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Increased circulating resistin levels in early-
onset breast cancer patients of normal
body mass index correlate with lymph
node negative involvement and longer
disease free survival: a multi-center POSH
cohort serum proteomics study
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Abstract

Background: Early-onset breast cancer (EOBC) affects about one in 300 women aged 40 years or younger
and is associated with worse outcomes than later onset breast cancer. This study explored novel serum
proteins as surrogate markers of prognosis in patients with EOBC.

Methods: Serum samples from EOBC patients (stages 1–3) were analysed using agnostic high-precision quantitative
proteomics. Patients received anthracycline-based chemotherapy. The discovery cohort (n = 399) either had more than
5-year disease-free survival (DFS) (good outcome group, n = 203) or DFS of less than 2 years (poor outcome group,
n = 196). Expressed proteins were assessed for differential expression between the two groups. Bioinformatics pathway
and network analysis in combination with literature research were used to determine clinically relevant proteins. ELISA
analysis against an independent sample set from the Prospective study of Outcomes in Sporadic versus Hereditary breast
cancer (POSH) cohort (n = 181) was used to validate expression levels of the selected target. Linear and generalized linear
modelling was applied to determine the effect of target markers, body mass index (BMI), lymph node involvement (LN),
oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 status on patients’
outcome.
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Results: A total of 5346 unique proteins were analysed (peptide FDR p ≤ 0.05). Of these, 812 were differentially expressed
in the good vs poor outcome groups and showed significant enrichment for the insulin signalling (p = 0.01) and the
glycolysis/gluconeogenesis (p = 0.01) pathways. These proteins further correlated with interaction networks involving
glucose and fatty acid metabolism. A consistent nodal protein to these metabolic networks was resistin (upregulated in
the good outcome group, p = 0.009). ELISA validation demonstrated resistin to be upregulated in the good outcome
group (p = 0.04), irrespective of BMI and ER status. LN involvement was the only covariate with a significant association
with resistin measurements (p = 0.004). An ancillary in-silico observation was the induction of the inflammatory response,
leucocyte infiltration, lymphocyte migration and recruitment of phagocytes (p < 0.0001, z-score > 2). Survival analysis
showed that resistin overexpression was associated with improved DFS.

Conclusions: Higher circulating resistin correlated with node-negative patients and longer DFS independent of BMI and
ER status in women with EOBC. Overexpression of serum resistin in EOBC may be a surrogate indicator of improved
prognosis.

Keywords: Quantitative serum proteomics, Resistin, Insulin resistance, Glycolysis/gluconeogenesis, lymph-node
involvement, Early-onset breast cancer

Background
Approximately one in 300 women aged 40 years or younger
is diagnosed with breast cancer in the UK and young age at
diagnosis is associated with worse clinical outcomes and
greater likelihood of genetic susceptibility (http://www.can-
cerresearchuk.org/health-professional/cancer-statistics/statis-
tics-by-cancer-type/breast-cancer) [1, 2]. Current prognostic
biomarkers are based on tumour characteristics, tumour
grade and stage, and receptor status. Host factors that may
influence prognosis are not currently included in commonly
used models [3]. Identifying novel host markers associated
with EOBC prognosis may improve our understanding and
management of this subgroup of patients.
As a quantitative proteomics approach, the use of chem-

ical labelling with isobaric stable isotope reagents, such as
isobaric tags for relative and absolute quantitation (iTRAQ)
and tandem mass tags (TMT), has been applied in combin-
ation with liquid chromatography–mass spectrometry (LC-
MS) techniques for the discovery of candidate cancer
biomarkers in serum or plasma [4, 5]. Such methodological
approaches provide the distinct advantage of simultaneously
measuring protein expression under the same instrumental
analysis conditions, thereby reducing experimental bias and
improving relative quantitative accuracy and precision [6].
An iTRAQ LC-MS approach that also used a peptide-based
affinity enrichment pre-treatment step was applied to
plasma samples derived from stage I–III breast cancer pa-
tients relative to healthy volunteers [7]. Another iTRAQ
LC-MS study that used affinity depletion of the high-
abundant proteins was applied to serum samples derived
from post-menopausal breast cancer patients relative to
healthy controls [8]. In this study, however, we utilized
quantitative LC-MS proteomic methods that do not depend
on prior affinity enrichment or depletion of plasma/serum
which may compromise their analysis for clinically relevant
protein markers [5, 9]. In this capacity, the entire serum

protein content was subjected to quantitative proteomic
analysis. Using serum from a cohort study of early-onset
breast cancer cases, we explored the potential for quantita-
tive discovery proteomics to reveal novel markers of poor
outcome in young women with EOBC [2].

Methods
Patient inclusion criteria
The present study included patients with early-stage
(T1–T3) invasive breast carcinoma, diagnosed between
January 2000 and December 2007 from the Prospective
study of Outcomes in Sporadic versus Hereditary breast
cancer (POSH) cohort, a UK-wide multi-centre pro-
spective observational study of EOBC patients, aged 40
years or younger and treated with standard therapies
according to local protocols (Additional file 1: Section 1) [1,
2, 10]. Patients included in this study received anthracycline-
based chemotherapy. For the discovery phase, patients were
selected based on the period of disease-free follow up
to provide a discovery cohort enriched for poor and
for good outcomes. The good outcome group com-
prised 203 randomly selected patients with disease-
free survival (DFS) of at least 5 years following treat-
ment. The poor outcome group included 196 patients
who experienced local recurrence, new primary
contralateral and/or distant metastasis and/or death
within 2 years of initial diagnosis. The full patient
clinico-pathological characteristics are presented in
Table 1. The study design is summarized in Fig. 1.

Serum procurement and processing
Peripheral blood samples were drawn from patients in
the POSH cohort at their local cancer unit and proc-
essed and stored in accordance with the POSH SOPs
(Additional file 1: Sections 1A and 1B) [1, 2]. For the
good outcome group, using the randomization function of
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Microsoft Excel (2011), individual 20-μl aliquots from
102 and 101 specimens respectively were pooled to-
gether to create two biological replicate pools (good
outcome groups 1 and 2). Identical procedures were
undertaken for the poor outcome group, with 98
samples being pooled in each biological replicate
(poor outcome groups 1 and 2). An aliquot of 100 μl
from each sample pool was mixed with 400 μl 6 M
guanidine in 9:1 water:methanol and subjected to
high-performance size-exclusion chromatography (HP
SEC) and dialysis exchange for the serum protein
pre-fractionation and purification steps [9, 11–14].

Quantitative LC-MS proteomics
For each sample pool, 100 μg protein content derived from
the respective SEC segments was prepared. Briefly, the seg-
mented protein fractions were subjected to dialysis purifica-
tion and lyophilized to dryness. The purified proteins were
re-solubilized in 200 μl dissolution buffer (0.5 M triethylam-
monium bicarbonate, 0.05% SDS), quantified and subjected
to proteolysis with trypsin using a standardized protocol.
The tryptic peptide mixtures generated from each of the four
segments were then isobaric stable isotope labelled with the
iTRAQ reagents (per manufacturer specifications) for each
of the good and poor outcome groups (and their biological
replicates), and were pooled. The resulting iTRAQ peptides
were initially fractionated with alkaline C8 reverse phase (RP)
liquid chromatography [13, 15]. Each peptide fraction was
further separated with on-line nano-capillary C18 reverse
phase liquid chromatography under acidic conditions,
subjected to nano-spray ionization and measured with
ultra-high-resolution mass spectrometry using the hy-
brid ion-trap/FT-Orbitrap Elite platform [12–14, 16].
Reporter ion ratios derived from unique peptides were
used for the relative quantitation of each respective
protein. Raw reporter ion intensity values were median

Table 1 Clinical characteristics of the discovery cohort

Clinical characteristics Good outcome
group

Poor outcome
group

p value

n 203 196

Age (years)

Median 37 36 0.89

Range 25–40 18–41

Relapse (years)

Median 9.3 1.3 < 0.0001

Range 5.0–10.2 0.4–2.0

BMI (kg/m2)

Mean 25.2 26.3 0.13*

SD 5.1 5.4

Histology

Invasive ductal
carcinoma

203 190

Invasive lobular
carcinoma

0 0

Unknown 0 6

Grade 1 10 6

Grade 2 75 47

Grade 3 114 137

Unknown 4 6

Lymph node status

Negative 104 61 < 0.0001

Positive 95 127

Undetermined 4 8

ER status

Positive 138 108 < 0.0001

Negative 43 88

Unknown 22 0

PR status

Positive 87 75 0.43

Negative 79 86

Unknown 42 35

HER2 receptor status

Positive 53 82 0.77

Negative 59 92

Unknown 91 22

Triple-negative tumours 32 35

Resection margin

R0 resection 142 141

R1 resection 24 22

Unknown 37 33

Chemotherapy

FEC 69 71

Table 1 Clinical characteristics of the discovery cohort
(Continued)

Clinical characteristics Good outcome
group

Poor outcome
group

p value

ECMF 28 31

FEC + docetaxel 22 14

AC 16 16

EC + paclitaxel 15 12

EC + paclitaxel +
gemcitabine

8 8

EC 8 6

Null 22 8

Other 15 30

A adriamycin, BI body mass index, C cyclophosphamide, E epirubicin, ER
oestrogen receptor, F 5-fluorouracil, HER2 human epidermal growth factor
receptor 2, M methotrexate, PR progesterone receptor, SD standard deviation
*Unpaired T-test between groups
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normalized and log2 transformed. Proteins identified
with a minimum of two unique peptides and a one-
sample t-test p ≤ 0.05 were considered as differentially
expressed between the good and poor outcome groups
and were further subjected to bioinformatics analysis
[12, 15, 17, 18]. A detailed description of the quantitative
proteomics approach used can be found in Additional file 2:
Section 2: Supplementary Methods - Serum Proteomics.

Bioinformatics analysis
Hierarchical clustering of the differentiated proteins was per-
formed using Cluster 3.0 (C Clustering Library 1.52) and Java
Treeview (version 1.1.6r4) such that distances were calcu-
lated using the Euclidean-based metric and then clustered
using the complete linkage method. MetaCore (Clarivate
Analytics, Boston, MA, USA), Ingenuity Pathway Analysis
including its Diseases & Functions module (Qiagen, Silicon
Valley, CA, USA) and DAVID Bioinformatics Resources 6.8
(National Institute of Allergy and Infectious Diseases
(NIAID), NIH) (https://david.ncifcrf.gov/) were applied to
differentially expressed proteins analysed with at least two
unique peptides to identify significantly over-represented
networks and gene ontology (GO) terms. Fisher exact and
FDR-corrected p ≤ 0.05 was considered significant.

Single-blinded ELISA measurements in the validation
cohort
To replicate the accuracy of relative quantitation of a tar-
get protein, ELISA was performed against individual sera
derived from an independent validation sample set within
the POSH cohort and sharing analogous inclusion criteria

with the discovery sample set. As high BMI levels may
constitute a confounding factor for resistin expression,
normal BMI status was used as an additional inclusion cri-
terion. For the ELISA validation a single-blinded design
was used, wherein assignment of patient IDs to a good or
poor outcome group was unavailable to the analyst
performing the measurements and uncovered by an inde-
pendent clinician after the measurements were completed.
In particular, the validation cohort was comprised of 200
samples (n = 100 good outcome patients and n = 100 poor
outcome patients) randomly selected from the POSH
cohort using the randomization function of Microsoft
Excel (2011). Of the randomly selected patients, suffi-
cient serum volume was only available for 90 and 91
samples from the good and poor outcome groups
respectively (Table 2). The size of the validation co-
hort was based on the logistic models requiring a
minimum of 10 events per predictor variable [19–21],
which in our study included ER, PR, HER2, LN and
BMI status. The ELISA measurements were per-
formed using a resistin sandwich ELISA kit (USCN
Life Sciences Inc., Wuhan, P.R. China) according to
the manufacturer’s protocols. Absorbance was mea-
sured with the GloMax® Discover, Promega plate
reader (Thermo Fisher Scientific). Data were analysed
in Prism (version 7.0a). Statistical analyses of the
ELISA measurements were based on Welch’s two-
sample t test for unequal variances to assess signifi-
cant differences between groups at p ≤ 0.05. This test
was deemed appropriate as there is a balance of sam-
ples in groups and each group is well above the

Fig. 1 Experimental design for the high-precision LC-MS proteomic discovery analysis, data reduction and subsequent targeted validation pipe-
line. BrCA breast cancer, ELISA enzyme-linked immunosorbent assay, BMI body mass index, LN lymph node, ER oestrogen receptor, PR progester-
one receptor, HER2 human epidermal growth factor receptor 2
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suggested level of 15 per group which allows control
of the type I error rate even in non-normal distribu-
tions [22–24].

Linear and generalized linear modelling
Modelling patient outcome in the validation cohort as a
function of resistin and other variables was performed
using generalized linear modelling and the function glm
within the R statistical computing environment (https://
www.R-project.org/) and using the logit link function ap-
propriate for the binomial family. For linear modelling of
resistin as a function of BMI, lymph node (LN) involvement
(N0 = negative; N1–N3 = positive), ER (Allred score: 0–2 =
negative; 3–8 = positive), PR (0–2 = negative; 3–8 = posi-
tive) and HER2 status (0, 1+ = negative; 2+ = equivocal; 3+
= positive), the linear modelling function lm was utilized
(https://www.R-project.org/). The reference for each cat-
egorical variable was as follows: LN = negative; ER = nega-
tive, PR = negative, HER2 = negative. All coefficients were
tested with the function coeftest available within R (https://
www.R-project.org/).

ROC and AUC analysis
A prediction vector was generated with the predict function
in R and then merged with a vector of true outcome results.
To determine a threshold by which a prediction would be
considered positive (good outcome result), a receiver oper-
ating characteristic (ROC) curve was generated by selecting
101 potential threshold values between 0 and 1 with a 0.01
step size and calculating the true positive and false positive
rates for each threshold value. The cost function for these
threshold values was the sum of the false positives and false
negatives given the threshold setting. These results indi-
cated that a threshold of 0.5 was reasonable, above which a
prediction was determined to be positive (good outcome)

Table 2 Clinical characteristics of the validation cohort

Clinical characteristics Good outcome
group

Poor outcome
group

p value

n 90 91

Age (years)

Median 37 35 0.35

Range 26–40 18–40

Relapse (years)

Median 9.2 1.0 < 0.0001

Range 5.0–11.2 0.3–2.0

BMI (kg/m2)*

Mean 23.3 23.2 0.84

SD 2.1 2.3

Histology

Invasive ductal
carcinoma

83 83

Invasive lobular
carcinoma

6 7

Unknown 1 1

Grade 1 2 1

Grade 2 30 16

Grade 3 57 73

Unknown 1 1

Lymph node status

Negative 45 26 0.001

Positive 45 65

Undetermined 0 0

ER status

Positive 59 41 0.003

Negative 31 50

Unknown 0 0

PR status

Positive 42 24 0.001

Negative 32 52

Unknown 16 15

HER2 receptor status

Positive 24 35 0.47

Negative 49 49

Unknown 17 7

Triple-negative tumours 17 22

Resection margin

R0 resection 67 67

R1 resection 7 12

Unknown 16 12

Chemotherapy

FEC 27 28

Table 2 Clinical characteristics of the validation cohort
(Continued)

Clinical characteristics Good outcome
group

Poor outcome
group

p value

ECMF 22 18

FEC + docetaxel 5 14

AC 5 5

EC + paclitaxel 5 4

EC + paclitaxel +
gemcitabine

2 4

EC 5 1

Null 10 2

Other 9 15

A adriamycin, BI body mass index, C cyclophosphamide, E epirubicin, ER
oestrogen receptor, F 5-fluorouracil, HER2 human epidermal growth factor
receptor 2, M methotrexate, PR progesterone receptor, SD standard deviation
*p = 0.13 between groups (unpaired t test)
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and below which a prediction was determined to be nega-
tive (poor outcome). The area under the curve (AUC)
measure was calculated using the auc function in the
pROC package available within R.

In-silico survival analysis in breast cancer tissue samples
A meta-analysis-based biomarker assessment of resis-
tin in breast cancer tissue samples was performed
using the online software tool Kaplan–Meier Plotter
(http://kmplot.com). Kaplan–Meier Plotter assesses
the effects of 54,675 genes on patient DFS using 5143
breast cancer samples with a mean follow-up of 200
months [25].

Results
Quantitative proteomic analysis and in-silico bioinformat-
ics interpretation
Quantitative proteomics yielded a total of 5346 unique
proteins (peptide FDR-corrected p ≤ 0.05) from all four
HP-SEC-derived segments (Additional file 3: Section 3).
Of these, 812 proteins were differentially expressed be-
tween the good and poor outcome groups (p ≤ 0.05, ≥ 2
unique peptides) (Additional file 4: Section 4) and were
subjected to further bioinformatics analysis. The mass
spectrometry proteomics data have been deposited with
the ProteomeXchange Consortium via the PRIDE part-
ner repository with the dataset identifier PXD008443.

Pathway and network analysis
Significant enrichment was observed for the insulin path-
way in the differentially expressed proteins between the
good and poor outcome groups (p = 0.015, KEGG Path-
way analysis using DAVID) (Fig. 2a). MetaCore pathway
analysis identified glycolysis/gluconeogenesis as a signifi-
cantly enriched process in the differentially expressed
proteins between the good and poor outcome groups
(p < 0.011, FDR corrected) (Fig. 2b). Ingenuity Path-
way Analysis identified small molecule biochemistry,
in particular glucose and fatty acid metabolism, as a
significantly over-represented network (score = 23,
focus molecules = 20) in the differentially expressed
proteins between the good and poor outcome groups.
Resistin was a key molecular participant in this net-
work (Fig. 2c), and was chosen for targeted validation
based on its previously reported role in breast cancer
biology and insulin resistance risk [26–36].

Resistin ELISA validation measurements
Resistin was measured to be upregulated in the good out-
come group from the proteomic discovery stage using
pooled serum samples (p = 0.009) (Figure 3a). The upreg-
ulation of serum resistin in the good outcome group rela-
tive to the poor outcome group was confirmed with
ELISA against the validation cohort (good outcome group,

n = 90, mean (SD) = 114.2 (114.5) ng/ml; poor outcome
group, n = 91, mean (SD) = 86.8 (57.7) ng/ml; p = 0.04)
(Fig. 3b) (Additional file 5: Section 5).

ROC/AUC and KM survival analysis
To determine the predictive power of resistin for outcome,
a receiver-operating characteristic curve (ROC) was gener-
ated (Fig. 4a) along with a cost function with equivalent
penalties for false negatives and false positives (Fig. 4b, c).
The AUC measure of the ROC curve indicated a moderate
level of success for utilizing resistin measures to predict
outcome. Using the measure of true positives, true nega-
tives, false positives and false negatives, serum resistin pro-
vided an accuracy of 0.652, a sensitivity of 0.667 and a
specificity of 0.637.
Finally, using publically available data, in-silico Kaplan–

Meier survival analysis showed a longer disease-free survival
in patients with higher resistin levels at the tissue level for up
to 200 months (Fig. 4d).

Prediction of biological function directionality (induction
or inhibition)
The Diseases & Functions module of Ingenuity Pathway
Analysis demonstrated that inflammatory response, leuco-
cyte infiltration, lymphocyte migration and recruitment of
phagocytes were significantly induced biological processes
based on the downstream differentially expressed proteins
of the good vs poor outcome groups. Resistin was specific-
ally found to participate in the activation of leucocyte infil-
tration (Fig. 5).

Linear and generalized linear modelling
Both linear and generalized linear modelling techniques
were utilized to determine which covariates would relate
to DFS and resistin expression (Additional file 6: Section
6). LN involvement was found to correlate with worse
patient outcome (p = 0.004) and demonstrated a signifi-
cant difference in mean value of resistin between LN
groups. More specifically, LN-negative patients had sig-
nificantly higher resistin levels compared to those with
LN involvement (LN-negative group, n = 71, mean (SD)
= 124.8 (107.5) ng/ml; LN-positive group, n = 110, mean
(SD) = 84.7 (75.6) ng/ml; p = 0.0037, Welch’s two-
sample t test) (Fig. 3c, Additional file 6: Section 6).

Discussion
Improvements made in breast cancer survival have been
associated with the wider use of neo/adjuvant chemother-
apy such as anthracycline/taxane-based treatment [37].
Routine immunohistochemical analysis is used for both
prognosis and predictive markers of response to hormonal
therapy and trastuzumab (ER/PR and HER2 respectively).
Young age [38, 39] and obesity [2] at breast cancer diag-
nosis have been reported to be independent prognostic
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markers of adverse disease outcome. The aim of this study
was to find serum proteomic markers of additional prog-
nostic relevance to EOBC outcomes.
This study implemented a high-precision quantitative

serum proteomics discovery analysis followed by tar-
geted serum ELISA-based validation in an independent
sample set of non-obese EOBC patient samples (Fig. 1).

The applied proteomics method achieved the highest de-
gree of proteome coverage in breast cancer serum to
date (5346 unique proteins with peptide FDR p ≤ 0.05).
The methodological feature that led to this comprehen-
sive proteome result was its ability to analyse non-
depleted serum that also contains exosome-enriched and
other extracellular vessicle- derived proteins in addition

Fig. 2 a Hierarchical clustering analysis of all differentially expressed proteins (DEPs) (812 proteins at p ≤ 0.05 with ≥ 2 unique peptides). b Insulin
signalling pathway significantly over-represented in DEPs between good and poor outcome groups (Fisher exact p = 0.015) using KEGG Pathway
analysis with DAVID. Tabulation of gene names of the observed differentially expressed proteins constituent to the pathway presented. c MetaCore
showed that glycolysis/gluconeogenesis was a significantly enriched process in the DEPs between good and poor outcome groups (FDR corrected
p = 0.011). d Network analysis of differentially expressed proteins using Ingenuity Pathway Analysis showed participation of resistin in the small
molecule biochemistry network (score = 23; focus molecules = 20)
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to directly secreted proteins, as reported previously [9,
12, 14]. Such an in-depth analysis was deemed essential
for the unbiased interrogation of expected systemic ef-
fects and their affiliated biological pathways and net-
works induced by treatment.
Hierarchical clustering analysis of all 812 differentially

expressed proteins (DEPs) is presented in heatmap format
in Fig. 2a. The DEPs were then subjected to canonical
pathway analysis, which achieved significant enrichment
for the insulin signalling (p = 0.015) (Fig. 2b) and glycoly-
sis/gluconeogenesis (p = 0.011) pathways (Fig. 2c). Inter-
estingly, the majority of observed proteins that encoded
for both of these pathways were of exosomal origin, as
listed in the manually curated ExoCarta Web-based com-
pendium (http://www.exocarta.org) [40–42]. Of relevance,
all enzymes mapping to the glycolysis/gluconeogenesis
pathway were upregulated in the poor outcome group,
suggesting that poor-prognosis patients catabolize glucose
more actively compared to patients with longer survival
(Fig. 2c). One noteworthy enzyme found to be upregulated
in the poor outcome group was the pyruvate kinase M2
isoform (PKM2) known to play an important role in

tumorigenesis. As observed in different types of cancers,
including breast cancer, pyruvate kinase expression shifts
to the PKM2 isoform in order to utilize glucose more effi-
ciently to generate biomass under anaerobic conditions
[43]. The functional involvement of the insulin signalling
and the glycolysis/gluconeogenesis pathways were further
verified with Ingenuity Pathway Analysis that showed sig-
nificant enrichment for glucose and fatty acid metabolism
(Fig. 2d) and included resistin, a secreted protein, as one
of its key nodal components. We focused on serum resis-
tin given its association with the insulin signalling and gly-
colysis/gluconeogenesis pathways as a candidate marker
of EOBC prognosis.
In agreement with the discovery cohort (Fig. 3a), resistin

was found to be upregulated in the good outcome group
in the normal weight validation cohort (Fig. 3b). To ad-
dress accurate protein inference, ELISA was used as the
measurement approach for the validation cohort because
it allowed the analysis of the intact form of resistin,
whereas bottom-up proteomics, as used in this study, al-
lows the assessment of protein expression at the derived
peptide level resulting from the trypsin proteolysis step.

Fig. 4 a Receiver operating characteristic (ROC) curve of the true positive rate (TPR) versus the false positive rate (FPR) with AUC = 0.6352. b Cost
function with equivalent penalties for false negatives and false positives. c Distribution plot of 30 false negatives (FN), 33 false positives (FP), 58 true
negatives (TN) and 60 true positives (TP). d In-silico Kaplan–Meier survival analysis of resistin expression at the tissue level
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In this work, both linear and generalized linear regression
analysis confirmed that ER, PR and HER2 exhibited a sig-
nificant degree of interdependence (p < 0.05) (Additional
file 6: Section 6). A receiver operating characteristic (ROC)
curve (Fig. 4a) and associated cost curve (Fig. 4b) were used
to assess the value of resistin in outcome prediction be-
tween the two groups in this study, The AUC measure of
the ROC curve indicated a moderate level of success for
utilizing resistin measures to predict outcome. Using the
measure of true positives, true negatives, false positives and
false negatives (Fig. 4c), serum resistin provided an accuracy
of 0.652, a sensitivity of 0.667 and a specificity of 0.637. We
explored resistin expression at the tissue level using an in-

silico meta-analysis micro-array database, the Kaplan–
Meier Plotter software tool (http://kmplot.com/analysis/).
Consistent with the serum observations in our current
study, this analysis showed that high tissue levels of resistin
were associated with longer disease-free survival (p < 0.001)
(Fig. 4d).
Resistin is a pro-inflammatory molecular that has been

implicated in obesity-mediated type 2 diabetes. Obesity
is a host factor that adversely influences breast cancer
prognosis [2, 42]. There is evidence that insulin resist-
ance may develop after breast cancer adjuvant therapy
[41], and a recent prospective study reported that in-
creased resistin levels coincided with the concurrent

Leucocyte infiltration Inflammatory response 

Recruitment of phagocytes 

z-score = 2.1; p-value < 0.0001 z-score = 2.3; p-value < 0.0001 

Lymphocyte migration 

up-regulated in good vs. poor outcome groups 
 
down-regulated in good vs. poor outcome groups 

Key 

Predicted activation 
Leads to activation 

Finding inconsistent with effect  

Effect not predicted 

z-score = 2.5; p-value < 0.0001 z-score = 2.8; p-value < 0.0001 

Fig. 5 Significant induction (p < 0.0001) of inflammatory response, leucocyte infiltration, lymphocyte migration and recruitment of phagocytes in
the good vs poor outcome groups based on downstream differentiated proteins. z-score > 2 signifies a positive induction effect
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increase in serum insulin and insulin resistance follow-
ing treatment (surgery followed by chemotherapy and
radiotherapy) among stage II–III breast cancer patients
in an adiposity-independent way [35]. It is therefore pos-
sible that derangement of glucose metabolism through
insulin resistance may be a result of late toxic effects of
chemotherapy possibly due to impaired pancreatic beta-
cell function. However, in our present study all patients
received chemotherapy and so any differential effect
cannot be due to the chemotherapy alone. Recent re-
ports strongly suggest that resistin production in
humans is largely from macrophages rather than adi-
pose tissue alone (also known to contain macrophages)
[30, 33, 44]. Insulin pathophysiology has been associ-
ated with inflammatory markers independent of BMI in
subjects at risk of type 2 diabetes [45]. Additionally, in
transgenic mice, production of human resistin from
macrophages was associated with increased inflamma-
tion and contributed to the acquisition of insulin resist-
ance [33]. Our current proteomic findings add to the
evidence suggesting that resistin is a potential surrogate
marker of disturbed insulin pathophysiology and in-
flammation that could provide an explanation for the
observed association between higher resistin level and
improved DFS.
As an ancillary finding, resistin levels were significantly

higher in LN-positive vs LN-negative patients, irrespective
of outcome group (p = 0.0037) (Fig. 3c). A regression
model further examined this trend where the LN status
demonstrated a significant association with resistin mea-
surements. Resistin overexpression was found to correlate
with node-negative status (p = 0.0428). This trend, in com-
bination with the results from the association testing, pro-
vide further evidence that resistin and nodal status could be
linked (Additional file 6: Section 6). During inflammation,
macrophages can be both a major source of resistin and
themselves able to respond to resistin in an autocrine loop,
leading to an increase in pro-inflammatory ‘M1-like’ mac-
rophages and a reduction in anti-inflammatory ‘M2-like’
macrophages [33, 46]. Given that the lymph node status
existed at presentation and all patients received chemother-
apy, we considered whether the overexpression of resistin
per se may have influenced the tumour micro-environment
to exert a suppressive effect on tumour cell motility or ex-
travasation. The association of anti-inflammatory ‘M2-like’
monocytes and macrophages with metastases in preclinical
models [47] provides a possible mechanism whereby in-
creased resistin levels could lead to a lower potential for
metastatic spread by promoting a pre-existing pro-
inflammatory tumour microenvironment. To further ex-
plore this hypothesis, the post-priori examination of the
downstream differentially expressed proteins between the
good vs poor outcome groups using the Diseases & Func-
tions module of Ingenuity Pathway Analysis identified the

inflammatory response, leucocyte infiltration (also implicat-
ing resistin), lymphocyte migration and recruitment of
phagocytes to be significantly induced biological processes
(p < 0.0001, z-score > 2) (Fig. 5). Overall, improved progno-
sis associated with increased resistin levels may indicate an
immunomodulatory role of this protein during early breast
tumour development limiting the ability of the tumour pri-
mary cells to spread to distant sites. Further examining the
mechanistic link between circulating resistin levels and pa-
tient LN status was beyond the scope of the present study;
future studies will be required to explore this hypothesis.
This is a relatively small study, and a larger follow-up study
is warranted, ideally with pre-treatment serum samples to
determine whether the observed specific correlation with
metastasis to axillary lymph nodes holds true at all ages. A
potential technical limitation was the sample pooling strat-
egy used in the discovery phase, which did not permit the
assessment of anticipated inter-individual heterogeneity in
protein expression levels. However, extensive sample pool-
ing is more likely to find larger, more consistent, protein
differences that are therefore more likely to replicate. In
addition, the accuracy of relative protein quantitation for
resistin was validated with ELISA measurements against in-
dividual serum specimens from a separate validation co-
hort, and from the in-silico analysis of an independent
cohort at the tissue level.

Conclusions
A high-precision serum proteomics-based pipeline identi-
fied increased serum resistin to positively correlate with
disease-free survival independent of BMI in women with
EOBC. High resistin levels were associated with less axil-
lary lymph node involvement at presentation and better
survival. We hypothesize that individuals with early breast
cancer who have relatively higher resistin levels may pro-
vide an environment from which tumours are less likely to
metastasize. Further prospective studies are needed to
confirm these findings and elucidate the mechanistic role
of resistin in EOBC patients.
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