizer, IM intermediate metabolizer, PM poor metabolizer
aAnalysis includes 1514 CBC cases and 2203 unilateral breast cancer controls
bActivity score (AS) is derived from diploid phenotypes: PM/PM (AS = 0), PM/IM (AS = 0.5), IM/IM (AS = 0.75), PM/EM (AS = 1), IM/EM (AS = 1.5), and EM/EM (AS = 2)
cAdjusted for: age at first primary, age at menopause 2 years prior to first primary cancer, histology of first primary cancer, stage of first primary cancer, family
history of breast cancer, chemotherapy at first primary cancer, radiation at first primary cancer, other hormonal therapy at first primary cancer, number of full-term
pregnancies at first primary cancer, age at menarche, estrogen receptor status of first breast cancer diagnosis, and an offset term to take into account the
counter-matching for radiation treatment used in WECARE I
dp value for the test that all RRs are equal across AS/phenotype categories (p for homogeneity)
ePhenotype defined as: EM, having at least one EM allele (i.e., AS ≥ 1); IM, having no EM alleles and at least one IM allele (i.e., AS = 0.5–0.75); and PM, having two
PM alleles (i.e., AS = 0)
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the finding for EM/EM (AS = 2), where RR = 0.81
(Table 3); this appears to deviate from the otherwise
monotonic trend of decreasing RR associated with tam-
oxifen treatment, with increasing AS.
Like others [26], we made a slight modification to our

calculation of the AS for individuals carrying two IM
(i.e., reduced activity) alleles, where we provided a distinc-
tion between individuals classified as EM/PM (AS = 1),
IM/IM (AS = 0.75), and IM/PM (AS = 0.5). Coding the AS
this way allowed us to distinguish between different IM
diplotypes, which have been shown to have variable levels
of enzyme activity [36]. In particular, there is some evi-
dence that CYP2D6*10, a reduced activity allele, may have
activity that is closer to 0 than 1 [9]. These categories were
then combined in the overall phenotype analysis.
Both randomized controlled clinical trials [3, 40] and

observational studies [41–43], including those from our
group [5, 6, 44], have found a protective effect of tamoxifen
with respect to risk of CBC. Some studies have found that
this effect is limited to women diagnosed with ER-positive
breast cancer [40], while others have not [5, 6, 41]. We
have previously reported that tamoxifen treatment was
associated with approximately a 27% lower risk of CBC,
with no evidence that the association differed by ER status
of the first primary breast cancer [6].
In our study, a relatively large proportion (41%) of

women with ER-positive first breast cancers did not
receive hormonal therapy of any kind, while some women
with ER-negative breast cancer did (18%). This may have
happened because approximately 20% of women included
in this study were diagnosed with a first primary breast
cancer prior to 1989 (Table 1), a time when tamoxifen was
given as a treatment regardless of ER status. Notably, just
as tamoxifen is used as a chemopreventive agent in
women at high risk of developing a first breast cancer
(e.g., BRCA mutation carriers) [45], tamoxifen treatment
for a first breast cancer can be seen to serve two functions;
first, to treat the diagnosed cancer; and second, to prevent
a second, independent breast cancer (i.e., CBC).
A major and unique strength of this study is our ability

to investigate the impact of the CYP2D6 phenotype spe-
cifically on the risk of CBC. This was made possible given
our use of a retrospective, multicenter, population-based
design, which allowed for the inclusion of a large number
of women diagnosed with CBC. Another key strength was
the availability of detailed treatment histories from med-
ical records, including both tamoxifen treatment as well
as other treatments that were included as covariates in the
analysis. This study also has some limitations. Information
regarding use of other medications (beyond those used for
treatment of a first breast cancer) was not collected. Con-
sequently, we were not able to account for drugs that have
been observed to inhibit CYP2D6 (e.g., SSRIs), although
evidence to date suggests that any possible effects are

likely quite modest [46]. We also had no information
on CYP2D6 copy number variation and therefore were
not able to identify ultra-rapid metabolizers within our
study population. In addition, the WECARE Study
predominantly consists of Caucasian women, limiting
the generalizability of our results somewhat. However,
although the CYP2D6 variant frequency and correspond-
ing inferred phenotypes have been shown to vary by race/
ethnicity [47], their impact on metabolite concentration
does not [26].
Aromatase inhibitors are now the first-line hormonal

treatment for postmenopausal women with ER-positive
breast cancer [48], while tamoxifen treatment remains the
first-choice treatment for premenopausal women. Our
study includes women who were younger than 55 years of
age at the time of first diagnosis, so that the majority (~
75%) of study participants were premenopausal at the
time of first breast cancer diagnosis and treatment. Thus,
these results are generalizable to women who are most
likely to be prescribed tamoxifen under current standards
of care. With a more precise identification of women in
whom tamoxifen treatment is unlikely to effectively re-
duce their risk of CBC, alternative therapies can then be
offered (e.g., ovarian oblation plus aromatase inhibitors in
premenopausal women) [49]. This would be particularly
important for women known to be at an increased risk
of CBC (e.g., women with a family history of CBC) [50].
Since our findings suggest that CYP2D6 phenotype may
impact the effectiveness of tamoxifen for prevention of
second primary breast cancers, it may also be relevant
with regards to the use of tamoxifen as a chemopreventive
agent among high-risk women. To our knowledge only a
single study has examined the impact of the CYP2D6
phenotype on breast cancer prevention with tamoxifen,
and no association between the CYP2D6 phenotype and
ER-positive breast cancer occurrence was observed [51].

Conclusions
Women frequently overestimate their risk of CBC, lead-
ing to increasing rates of contralateral prophylactic
mastectomy. Overall, this study provides early evidence
that the CYP2D6 phenotype may contribute to some of
the observed variability in the impact of tamoxifen treat-
ment for a first breast cancer on the risk of developing
CBC. Identifying factors that can influence a woman’s
risk of developing CBC will inform discussions between
patient and physician, help guide treatment decisions,
and strengthen evidence-based risk communication.
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