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Proteomic profiling of breast cancer
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Abstract

Background: Breast cancer tumors are known to be highly heterogeneous and differences in their metabolic
phenotypes, especially at protein level, are less well-understood. Profiling of metabolism-related proteins harbors
the potential to establish new patient stratification regimes and biomarkers promoting individualized therapy. In
our study, we aimed to examine the relationship between metabolism-associated protein expression profiles and
clinicopathological characteristics in a large cohort of breast cancer patients.

Methods: Breast cancer specimens from 801 consecutive patients, diagnosed between 2009 and 2011, were
investigated using reverse phase protein arrays (RPPA). Patients were treated in accordance with national guidelines
in five certified German breast centers. To obtain quantitative expression data, 37 antibodies detecting proteins
relevant to cancer metabolism, were applied. Hierarchical cluster analysis and individual target characterization were
performed. Clustering results and individual protein expression patterns were associated with clinical data. The
Kaplan-Meier method was used to estimate survival functions. Univariate and multivariate Cox regression models
were applied to assess the impact of protein expression and other clinicopathological features on survival.

Results: We identified three metabolic clusters of breast cancer, which do not reflect the receptor-defined subtypes,
but are significantly correlated with overall survival (OS, p≤ 0.03) and recurrence-free survival (RFS, p≤ 0.01).
Furthermore, univariate and multivariate analysis of individual protein expression profiles demonstrated the central role
of serine hydroxymethyltransferase 2 (SHMT2) and amino acid transporter ASCT2 (SLC1A5) as independent prognostic
factors in breast cancer patients. High SHMT2 protein expression was significantly correlated with poor OS (hazard ratio
(HR) = 1.53, 95% confidence interval (CI) = 1.10–2.12, p≤ 0.01) and RFS (HR = 1.54, 95% CI = 1.16–2.04, p≤ 0.01). High
protein expression of ASCT2 was significantly correlated with poor RFS (HR = 1.31, 95% CI = 1.01–1.71, p≤ 0.05).
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Conclusions: Our data confirm the heterogeneity of breast tumors at a functional proteomic level and dissects the
relationship between metabolism-related proteins, pathological features and patient survival. These observations
highlight the importance of SHMT2 and ASCT2 as valuable individual prognostic markers and potential targets for
personalized breast cancer therapy.

Trial registration: ClinicalTrials.gov, NCT01592825. Registered on 3 May 2012.

Keywords: Protein arrays, Breast cancer, Cancer metabolism, SHMT2, SLC1A5

Background
Worldwide, breast cancer (BC) is the most prevalent
cancer entity among women and is known as a heteroge-
neous disease in terms of tumor morphology and
molecular structure [1–4]. Although many genes and
proteins have been investigated as prognostic and pre-
dictive factors, only a few are decisive for treatment.
This is reflected in the classicl breast cancer stratifica-
tion into receptor-defined subtypes, termed luminal A-
like, luminal B-like, triple negative breast cancer
(TNBC), and human epidermal growth factor receptor 2
(HER2)-positive, as common clinical practice [5, 6].
However, expanding protein profiling towards novel di-
rections could provide new insights into molecular
mechanisms associated with the observed heterogeneous
clinical outcome. Moreover, analyzing these protein pro-
files harbors the potential for identification of prognostic
markers and druggable targets off the beaten track.
Altered metabolism has long been known to

characterize tumors ever since Otto Warburg reported
his first observations of the metabolic changes that
accompany malignancy [7]. Furthermore, deregulated
cancer metabolism has regained attention and is
regarded as a new hallmark of cancer [8]. Metabolic
transformations have been intensively studied over re-
cent years and as a result, the first strategies to target
the altered metabolism of cancer cells are emerging [9].
Mutations in metabolic enzymes can drive tumorigen-

esis; more often, however, cancer metabolism is trans-
formed by altered abundance and activity of metabolic
enzymes [10]. Proliferative cells alter their metabolism
to support biosynthetic reactions required for accumula-
tion of biomass and the production of macromolecules
[11]. Reprogrammed cellular metabolism involves
increased glucose intake and glutamine addiction.
Glutamine is the most abundant amino acid in serum
and represents a fundamental source for nucleotide and
amino acid synthesis. “Glutamine addiction”, which is
characterized by poor cancer cell survival in the absence
of glutamine, has been observed in several cancer
entities [12]. Glutamine acts as a nitrogen donor for
nucleotide and protein synthesis, and is converted via
glutaminase to glutamate, which represents the main
nitrogen donor for the synthesis of nonessential amino

acids [13]. Furthermore, glutamine has been described
as an essential activator of the mammalian target of
rapamycin complex 1 (mTORC1), which regulates pro-
tein translation, cell growth and autophagy [14]. Glutam-
ine is transported by several families of amino acid
transporters, of which ASC amino-acid transporter 2
(ASCT2), also named solute carrier family 1 member 5
(SLC1A5), belongs to the most ubiquitously expressed
glutamine transporters in human cancer cells [15]. Apart
from glutamine metabolism, serine and glycine metabol-
ism are also important mediators in cancer cell develop-
ment. Serine and glycine are biosynthetically linked, and
together provide essential precursors for the synthesis of
proteins, nucleic acids, and lipids that are crucial to can-
cer cell growth. Serine hydroxymethyltransferase
(SHMT) reversibly converts serine to glycine, connecting
the serine and glycine pathways. Glycine is required to
maintain the cellular redox balance and also sustains
oxidative phosphorylation in the mitochondria [16]. It
has been shown that glycine uptake and catabolism are
able to promote tumorigenesis and malignancy, suggest-
ing that serine and glycine metabolism could be a target
for therapeutic intervention [17].
Nevertheless, the criteria used to evaluate tumor me-

tabolism are still not well-established and thus are not
universally applied. Also, it is unclear mechanistically
how metabolic characteristics of the tumor influence pa-
tient outcome and how they can be utilized in the clin-
ical management of tumors. Therefore, it is necessary to
obtain a better understanding of molecular mechanisms
underlying the heterogeneity of breast cancer metabol-
ism. Transcriptional profiling of genes associated with
cancer metabolism has to some extent identified associa-
tions with different clinical features [18]. However, the
breast cancer transcriptome does not directly translate
into proteome and comprehensive analysis of messenger
RNA (mRNA) expression does not reflect all layers of
biological complexity [19, 20]. Thus, a systematic study
of protein expression profiles related to major metabolic
pathways may facilitate a more precise classification and
exploration of prognostic markers in breast cancer.
During recent years, reverse phase protein array

(RPPA) has emerged as a powerful high-throughput
approach for targeted proteomics [21, 22]. RPPA allows
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the quantification of protein expression profiles in large
sample sets while requiring very low amounts of bio-
logical sample. Therefore, the RPPA platform is ideally
suited for the analysis of clinical materials and bio-
marker discovery purposes [23–25].
In respect of the current focus on precision medicine,

the identification of novel therapeutic proteins and prog-
nostic biomarkers is critical for future clinical drug dis-
covery and patient stratification purposes. The objective
of this study was to assess the relationship between pro-
tein profiles of major metabolic pathways and their
prognostic value in patients with breast cancer treated
in accordance to national guidelines. We applied RPPA-
based functional proteomics to a large number of patient
samples from a multicenter prospective cohort. We
assessed clusters of breast cancer subgroups based on
metabolism-associated protein expressions. Furthermore,
we aimed to identify new markers and prognostic factors
associated with patient outcome.

Methods
Patients and tissue samples
Human primary breast cancer samples were collected at
the Martin-Luther University, Halle-Wittenberg between
2009 and 2011 as part of the multicenter prospective PiA
trial (NCT 01592825). Only fresh frozen tissue samples
from female patients with operable non-metastasized
breast cancer were included. The study was approved by
the ethics committee of the Martin-Luther University
Halle-Wittenberg and informed consent was obtained
from each patient. A cohort of 801 primary tumor tissue
samples was investigated using RPPA. Tumor specimens
were fresh frozen after surgery and stored at −80 °C until
further use. Tumor content was verified by histopatho-
logical assessment. Clinicopathological parameters were
obtained for each patient and documented using SPSS 22,
SPSS Inc., Chicago, IL, USA. The TNM staging system
was used [26]. Patient information was anonymized prior
to analysis. Receptor-defined breast cancer subtypes were
determined according to the St. Gallen classification [27].
Due to missing Ki-67 values, we used histopathological
grading to assess cell proliferation [28]. The following
stratification system was applied:

� Luminal A-like: estrogen receptor (ER) positive and/
or progesterone receptor (PgR) positive, HER2 nega-
tive, grade 1 or 2.

� Luminal B-like (HER2 negative): ER positive and/or
PgR positive, HER2 negative, grade 3.

� Luminal B-like (HER2 positive): ER positive and/or
PgR positive, HER2 positive, all grades.

� HER2 positive (non-luminal-like): ER negative and
PgR negative, HER2 positive, all grades.

� Triple negative breast cancer (TNBC): ER negative,
PgR negative, HER2 negative, all grades.

The standardized definitions for efficacy endpoints
(STEEP) criteria were used as endpoint definitions [29].
Additional information on patient and tumor character-
istics are illustrated in Table 1.

Reverse phase protein array profiling
Frozen tumor specimens were homogenized using a
bead mill and tissue protein extraction reagent (50 mM
Tris, pH 8.5, 138 mM NaCl, 2.7 mM KCl, 1% Triton X-
100). Total protein concentration was determined by
bicinchoninic acid protein assay (Thermo Scientific).
Tumor lysates were adjusted to a total protein concen-
tration of 2 μg/μl, mixed with 4 × SDS sample buffer
(10% glycerol, 4% SDS, 10 mM DTT, 125 mM Tris–HCl,
pH 6.8) and denaturated at 95 °C for 5 min. Protein ly-
sates and dilution series of tumor sample pools serving
as controls, were spotted as technical triplicates on
nitrocellulose coated glass slides (Oncyte Avid, Grace-
Biolabs) using an Aushon 2470 contact spotter (Aushon
BioSystems). Post spotting, slides were incubated with
blocking buffer (Rockland Immunochemicals) in TBS
(50%, v/v) containing 5 mM NaF and 1 mM Na3VO4
for 2 h at room temperature. Incubation with target-
specific primary antibodies was applied at 4 °C over-
night. Primary antibodies were selected to cover a range
of metabolic pathways and to achieve a broad perspec-
tive on breast cancer metabolism (Additional file 7:
Table S5). Antibody validation was carried out as previ-
ously described [30]. Primary antibodies were detected
with Alexa Fluor 680 F(ab')2 fragments of goat anti-
mouse IgG or anti-rabbit IgG (Life Technologies) in
1:12000 dilution. In addition, representative slides were
stained for total protein quantification using Fast Green
FCF protein dye as described before [31]. TIFF images of
all slides were obtained at an excitation wavelength of
685 nm and at a resolution of 21 μm using an Odyssey
Scanner (LI-COR, Biosciences). Signal intensities of indi-
vidual spots were quantified using GenePixPro 7.0
(Molecular Services Inc.). Data preprocessing and quality
control were performed using the RPPanalyzer R-
package [32].

Immunohistochemical analysis
Immunohistochemical analyses (IHC) were performed
on 4-μm tissue sections. Protein expression was assessed
using Bond Max Polymer Refine Immunohistochemistry
protocol. Primary antibodies were diluted 1:250. Epitope
retrieval was performed with Bond Epitope Retrieval So-
lution for 30 min at pH6, followed by a peroxidase
block. Primary antibody was incubated for 20 min and
detected using Bond Polymer Refine Detection with 3,3-
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diaminobenzidine (DAB) substrate. IHC was performed
by a pathologist as a semi-quantitative visual score,
based on the fraction of cytoplasmic staining above
background.

Statistical and bioinformatic analyses
Hierarchical clustering
Hierarchical cluster analysis was performed on z scores
of protein expression levels using Ward's minimum vari-
ance method and squared Euclidean distance. Patient
samples and protein targets were clustered simultan-
eously and the resulting dendrograms were visualized
with a heatmap depicting z score values. RPPanalyzer R-
package was used for visualization, with adjustment of
color bars according to the clinicopathological features
of interest and exploiting the dendextend R-package for
dendrogram color-coding [32, 33].

Univariate analysis
The relationship between clinicopathological variables
and the three patient clusters was evaluated using ana-
lysis of variance (ANOVA), the Kruskal-Wallis rank sum
test, and Fisher's exact test, as appropriate. The relation-
ship between the variables and the patient groups, strati-
fied based on the median expression of a protein, was
evaluated using the t test, Wilcoxon rank sum test, and
Fisher's exact test, as appropriate.

Survival analysis
Kaplan-Meier analysis of overall survival (OS) and
recurrence-free survival (RFS) was performed on pa-
tients stratified into groups (based on receptor-defined
subtypes, median expression level or patient dendrogram
clusters). The difference in Kaplan-Meier curves was
tested using the log-rank test implemented in the sur-
vival R-package [34]. Univariate Cox proportional haz-
ard regression models were applied to test individual
protein target association with OS and RFS [35]. For
each target the exponent of the estimated regression co-
efficient is reported as a hazard ratio (HR) with its 95%
confidence intervals (CI). P values were adjusted for
multiple testing resulting in false-discovery rate (FDR)
values [36]. Univariate Cox proportional hazard regres-
sion models were further used to evaluate clinicopatho-
logical variables. Multivariate Cox analyses were then
performed on selected non-correlated clinicopathologi-
cal covariates for each of the proteins that was signifi-
cant in the univariate Cox analysis.

STRING visualization
The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database (Version 10) of the
STRING Consortium was used for visualization of pro-
tein interactions by choosing Gene IDs corresponding to

Table 1 Patient and tumor characteristics
Total Percentage

Number of patient samples

Total 801 100

Age

Mean ± SD 62.25 ± 13.7

Median (range) 63 (22–90)

Tumor size

<2 cm 400 49.9

≥2–5 cm 358 44.7

>5 cm 43 5.4

Histology

Ductal 638 79.7

Lobular 118 14.7

Other 45 5.6

Tumor stage

T1 413 51.6

T2 342 42.7

T3 38 4.7

T4 8 1

Grade

I 91 11.4

II 502 62.7

III 208 26

Nodal status

N0 492 61.4

N1 226 28.2

N2 51 6.4

N3 32 4

Menopausal status

Premenopausal 167 20.8

Perimenopausal 51 6.4

Postmenopausal 583 72.8

Receptor status

ER+ 681 85

ER- 120 15

PgR+ 563 70.3

PgR- 238 29.7

HER2+ 110 13.7

HER2- 691 86.3

HR+ 688 85.9

HR- 113 14.1

Receptor-defined subtype

Luminal A-like 510 63.7

Luminal B-like (HER2 positive) 74 9.2

Luminal B-like (HER2 negative) 104 13

HER2 positive (non-luminal-like) 36 4.5

TNBC 77 9.6

ER estrogen receptor, PgR progesterone receptor, HER2 human epidermal
growth factor receptor 2, TNBC triple negative breast cancer

Bernhardt et al. Breast Cancer Research  (2017) 19:112 Page 4 of 14



proteins [37]. If not otherwise stated, the data were ana-
lyzed using the R statistical computing environment
(version 3.0.2) [38]. A p value <0.05 was considered sta-
tistically significant. The complete RPPA data matrix
with corresponding clinicopathological parameters is
appended in Additional file 8: Table S6.

Results
Unsupervised clustering of protein expression profiles in
patients with breast cancer
To investigate altered expression patterns of
metabolism-related proteins in tumorigenesis of BC, we
performed RPPA of 801 patient specimens. The clinico-
pathological features of the cohort are summarized in
Table 1. The median follow up of the cohort was
55.44 months for overall survival (OS) and 54.46 months
for recurrence-free survival (RFS). In a first step, the pa-
tient profiles of 37 metabolism-related proteins were
assessed by unsupervised hierarchical clustering. As il-
lustrated in Fig. 1, clustering divided the cohort into two
patient subgroups (green, n = 440; violet, n = 361).
To elucidate the potential association with survival in

the two subgroups, we performed Kaplan-Meier analysis
(Additional file 1: Figure S1). We observed no significant
association with OS or RFS. However, a distinct horizon-
tal partition seemed to be a more dominant feature of
the heatmap. A separation into two protein expression
subgroups indicated functional differences throughout
the whole patient cohort. Therefore, we divided the pro-
tein dendrogram into two protein subgroups, a “diffuse”’
cluster (blue, n = 19), characterized by a heterogeneous
protein expression pattern and a “compact” cluster (gold,
n = 18) with a clear protein expression pattern. Notably,
the impact of the compact protein cluster in driving the
initial clustering and formation of the two patient clus-
ters, seemed to subdue the effects of the diffuse cluster.
Therefore, we focused on re-investigating the diffuse
protein cluster separately.

Diffuse protein signature revealed three patient clusters
significantly associated with survival
Hierarchical clustering of the 19 protein targets repre-
senting the diffuse cluster, resulted in three refined pa-
tient clusters based on the dendrogram arrangement
(Fig. 2a).
The blue (n = 242), yellow (n = 89) and brown clus-

ter (n = 470) were compared in survival analysis of
OS and RFS. This revealed a significant difference
among the clusters in both OS (p = 0.023, Fig. 2b)
and RFS (p = 0.0071, Fig. 2c). The blue cluster showed
the most favorable OS and RFS, whereas the yellow
cluster represented the worst. Clinical parameters
(age, tumor size, histology, T stage, grade, node status,
menopausal status and receptor-defined status) were

examined for differences in distribution between the
patient clusters (Additional file 3: Table S1). Univari-
ate comparison across the patients’ groups showed
that all clinical parameters were significantly different
between the three clusters (p ≤ 0.05). Furthermore,
multivariate analysis was conducted based on selected
clinicopathological covariates and while multivariate
analysis became null once additional clinical covari-
ates were included, univariate associations between
the clusters and OS/RFS were significant.

The proteomic network of the diffuse and compact cluster
To visualize the biological context of the proteins repre-
senting the diffuse and compact clusters at a glance, we
visualized them in two protein networks by using the
STRING database (Additional file 2: Figure S2). As part of
the diffuse cluster, we observed all proteins related to
glycine synthesis (SHMT2), lipid and fatty acid synthesis
(FASN, STARD10, ACC and SREBF1), and glycolysis and
lactate production (GLUT1, GAPDH, PKM2, LDHA and
LDHB). The compact cluster in comparison is composed
of all measured proteins associated with serine synthesis
(PHGDH, PSAT1 and PSPH). Pyruvate kinase isozyme
M1 (PKM1) was the only glycolysis protein represented in
the compact cluster. Proteins related to the tricarboxylic
acid (TCA) cycle, urea cycle and glutaminolysis, were
found in both the diffuse and the compact cluster.

Correlation between individual target expression and
clinicopathological characteristics
In order to identify individual proteins responsible for the
survival association of the diffuse cluster, and to evaluate
their potential role as biomarkers, we next analyzed the
expression of all probed proteins individually. The associ-
ation between each protein expression level and OS and
RFS was tested using univariate Cox proportional hazard
regression models and protein expression was treated as a
continuous variable (Additional file 4: Table S2). Out of 37
metabolism-related proteins tested, SHMT2 and ASCT2
were found to be significantly associated with OS (Table 2).
Univariate Cox analysis of RFS identified 6 out of 37
proteins to be significantly associated with outcome
(Table 3).
Patients with breast cancer were further stratified into

“low” and “high” protein expression groups to explore
the relationship with clinicopathological variables. This
was based on the median protein expression of SHMT2,
ASCT2, GAPDH, FH, CAD and PKM2 (Additional file
5: Table S3). Univariate analysis showed that all six pro-
tein expression profiles were significantly associated with
tumor size, T stage, grade, nodal status and receptor-
defined subgroups. Except for CAD, all proteins showed
significant association with histology results, whereas
PKM2 protein expression was the only protein profile

Bernhardt et al. Breast Cancer Research  (2017) 19:112 Page 5 of 14



significantly correlated with age. No significant differ-
ence between the protein expression profiles and meno-
pausal status was observed.

SHMT2 and ASCT2 protein expression as independent
prognostic factors in patients with breast cancer
To further confirm our findings, multivariate Cox ana-
lyses for OS and RFS was conducted based on selected
clinicopathological covariates and univariate significance.
Proteins that were significant in the univariate Cox ana-
lysis were included (Additional file 6: Table S4).

To address whether SHMT2 and ASCT2 protein ex-
pression are independent prognosticators for OS and RFS,
we analyzed the association between SHMT2/ASCT2 pro-
tein expression levels and clinical characteristics of BC,
using multivariate Cox models. This revealed that high
SHMT2 protein expression is an independent negative
prognostic factor for OS (p = 0.011; Table 4) and both high
SHMT2 and high ASCT2 protein expression levels are in-
dependent negative prognostic factors for RFS (SHMT2,
p = 0.003; ASCT2, p = 0.042; Table 5) in patients with BC.
Kaplan-Meier survival estimates, based on dichotomized
protein expression data, subsequently confirmed that

Fig. 1 Unsupervised clustering of protein profiles. The heatmap represents expression levels of 37 metabolism related proteins after unsupervised
hierarchical clustering. The dataset consists of 801 tumor specimen. The z scores of log2 transformed protein expression levels are color-coded on
a low-to-high scale (green-black-magenta). Dendrogram branches divide the patient set into a green and violet cluster and protein targets into a
“diffuse” and “compact” cluster. Annotation bars include receptor-defined subtypes (a), histological grade (b), histology (c), menopausal status (d),
nodal status (e) and T stage (f). HER2, human epidermal growth factor receptor 2; TNBC, triple negative breast cancer
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patients with BC with high SHMT2 and high ASCT2
protein expression had significantly shorter OS
(SHMT2, p < 0.001; ASCT2, p = 0.0165) and RFS
(SHMT2, p < 0.001; ASCT2, p < 0.001), (Fig. 3).
We additionally explored the distribution of SHMT2

and ASCT2 protein expression across BC subtypes. This
identified higher protein expression of both targets in
the aggressive HER2-positive and the TNBC breast
cancer subtype, in comparison to the luminal subgroup
(Fig. 3). SHMT2 and ASCT2 immunostaining of

a

b c

Fig. 2 Unsupervised clustering and analyses based on “diffuse” cluster refinement (a). The heatmap represents metabolism-related protein expres-
sion levels of the diffuse target signature after unsupervised hierarchical clustering of 801 tumor specimen. The z scores of log2-transformed pro-
tein expression levels are color-coded on a low-to-high scale (green-black-magenta). Annotation bars include receptor-defined subtypes (a),
histological grade (b), histology (c), menopausal status (d), nodal status (e) and T stage (f). Statistical analysis of the three patient clusters
(blue, yellow, brown) is shown in Additional file 3: Table S1. Kaplan-Meier curves represent the proportion of overall survivors
(b) and recurrence-free survivors (c), compared by log-rank test

Table 2 Protein targets significantly associated with overall
survival (OS)

Target HR 95% CI P value FDR Affiliation

SHMT2 1.93 1.48–2.51 <0.001 <0.001 Serine metabolism

ASCT2 1.83 1.39–2.42 <0.001 <0.001 Glutamine metabolism

OS events = 83
HR hazard ratio, FDR false-discovery rate, CI confidence interval, SHMT2 serine
hydroxymethyltransferase 2, ASCT2 ASC amino-acid transporter 2
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representative cases were selected on the basis of RPPA
protein expression analysis and revealed a confirming
pattern of cellular target protein expression in RPPA vs.
IHC. Cases of high target-protein expression in RPPA
also represented a high cellular target protein expression
in IHC and vice versa (Fig. 4). Taken together, these
results illustrate the prognostic value of profiling prote-
ome data and highlight the importance of including the
proteomic level in biomarker research.

Discussion
Since breast tumors are heterogeneous at the molecular
level and in outcome, future clinical management should
include personalized tumor characterization, which leads
to improved treatment decisions. So far, the metabolic

Table 3 Protein targets significantly associated with recurrence-
free survival (RFS)

Target HR 95% CI P value FDR Affiliation

SHMT2 1.88 1.50–2.36 <0.001 <0.001 Serine metabolism

ASCT2 1.83 1.45–2.31 <0.001 <0.001 Glutamine metabolism

GAPDH 1.52 1.19–1.94 <0.001 0.009 Glucose metabolism

FH 1.65 1.20–2.27 0.002 0.019 TCA cycle

CAD 2.07 1.29–3.33 0.003 0.019 Pyrimidine metabolism

PKM2 1.46 1.13–1.88 0.003 0.02 Glucose metabolism

RFS events = 109
HR hazard ratio, FDR false-discovery rate, CI confidence interval, SHMT2
serine hydroxymethyltransferase 2, ASCT2 ASC amino-acid transporter 2,
GAPDH glyceraldehyde-3-phosphate dehydrogenase,
TCA tricarboxylic acid, FH fumarate hydratase, CAD carbamoyl-phosphate
synthetase 2, PKM2 pyruvate kinase 2

Table 4 Univariate and multivariate Cox regression analysis of overall survival
Characteristics Univariate analysis SHMT2 ASCT2

Multivariate analysis Multivariate analysis

P value Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Protein expression high vs. low 1.53 (1.10–2.12) 0.011 1.23 (0.90–1.68) 0.194

Age at surgery (years) <0.001 1.06 (1.03–1.09) <0.001 1.06 (1.03–1.08) <0.001

Tumor size <0.001 Not included Not included

< 2 cm

≥2–-5 cm

>5 cm

Histology 0.306 Not included Not included

Ductal vs. non-ductal

T stage <0.001

T1 vs. ≥T2 1.46 (0.88–2.40) 0.141 1.49 (0.90–2.47) 0.123

Grade <0.001

I Reference Reference

II 1.69 (0.52–5.49) 0.385 1.77 (0.54–5.76) 0.345

III 2.40 (0.70–8.23) 0.163 2.95 (0.87–9.99) 0.081

Nodal status <0.001

N0 vs. ≥N1 1.86 (1.18–2.92) 0.007 1.85 (1.17–2.92) 0.008

Menopausal status 0.001

Pre/peri vs. postmenopausal 0.72 (0.28–1.85) 0.489 0.80 (0.31–2.05) 0.64

Receptor status

ER- vs. ER+ <0.001 Not included Not included

PgR- vs. PgR+ <0.001 Not included Not included

HER2- vs. HER2+ 0.682 Not included Not included

HR- vs. HR+ <0.001 0.72 (0.42–1.22) 0.217 0.63 (0.37–1.06) 0.082

Receptor-defined subtypes <0.001 Not included Not included

Luminal A-like

Luminal B-like (HER2 positive)

Luminal B-like (HER2 negative)

HER2 positive (non-luminal-like)

TNBC

SHMT2 serine hydroxymethyltransferase 2, ASCT2 ASC amino-acid transporter 2, CI confidence interval, Pre-peri premenopausal/perimenopausal,
ER estrogen receptor, PgR progesterone receptor, HER2 human epidermal growth factor receptor 2, TNBC triple negative breast cancer
A p value <0.05 was considered statistically significant
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state of tumors has not been studied widely and is insuf-
ficiently embodied by current molecular biomarkers that
predict adverse clinical outcome. Moreover, large cohort
studies have addressed metabolic biomarkers at the gen-
omic level only. Even though genomic information does
translate to a certain extent into phenotypic characteris-
tics, genomic and transcriptomic screens of tumors in
patients with BC have proven unsuccessful in predicting
protein status [39, 40]. Therefore, a complementary
study investigating the metabolic landscape of breast
cancer at the proteomic level is beneficial in identifying
proteome-based biomarkers with clinical impact.

In this study, we used RPPA to generate protein expres-
sion data from 801 breast tumor specimens, in order to
identify prognostic markers and to gain insights into the
metabolic heterogeneity of breast cancer. Clustering ana-
lysis of the whole dataset separated the metabolism associ-
ated proteins into a diffuse and a compact subgroup,
indicating different metabolic profiles. STRING
visualization of the protein distribution depicted a promin-
ent role of glycolysis towards lactate production in the dif-
fuse cluster. Also, SHMT2, primarily responsible for
synthesizing glycine from serine, was a part of the diffuse
cluster, whereas all proteins of the serine pathway

Table 5 Univariate and multivariate Cox regression analysis of recurrence-free survival

Characteristics Univariate analysis SHMT2 ASCT2

Multivariate analysis Multivariate analysis

P value Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Protein expression high vs. low 1.54 (1.16–2.04) 0.003 1.31 (1.01–1.71) 0.042

Age at surgery (years) <0.001 1.04 (1.02–-1.07) <0.001 1.04 (1.02–1.06) <0.001

Tumor size <0.001 Not included Not included

<2 cm

≥ 2–5 cm

>5 cm

Histology 0.11 Not included Not included

Ductal vs. non-ductal

T stage <0.001

T1 vs. ≥T2 1.77 (1.15–2.74) 0.01 1.80 (1.16–2.80) 0.009

Grade <0.001

I Reference Reference

II 1.79 (0.65–4.98) 0.262 1.85 (0.66–5.14) 0.24

III 2.18 (0.75–6.35) 0.154 2.64 (0.92–7.59) 0.072

Nodal status <0.001

N0 vs. ≥N1 1.62 (1.10–2.40) 0.015 1.59 (1.07–2.35) 0.021

Menopausal status 0.01

Pre/peri vs. postmenopausal 0.65 (0.31–1.38) 0.263 0.73 (0.35–1.54) 0.41

Receptor status

ER- vs. ER+ <0.001 Not included Not included

PgR- vs. PgR+ <0.001 Not included Not included

HER2- vs. HER2+ 0.489 Not included Not included

HR- vs. HR+ <0.001 0.79 (0.49–1.27) 0.334 0.69 (0.43–1.10) 0.115

Receptor-defined subtypes <0.001 Not included Not included

Luminal A-like

Luminal B-like (HER2 positive)

Luminal B-like (HER2 negative)

HER2 positive (non-luminal-like)

TNBC

SHMT2 serine hydroxymethyltransferase 2, ASCT2 ASC amino-acid transporter 2, CI confidence interval, Pre-peri premenopausal/perimenopausal,
ER estrogen receptor, PgR progesterone receptor, HER2 human epidermal growth factor receptor 2, TNBC triple negative breast cancer
A p value <0.05 was considered statistically significant
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(PHGDH, PSAT1 and PSPH) were distributed in the com-
pact cluster. Interestingly, key enzymes of the TCA cycle,
crucial for citrate production, like FH and SDHA, were
present in the diffuse cluster, whereas IDH1 and IDH2,
which mainly drive the TCA cycle towards α-ketoglutarate
production, were part of the compact cluster. This obser-
vation was supported by the presence of PDH, STARD10
and FASN and hints towards distinct citrate production in
order to fuel the lipid and fatty acid synthesis. Notably, the
glutamine transporters ASCT2 (SLC1A5) and SLC7A5,
and the glutamine producing enzyme GLUL, were also
part of the diffuse cluster. Altogether, the protein compos-
ition of the diffuse cluster hints towards glucose consump-
tion, glutamine addiction and glycine production and
indicates a more active Warburg-like characteristic in
comparison to the compact cluster [41].
Subsequent clustering analysis based on the diffuse-

cluster protein levels identified three patient clusters,
which are significantly associated with survival on

univariate analysis. These three patient clusters do not
fully reflect the receptor-defined subtypes and may thus
provide additional information towards understanding
breast cancer heterogeneity. Interestingly, further ana-
lysis showed that all proteins found to be significantly
correlated with survival, were part of the diffuse cluster.
SHMT2, ASCT2, GAPDH, FH, CAD and PKM2 were
associated with RSF and SHMT2 on univariate analysis,
and ASCT2 was associated with with OS. Further, we
explored the biomarker potential of these proteins in
multivariate Cox analyses.
Multivariate analysis identified SHMT2 and ASCT2

protein expression levels as significantly associated with
age, nodal status and T stage (RFS only). Moreover, high
SHMT2 protein levels were significantly associated with
poor RFS and OS. High protein expression of ASCT2
was significantly correlated with poor RFS. Patients of
HER2-positive and HR-negative breast cancer had in-
creased SHMT2 and ASCT2 levels compared to patients

a

b

Fig. 3 Kaplan-Meier survival estimates and boxplot representation of key targets associated with survival. Kaplan-Meier plots of serine
hydroxymethyltransferase 2 (SHMT2) and ASC amino-acid transporter 2 (ASCT2) for overall survival (OS) (a), and recurrence-free survival
(RFS) (b). Statistical difference in outcome between high (n = 400) and low (n = 401) expression were compared by log-rank test. Boxplots
represent the relative target protein expression per receptor-defined subtype, luminal A-like (n = 510), luminal B-like human epidermal
growth factor receptor 2-negative (HER2-neg) (n = 104), luminal B-like HER2-positive (HER2-pos) (n = 74), HER2-pos (n = 36), triple negative
breast cancer (TNBC) (n = 77). FDR, false discovery rate; pval, p value

Bernhardt et al. Breast Cancer Research  (2017) 19:112 Page 10 of 14



with luminal-like cancer. Notably, the significant correl-
ation between ASCT2 or SHMT2 and nodal status, T
stage and survival indicates a connection of higher meta-
bolic activity and associated protein expression in meta-
static tumors and tumors with further progression. These
observations are in line with studies reporting that the
metabolic demands of cancer cells are related to their cell
size, progression and protein synthesis rates [42].
Glutamine metabolism is considered to be a thera-

peutic target, as some cancer cells exhibit high uptake of
and addiction to this non-essential amino acid [41].
Recent studies have demonstrated that the primary
glutamine transporter, ASCT2, can promote tumor cell
survival, growth and cell cycle progression in neuroblast-
oma, colorectal cancer, prostate cancer, clear-cell renal
cell carcinoma and non-small cell lung cancer [43–47].
The ubiquitous tissue expression, along with its ability
to transport crucial amino acids, indicates the central
role of ASCT2 in physiological processes including glu-
tamine homeostasis, embryogenesis and retroviral infec-
tion [48, 49]. Glutamine is not only an important
nutrient for cancer cell survival, but also a crucial medi-
ator for immune cell functions. ASCT2 was shown to be
involved in inflammatory T cell responses, which might
exert key functions in tumor immunity [50]. Besides its
significance in prognosis, ASCT2 has also gained more
attention in cancer treatment during recent years.
ASCT2 is considered to be a major regulator of glutam-
ine metabolism and thus represents an important regula-
tor of cancer development [51]. ASCT2 also regulates

the cellular nutrient uptake and concentration [52, 53].
Several studies indicate that blocking glutamine uptake
might be an attractive strategy for cancer therapy. We
showed that high protein levels of ASCT2 are correlated
with unfavorable prognosis. Blocking the glutamine up-
take by utilizing ASCT2 as a potential therapeutic target
and reducing its protein expression, could therefore be a
promising approach.
Besides glutamine, serine and glycine metabolism is

also crucial in cancer cell development. Serine and gly-
cine are biosynthetically linked, and besides cancer
growth also affect the cellular antioxidative capacity,
thus supporting tumor homeostasis. SHMT2 has been
implicated as an essential factor in serine and glycine
metabolism in several cancer cell types, including breast
cancer [17]. SHMT2 catalyzes the reversible reaction of
serine and tetrahydrofolate to glycine and 5,10-methy-
lene tetrahydrofolate. Genomic studies have shown that
high levels of glycine are associated with poor prognosis
in breast cancer, irrespective of the ER status [54]. We
could demonstrate that high protein levels of SHMT2
are correlated with poor outcome. Inhibition of glycine
synthesis by reducing SHMT2 protein expression could
therefore represent a promising strategy to employ
SHMT2 as a potential therapeutic target. Considering
the metabolic heterogeneity of breast cancer, SHMT2
and ASCT2 might be useful as potential markers in risk
stratification and targets for drug development. Notably,
to date there are no SHMT2 and ASCT2 inhibitors
commercially available for cancer therapy. To our

Fig. 4 Representative immunoexpression of serine hydroxymethyltransferase 2 (SHMT2) and ASC amino-acid transporter 2 (ASCT2). Cases were
selected on the basis of reverse phase protein array (RPPA) protein expression results. Representative pictures of the highest or lowest 10% of cases
based on the target expression over all cases. SHMT2 immunoexpression is elevated in Case M571 and low in Case M1084. ASCT2 immunoexpression
is elevated in Case M1199 and low in Case M907. The scale bar indicates 200 μm (×20)

Bernhardt et al. Breast Cancer Research  (2017) 19:112 Page 11 of 14



knowledge this is the first study to report the prognostic
value of SHMT2 and ASCT2 at the protein expression
level in patients with breast cancer.
Although our study revealed the clinical significance of

SHMT2 and ASCT2 in breast cancer, some limitations
warrant further investigation. For instance, the molecular
mechanisms and functional behavior of SHMT2 and
ASCT2 in breast cancer merit further exploration. Fur-
thermore, investigations in an independent external cohort
are needed to validate our findings. We seek to further in-
vestigate the mechanisms discussed in future studies and
will conduct long-term follow up of the patient cohort to
monitor the prognostic power of our results.

Conclusions
In this newly generated breast cancer dataset, we identified
metabolism-associated proteins linked to breast cancer
progression. We found metabolic clusters of breast cancer,
characterized by differences at the proteomic level. Particu-
larly, proteins mapping to the diffuse cluster, were found to
be associated with poor prognosis. Univariate and multi-
variate analyses supported the crucial role of SHMT2 and
ASCT2 protein expression as independent prognostic fac-
tors in breast cancer. High protein expression of SHMT2
and ASCT2 were significantly associated with shorter RFS.
Moreover, high SHMT2 protein expression was also a pre-
dictor for shorter OS. In summary, SHMT2 and ASCT2
protein expression were identified as novel potential prog-
nostic biomarkers for patients with breast cancer, as their
high protein expression is associated with poor outcome.
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