
Alsheh Ali et al. Breast Cancer Research  (2017) 19:103 
DOI 10.1186/s13058-017-0894-6

RESEARCH ARTICLE Open Access

Breast Tissue Organisation and its
Association with Breast Cancer Risk
Maya Alsheh Ali1,2, Kamila Czene1, Louise Eriksson1,3, Per Hall1 and Keith Humphreys1,2*

Abstract

Background: Mammographic percentage density is an established and important risk factor for breast cancer. In
this paper, we investigate the role of the spatial organisation of (dense vs. fatty) regions of the breast defined from
mammographic images in terms of breast cancer risk.

Methods: We present a novel approach that provides a thorough description of the spatial organisation of different
types of tissue in the breast. Each mammogram is first segmented into four regions (fatty, semi-fatty, semi-dense and
dense tissue). The spatial relations between each pair of regions is described using so-called forces histograms (FHs)
and summarised using functional principal component analysis. In our main analysis, association with case–control
status is assessed using a Swedish population-based case–control study (1,170 cases and 1283 controls), for which
digitised mammograms were available. We also carried out a small validation study based on digital images.

Results: For our main analysis, we obtained a global p value of 2 × 10−7 indicating a significant association between
the spatial relations of the four segmented regions and breast cancer status after adjustment for percentage density
and other important breast cancer risk factors. Our (spatial relations) score had a per standard deviation odds ratio
1.29, after accounting for overfitting (percentage density had a per standard deviation odds ratio of 1.34). The spatial
relations between the fatty and semi-fatty tissue and the spatial relations between the fatty and dense tissue were the
most significant. The spatial relations between the fatty and semi-fatty tissue were associated with parity and age at
first birth (p = 6×10−4). Using digital images, wewere able to verify that the same characteristics of tissue organisation
can be identified and we validated the association for the spatial relations between the fatty and semi-fatty tissue.

Conclusions: Our findings are consistent with the notion that fibroglandular and adipose tissue plays a role in breast
cancer risk and, more specifically, they suggest that fatty tissue in the lower quadrants and the absence of density in
the retromammary space, as shown in mediolateral oblique images, are protective against breast cancer.
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Background
Recent years have seen intensive efforts put into searching
for relevant information from mammograms to assist the
prediction of breast cancer risk. Mammographic breast
density, which represents the amount of fibroglandular
tissue in the breast, is the only strongly established image-
based risk factor for breast cancer [1]. It is measured quan-
titatively either as the total dense area or the percentage
of dense area on the mammogram (percentage density or
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PD). Women exhibiting a high PD, e.g. over 75%, have
an approximately sixfold increased risk of breast cancer
compared to women with a low PD (< 5%) [1]. However,
the underlying mechanisms of this association are still
unclear. Although PD aims at measuring the amount of
dense tissue in the breast, it indirectly reflects the quantity
of fat. The role of non-dense tissue in cancer develop-
ment has been investigated by several researchers with
contrasting outcomes [2, 3].
Mammograms present a two-dimensional projection of

the breast, superimposing several layers of tissue into a
single image. Hence, some researchers argue that mea-
sures of dense mammographic volume should be more
accurate for classifying risk than measures of dense mam-
mographic area [4]. These measures have still not been
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studied as extensively as area-basedmethods andKeller et al.
[5] suggest that volumetric and areal density measures
may be complementary for breast cancer risk assessment.
Aside from mammographic breast density, additional

relevant information can be extracted from mammo-
grams. Numerous studies have investigated the relations
between cancer risk and the heterogeneity of themammo-
graphic parenchymal pattern using quantitative texture
descriptors. These particular features have been extracted
on different scales, from the entire breast region [6, 7] to
specific regions of interest such as the retroareolar area [8]
and the central area of the breast [9].
Another type of information present in mammograms,

though seldommeasured, is the spatial organisation (rela-
tions) of the different types of tissue in the breast. Whilst
mammographic breast density summarises the relative
amounts of dense and fatty tissue in the breast and
different texture features measure the local interactions
between pixel intensities, spatial relations quantitatively
capture the global layout of dense and fatty tissue. It has
been previously suspected that the relative distribution
of adipose and fibroglandular tissue is involved in breast
cancer development [10]. Figure 1 shows three different
mammograms to illustrate different types of distributions
of fatty and dense tissue inside the breast. Such differ-
ences could be identified by, for instance, applying basic
shape descriptors on the segmented dense tissue and by
measuring the distance from its centroid to the skin line
[5]. However, measuring only a specific spatial relation
is rarely sufficient to describe fully the possibly complex
relationships between two objects. In this article, we use
a novel approach that provides a more complete descrip-
tion of the spatial organisation of different types of tissue
in the breast. We use the so-called forces histograms
(FHs), which represent quantitative fuzzy spatial relation
descriptors of the pairwise relations of different regions
of interest. A single FH takes into account both the direc-
tional and distance relationships as well as the shapes of
two objects [11]. FHs have been used in other fields of

medical image analysis [12, 13] and we recently described
how they can be applied to analyse mammograms [14]. In
[14], we also carried out a pilot case–control study on 500
mammographic images.
In our main analysis based on digitised mammograms,

we show, using 1170 cases and 1283 controls, that spatial
relation FHs hold important information for discriminat-
ing between breast cancer cases and controls, after taking
into account PD and other important breast cancer risk
factors. We present additional analyses that shed light
on the biological information captured by the FHs that
are most strongly associated with breast cancer risk. We
also present a small validation study based on 300 digital
mammograms (69 cases and 231 controls).

Methods
Materials
Our main analysis is based on CAHRES (Cancer and
Hormone Replacement Study), a population-based post-
menopausal breast cancer case–control study of Swedish
residents born in Sweden and aged 50 to 74 years, between
1 October 1993 and 31 March 1995. The study includes
approximately 6000 women (3000 cases and 3000 age
group matched controls) from which area-based PD mea-
surements of digitised mammograms are available [15].
Body mass index (BMI) was recorded at entrance to the
study, whereas age, in this study, was assessed according
to date of mammography. All cases had primary invasive
breast cancer. We used the mediolateral oblique (MLO)
view since it offers the best opportunity to visualise the
maximum amount of breast tissue in a single image.Mam-
mograms were digitised with an Array 2905HD Laser Film
Digitizer.1 Density resolution was set at 12 bits, spatial res-
olution at 5.0 mm and optical density at 0–4.7. The size
of the images was 4770 × 3580 pixels with 0.05 mm per
pixel. For the present study, we used 2453 mammograms
(1170 cases and 1283 controls) for which data on PD, age,
BMI, hormone replacement therapy (HRT) status, parity
and age at first birth (AFB) were available for all women

Fig. 1 Examples of mammograms exhibiting different distributions of fatty and dense tissue. a The dense tissue is mainly located on the lower part
of the breast. b The bulk of the dense tissue is concentrated in the retroareolar area. c The dense tissue is scattered but falls into two clusters, one
next to the nipple and the other in the upper part of the breast
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included. Of these, 500 (250 cases and 250 controls) were
previously included in our pilot study [14].
We carried out a small validation study using digi-

tal mammograms from the Karolinska Mammography
cohort (KARMA) study (http://karmastudy.org/), which
is a prospective cohort study that was initiated in
January 2011. Recruitment ended in March 2013. It
comprises women attending mammography screening
or clinical mammography at four hospitals in Sweden
[16]. Participants answered a comprehensive web-based
questionnaire, allowed storage of mammograms and
accepted linkage to national breast cancer registers. Iden-
tification of KARMA participants as cases or controls for
the present study was based on linkage with the Swedish
Cancer Registry (last updated 31 December 2013). Here,
we included 69 incident cases (59 with primary invasive
cancer and 10 with ductal carcinoma in situ) with full field
digital mammography images (raw MLO images) from
GE Medical Systems, model Senographe Essential ver-
sion ADS 53.40. We selected an additional 231 healthy
controls with images taken with the same machine (so
that, in total, our validation study was based on 300 post-
menopausal women). The size of the images was 3062 ×
2394 pixels with 0.1 mm per pixel. Information on age,
BMI, HRT status and reproductive history was collected
via a web-based questionnaire at study entry.
In both studies, for cases, all mammograms were taken

less than 3 years before diagnosis (and at latest, at date of
diagnosis). For cases, we used the mammogram contralat-
eral to the tumour to ensure that image measurements
were not affected by the tumours, whereas for controls
an image of a single side was selected at random. This is
common practice in case–control studies using mammo-
graphic images [17, 18]. For KARMA controls, all mam-
mograms were taken at questionnaire date and, therefore,
had a confirmed negative follow-up of at least 9 months.
For CAHRES, mammograms of the controls were taken
within 3 years of questionnaire date (the majority of mam-
mograms were from before questionnaire date, but some
were from several months after) and were all from before
the diagnosis date of the last incident case, so that they
were free from a breast cancer diagnosis.

Percentage density measurement used in this study
For CAHRES, an area-based PD for each image was mea-
sured using the user-assisted approach of Cumulus [19].
Cumulus is the most widely used software for measure-
ment of mammographic density in analogue images. The
user first needs to trace and remove the pectoral mus-
cle manually. Then, they use sliders to perform global
(breast region) and then local (dense region) interactive
thresholding. A trained user (LE) carried out the Cumulus
measurements blinded to case–control status. KARMA
images were not read by Cumulus. For these images, we

used an automated measure of area PD, which has been
shown to perform in line with other established density
measures in terms of breast cancer risk association [20].

Spatial relations measurements
Image preprocessing
The main aim of the preprocessing step is to separate
the breast from other objects in the mammogram (i.e.
labels, tags and screening artefacts) with a minimum loss
of breast tissue. In general, two independent steps are per-
formed. The first aims to segment the breast region, while
the second separates the pectoral muscle from the rest
of the breast area. The pectoral muscles were removed
from both digital and digitised images using the texture
gradient-based approach proposed by Bora et al. [21].
Digitised mammograms were rescaled to have pixel val-

ues between 0 and 1 and denoised using pixelwise adap-
tive Wiener filtering. The strong signal-to-noise ratio of
the digital images allowed us to segment the breast region
by applying a simple thresholding to the image. To seg-
ment the breast profile, the contrast of the image first
needed to be enhanced to brighten the low-intensity pixels
close to the skin line. This was achieved using a loga-
rithmic transformation of the image. The image was then
segmented into three classes according to Otsu’s multi-
thresholding method. The two brightest classes were kept
since they correspond to the breast region and the other
objects in the mammogram, while the darkest corre-
sponds to the background. The breast mask was finally
extracted as the largest group of connected components
and smoothed using morphological filtering.

Partition of breast images
After breast region segmentation, pectoral muscle
removal and contrast enhancement for raw digital images,
breast regions representing different types of tissue need
to be defined. In the literature, there is no standard for
the number of regions that can be defined from an X-ray
image of the breast, and the number used has varied
from two to 13 [22], often depending on the purpose of
the study. In our work, we defined four different regions
in the breast. The choice of four regions is common in
the literature and corresponds to the number of original
parenchymal patterns defined by Wolfe [23], who cate-
gorised images according to both the extent of densities
and their characteristics (prominence of ducts and dys-
plasia). Also, four regions representing very dense tissue
(both fibrotic stromal and glandular tissue), the fatty
background of the mammogram and the fatty breast edge
have been used for extracting textural descriptions [24].
Here, we used a fully automated segmentation method,
the fuzzy C-Means clustering, to divide the breast into
four regions loosely representing the fatty, semi-fatty,
semi-dense and dense tissue.

http://karmastudy.org/
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Forces histogram
The FHmethod is applied to describe comprehensively the
relative positions of the different regions of tissue. Since
the FH encapsulates in a single histogram the directional
and the distance relationships between the regions con-
sidered as well as their shapes, we construct an exhaustive
description of the spatial organisation of tissue in a mam-
mogram by computing the FH between all pairs of regions.
Figure 2 illustrates the principle of the computation of

the FH between two sets of pixels, in this example compar-
ing pixels within a region A (in green) with pixels within
a region B (in orange). The value of the FH for a spe-
cific angle θ is obtained using the following algorithm.
First, a series of parallel lines sweeping across the image
in direction θ is defined. Then, for each line, a weight is
calculated as the sum of the inverted squared Euclidean
distances between all pairs of pixels, such that the first
pixel belongs to object A and the other to B. Finally, the
weights of all the lines are summed to generate the value
of the FH along this particular direction, which corre-
sponds to a single bin of the histogram. This procedure is
repeated for a series of angles evenly distributed between
0° and 360°. The number of angles considered defines the
length of the histogram and its angular precision, hence
shorter descriptions are less accurate.
Each image of the breast, segmented into four regions,

is then described by a set of six FHs (4 choose 2) measur-
ing the relative positions of the different pairs of regions.
We use FHij to denote the FH that measures the rela-
tive positions of regions i and j. FH descriptions for an
example mammographic image are shown as part of Fig. 3
(which is an overview of the complete strategy for our
main analysis, which we continue to describe in ‘Statistical
methods’). The computation of the FH follows a complex-
ity of O(an

√
n), where n is the number of pixels in the

image and a is the number of angles considered. To reduce
the computation time while retaining the overall spatial
organisation of the tissue, each image was rescaled to 0.25
mm per pixel and we set the number of angles to 180 (a
step of 2°). For more details, see [14].

Statistical methods
Prior to testing for association with breast cancer status,
for each study, we compressed the key information gath-
ered in our six FHs (described by, in total, 6 × 180 FH
variables) into a small number of variables. Each FH can
be viewed as a function of the angle θ . To summarise the
information contained in each FH, we apply approaches
that are suitable for analysing data. These provide infor-
mation about phenomena varying over a continuum (i.e.
curves). Specifically, we chose to extract the dominant
modes of variations included in each FH by carrying
out a functional principal component (fPC) analysis [25].
We used the method described in [26], which is imple-
mented in PACE,2 a MATLAB package for functional
data analysis. This approach transforms the FH data to
K-dimensional multivariate data consisting of the first
K(fPC) scores, which account for a cumulative variance
of 85%. In CAHRES, for all FHs, we retained two fPCs
per FH except for the one relating regions 2 and 4, for
which we retained three fPCs (13 fPCs, in total). Exactly
the same number of fPCs (for all FHs) was retained when
analysing the KARMA images (again 13 fPCs, in total).We
will denote the kth fPC for the FH that measures the rel-
ative positions of regions i and j by fPCk

ij. For CAHRES,
we carried out our main association analysis by describing
breast tissue organisation using all 13 fPC variables. This
step of the analysis is represented by the box ‘functional
PCA’ in Fig. 3.
We evaluated the association between the fPCs and

case–control status in CAHRES by fitting logistic regres-
sion models treating case–control status as a dependent
variable and the fPCs as independent variables. All fPCs
were standardised to zeromean and unit variation prior to
being included in logistic regression models. We included
age, BMI, PD, HRT, parity and AFB (the variables parity
and AFB were combined into a single categorical variable
with five categories; see Table 1) in all logistic regression
models as adjustment variables. In our main analysis, we
chose to transform PD by taking its square root prior to
including it as an adjustment variable, although we also

Fig. 2 Illustration of the computation of FHs between two objects A (green) and B (orange). a Both objects and the parallel lines sweeping across
the image oriented by a specific angle θ °. b The final FH (with angles between 0° and 360°) describing the spatial relationships between A and B. In
this example, the maximum value of the FH is obtained for an angle of approximately 18° and is empty for values between 50° and 350°, since no
line meets both objects A and B along these orientations. FH forces histogram
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Fig. 3 Overview of main analyses. A given breast image is first segmented into four regions: dense (red), semi-dense (yellow), semi-fatty (light blue)
and fatty (dark blue) tissue. The spatial relations between each pair of regions is described by a forces histogram. The information captured by each
forces histogram is compressed into a small number of variables using a functional principal component analysis and then the association between
these variables (representing the spatial organisation of the regions) and breast cancer status is evaluated through a statistical test. PCA principal
component analysis

repeated our analysis with PD on its original scale as well
as categorised into five groups ([ 0, 5[, [ 5, 10[, [ 10, 20[,
[ 20, 40[ and [ 40, 100]). In our data, the overall model
fit was best using square root PD. To evaluate whether
our selected features (fPCs) were, overall, associated with
breast cancer status (after adjustment for potential con-
founding variables), we carried out a likelihood ratio test.
This step of the analysis is represented by the box ‘Associ-
ation with breast cancer risk’ in Fig. 3.
We estimated an effect size for a risk score constructed

from the fPC variables of the spatial relations. If a single
dataset is used naively both to train a score and to eval-
uate its effect size, the effect size will be overestimated

Table 1 Key characteristics of individuals (CAHRES)

Characteristic Cases Controls P value

Number 1,170 1,283

HRT use 2 × 10−9

Never 791 (68%) 998 (78%)

Past 98 (8%) 40 (3%)

Current 281 (24%) 245 (19%)

Parity and AFB 7 × 10−7

Nulliparous 157 (13%) 129 (10%)

Parity ≤ 2 and AFB ≤ 25 349 (30%) 354 (28%)

Parity ≤ 2 and AFB > 25 372 (32%) 351 (27%)

Parity > 2 and AFB ≤ 25 214 (18%) 351 (27%)

Parity > 2 and AFB > 25 78 (7%) 98 (8%)

Age 62.6 (±6.5) 63.6 (±6.4) 8 × 10−5

BMI 25.2 (±3.6) 25.0 (±3.8) 0.26

PD 18.7 (±14.6) 14.8 (±13.2) 4 × 10−12

√
PD 3.9 (±1.7) 3.5 (±1.7) 6 × 10−14

Means (with standard deviations in parentheses) are given for continuous variables
and counts (with percentages in parentheses) are given for categorical variables. P
values are obtained using likelihood ratio tests based on fitting logistic regression
models without adjustment for additional covariates
AFB age at first birth, BMI body mass index, HRT hormone replacement therapy, PD
percentage density

(which we will refer to as an apparent estimate). We,
therefore, used a bootstrapping procedure that provides
a nearly unbiased (honest) estimate of the effect size (the
procedure is, in fact, slightly biased in the direction of
underestimating the effect); see Harrell et al. [27]. We also
estimated area under the receiver operating characteristic
curve (AUC) values (honest values were calculated using
the bootstrap procedure) and used Delong’s test [28] for
comparing apparent AUC values.
After carrying out our global test of association and

estimating AUC values and an effect size for a spatial
relation score, to interpret our results, we identified the
most important fPCs using a stepwise selection procedure
(using the step function in R). Two fPCs were selected.
For these two fPCs, to identify the angle(s) (in their cor-
responding FHs) for which they predominantly capture
variability, we visualised plots of modes of variations [29]
and eigenfunctions (see Figure 6 in the Appendix). To
understand the fPCs better, we studied their association
with risk factors considered in our case–control analysis.
Since (both) selected fPCs were approximately normally
distributed, we did this by fitting linear regression models
with normal error distributions.
For our validation study (KARMA), we retained only

the two fPCs that were selected in our analysis based
on CAHRES data. We verified that the fPCs extracted
from CAHRES and KARMA carried corresponding
information (using plots of modes of variations and
eigenfunctions; see Figure 7 in the Appendix). Associ-
ational analysis in KARMA was also based on logistic
regression analysis.

Results
Main analysis
For CAHRES, key characteristics of cases and controls
included in our analyses are described in Table 1. We refer
to the four density regions segmented inside the breast as
1, 2, 3 and 4, corresponding to the fatty, semi-fatty, semi-
dense and dense tissue, respectively. The 13 fPCs, which
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describe breast tissue organisation (see ‘Statistical meth-
ods’), were used as covariates in the logistic regression
model to investigate the association of tissue organisation
with breast cancer status.
Parameter estimates of the logistic regression with all

covariates (fPCs) and adjustment variables are shown in
Table 2. We obtained a global p value of 2 × 10−7 from
a likelihood ratio test on 13 degrees of freedom, indicat-
ing significant association between the spatial relations of
the four segmented regions and breast cancer status. To
ensure that this association is independent of breast size
(it is possible that the FHs, to some extent, capture breast
size), we also adjusted for the breast mammographic area;
the p value was then 1 × 10−7. We also noted that the
global p value was largely unchanged when PD was on its
original scale (p = 5 × 10−8), or when it was coded as a
categorical variable (p = 7 × 10−7). For an independent
validation of our pilot study result, we removed the 500
images that had been included in [14]. When doing so, we
obtained a p value of 8 × 10−5.
We next constructed a spatial relations score, as a sum

of the fPC values weighted by the estimated coefficients
(for the fPCs), as shown in Table 2. From fitting a logis-
tic regression model with this score (instead of the 13
fPC variables), along with PD and the other breast can-
cer risk factors, and multiplying the standard deviation of
the score by its regression coefficient, we obtained a naive
(biased) per standard deviation effect size estimate of 0.33
(the per standard deviation odds ratio was 1.39) and an
apparent AUC value of 0.654. Delong’s test gave a p value
of 6.46 × 10−4 when comparing this model to one that
excluded our score (which had an apparent AUC of 0.630).
Using a bootstrapping procedure (based on 1000 boot-
strap samples), we obtained an honest estimate of 1.29 for
the per standard deviation odds ratio for the fPC-based
score, and an honest estimate of 0.637 for the AUC for
the full model (the honest estimate of AUC for the model
excluding our score was 0.621).We note that from fitting a
model that excluded all spatial relations variables, we esti-
mated the per standard deviation odds ratio for PD to be
1.34 (the per standard deviation odds ratio for PD actually
increased, to 1.40, when the fPCs of the spatial relations
were included as covariates in the model).
The main features of the fPCs have to be identified to

gain insight into the biological reasons for the associa-
tion of the fPCs with breast cancer status. Due to the
organisation of the segmented regions, it is expected that
different fPCs carry overlapping information. Based on
the full model (Table 2), it appears that the fPCs describ-
ing the relative position of the different regions to the fatty
breast edge (region 1) are most important. After using
stepwise selection, we retained fPC2

12 and fPC
1
14.When fit-

ting a logistic regression model with these two variables
as covariates and with all the considered confounders, the

Table 2 Logistic regression results with age, BMI,
√
PD, parity

and AFB, HRT and fPCs as covariates (CAHRES)

Covariate Estimated Standard P value
coefficient error

Intercept −1.828 0.667 0.006

Age −0.008 0.007 0.259

BMI 0.066 0.015 2 × 10−5

√
PD 0.199 0.040 6 × 10−7

Parity and AFB

Nulliparous

Parity ≤ 2 and AFB ≤ 25 −0.186 0.149 0.213

Parity ≤ 2 and AFB > 25 −0.139 0.147 0.346

Parity > 2 and AFB ≤ 25 −0.666 0.156 2 × 10−5

Parity > 2 and AFB > 25 −0.393 0.201 0.051

HRT use

Never

Past 0.737 0.201 2 × 10−4

Current 0.270 0.108 0.013

Spatial relations fPCsa

fPC112 −0.150 0.130 0.250

fPC212 −0.395 0.100 8 × 10−5

fPC113 0.004 0.098 0.967

fPC213 0.144 0.092 0.118

fPC114 −0.208 0.091 0.023

fPC214 0.039 0.066 0.554

fPC123 0.148 0.121 0.219

fPC223 0.097 0.091 0.283

fPC124 −0.022 0.093 0.812

fPC224 0.158 0.078 0.042

fPC324 0.006 0.066 0.926

fPC134 0.118 0.065 0.069

fPC234 0.081 0.066 0.217

AFB age at first birth, BMI body mass index, HRT hormone replacement therapy, PD
percentage density
ap = 2 × 10−7

corresponding estimated coefficients for fPC2
12 and fPC1

14
were −0.124 with a p value of 0.006, and −0.201 with a p
value of 3 × 10−5, respectively. The combined p value for
these two fPCs was 7 × 10−8. These two fPCs were mod-
erately correlated (r = 0.3) and both were approximately
normally distributed.
To visualise the variation in FHs between regions 1 and 2,

captured by fPC2
12, we plotted the second mode of variation,

along with its FH data and eigenfunction; see Figure 6 (a to c)
in the Appendix. From the mode of variation and the cor-
responding eigenfunction it can be seen that fPC2

12 captures
variability at angles of 54°, 152° and 268°. We note that we
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obtained a multiple R2 value of 0.99 based on fitting a lin-
ear regression model to fPC2

12 with FH12(54°), FH12(152°)
and FH12(268°) included as covariates. FH12(54°) and
FH12(268°) are positively associated with fPC2

12 whereas
FH12(152°) is negatively associated with fPC2

12.
We next selected images with high and low values of

fPC2
12; four images are shown in Fig. 4. These images

(a to d) have PD values of 53, 9, 35 and 9, and standardised
fPC2

12 values of 2.5, 3.0, −1.9 and −1.9, respectively. His-
tograms for FH12(54°), FH12(152°) and FH12(268°) are
included above each image, with the specific FH value of
an image marked as a vertical red line. From scrutinising
the images and their FH values, it seems that low fPC2

12
values are linked to regular distributions of both fatty and
semi-fatty tissue along the skin line of the breast, whereas
high fPC2

12 values are related to thinning regions near
the retroareolar area and irregular spreading of semi-fatty

tissue in the lower part of the breast (fatty and semi-
fatty tissue are collected in the lower quadrants of the
images).
From the first mode of variation and its corresponding

eigenfunction for the FHs between regions 1 and 4, it can
be seen that fPC1

14 captures variability at an angle of 192°;
see Figure 6 (d to f ) in the Appendix. FH14(192°) is posi-
tively associated with fPC1

14 and we obtained an R2 value
of 0.93 based on fitting a linear regression model to fPC1

14
with FH4(192°) as a covariate. Four images selected for
having high or low values of fPC1

14 are shown in Fig. 5.
These images (a to d) have PD values of 39, 3, 19 and 3,
and standardised fPC1

14 values of 4.4, 3.3, −1, 9 and −1.6,
respectively. The value of FH14(192°) for each image is
marked with a vertical red line on the histogram of the
values of FH14(192°) for all images (shown above the
corresponding image). fPC1

14 provides information about

a c

b d
Fig. 4 Examples of mammogramswith high ((a) and (b)) and low ((c) and (d)) values of fPC212. Original mammograms are shown next to their segmented
regions 1 (dark blue) and 2 (light blue). Histogramsof FH12 values at angles of 54°, 152° and 268° are included above each image with the value for the specific
image marked as a vertical red line. A low fPC212 value, after adjustment for PD and other covariates, is associated with increased risk of breast cancer
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the location of dense tissue in relation to the fatty region.
From viewing images (a) and (c), two images with mod-
erately high PD, it appears that low values of this fPC can
be synonymous with the dense region being located in the
retromammary space of the image (high values capture an
absence of dense tissue in the retromammary space). From
viewing the images (b) and (d), it may be plausible that, in
low PD images, a low value of fPC1

14 is synonymous with a

more heterogeneous distribution of dense tissue (i.e. it is
more scattered).
To trace any potential determinants of fPC2

12 (key char-
acteristics of the spatial distribution of adipose tissue) and
fPC1

14 (position of dense tissue relative to fatty tissue), we
fitted linear regression models with, in turn, fPC2

12 and
fPC1

14 as dependent variables, and the risk factors con-
sidered in the earlier models as independent variables.

Fig. 5 Examples of mammogramswith high ((a) and (b)) and low ((c) and (d)) values of fPC114. Original mammograms are shown next to their segmented
regions 1 (dark blue) and 4 (red). The histograms of FH14 at an angle of 192° are included above each imagewith the value for the specific image marked as a
vertical red line. A low fPC114 value, after adjustment for PD and other covariates, is associated with increased risk of breast cancer. PD percentage density
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PD, parity and AFB, and BMI are all positively associated
with fPC2

12. Parameter estimates for the model for fPC2
12

are shown in Table 3. For fPC1
14, only BMI and PD have

statistically significant coefficients; see Table 4.
In the main association analysis (Table 2), we concen-

trated on looking for the main effects of fPCs. It is, of
course, possible that particular features are important
within narrow ranges of PD. However, when dividing the
samples into three groups defined by PD ([ 0, 7[, [ 7, 25[
and [ 25, 100]; the number of images per group being
respectively 717, 1,176 and 560), fPC2

12 and fPC1
14 were

jointly significantly associatedwith breast cancer status in all
groups (with p values of 0.009, 8× 10−4 and 0.006) and the
signs of the coefficients were consistent across all groups.
We note that, with the exception of breastfeeding, we

believe that we adjusted for the potentially most impor-
tant confounders in our main analysis (Table 2). Because
information on breastfeeding wasmissing for a substantial
number of individuals (451), we did not include breast-
feeding as a covariate in the main analysis. We did, how-
ever, carry out a sub-analysis. When we re-performed
our analysis on a reduced data set (2002 individuals and
images) with complete information on breastfeeding (yes
or no), and including breastfeeding, along with the other
covariates, the p value for association between the 13 fPCs
and breast cancer risk was 2×10−6, which was unchanged
when breastfeeding was excluded from the model. Based
on fitting linear regression models with fPCs as outcome

Table 3 Linear regression model for fPC212 with breast cancer risk
factor covariates (CAHRES)

Covariate Estimated Standard P value
coefficient error

Intercept −1.332 0.272 1 × 10−6

Age 0.003 0.003 0.373

BMI 0.025 0.006 8 × 10−6

PD 0.022 0.002 < 2 × 10−16

Parity and AFBa

Nulliparous

Parity ≤ 2 and AFB ≤ 25 0.252 0.069 2 × 10−4

Parity ≤ 2 and AFB > 25 0.100 0.068 0.142

Parity > 2 and AFB ≤ 25 0.229 0.071 0.001

Parity > 2 and AFB > 25 0.108 0.093 0.243

HRT use

Never

Past −0.121 0.089 0.175

Current −0.074 0.050 0.140

Pearson product–moment correlation coefficients between fPC212 and variables age,
BMI and PD are −0.04 (p = 0.05), −0.01 (p = 0.82) and 0.25 (p < 2 × 10−16),
respectively
AFB age at first birth, BMI body mass index, HRT hormone replacement therapy, PD
percentage density
ap = 6 × 10−4

Table 4 Linear regression model for fPC114 with breast cancer risk
factor covariates (CAHRES)

Covariate Estimated Standard P value
coefficient error

Intercept −2.24 0.260 < 2 × 10−16

Age −0.003 0.003 0.224

BMI 0.078 0.005 < 2 × 10−16

PD 0.028 0.001 < 2 × 10−16

Parity and AFB

Nulliparous

Parity ≤ 2 and AFB ≤ 25 0.052 0.066 0.420

Parity ≤ 2 and AFB > 25 0.086 0.065 0.188

Parity > 2 and AFB ≤ 25 0.015 0.068 0.826

Parity > 2 and AFB > 25 0.004 0.089 0.959

HRT use

Never

Past −0.005 0.085 0.953

Current 0.016 0.048 0.732

Pearson product–moment correlation coefficients between fPC114 and variables age,
BMI and PD are −0.10 (p = 8 × 10−7), 0.15 (p = 7 × 10−14) and 0.29
(p < 2 × 10−16) respectively
AFB age at first birth, BMI body mass index, HRT hormone replacement therapy, PD
percentage density

variables, breastfeeding was not significantly associated
with either fPC2

12 or fPC1
14 after adjustment for other

covariates (e.g. parity and AFB).

Validation
Amajor purpose of our validation study was to check that
we can identify the same characteristics of breast tissue
organisation from digital images as we can from digitised
analogue images. That we have a relatively small number
of cases with digital images means that we have relatively
low power to validate case–control associations. Key char-
acteristics of cases and controls selected from KARMA
are displayed in Table 5 in Appendix. For KARMA, as
in CAHRES, 13 fPCs were retained that describe breast
tissue organisation.
For further validation, we considered the two fPCs that

were retained using stepwise selection in CAHRES (fPC2
12

and fPC1
14).

After constructing and examining mode of variations
and eigenfunction plots (see Figure 7 in Appendix), we
could confirm that these fPCs identified the same features
in the KARMA digital images as they did in CAHRES ana-
logue images. The angles capturing maximum variability
in fPC2

12 in KARMA were 56°, 156° and 270°, which were
very close to the angles captured by fPC2

12 in CAHRES.
Similarly, the angle of maximum variability was almost
the same over the two studies for fPC1

14. When fitting
a logistic regression model to case–control status, with
fPC2

12 and fPC1
14 as covariates along with the considered
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confounders, the corresponding estimated coefficients for
fPC2

12 and fPC1
14 were −0.344 with a p value of 0.031,

and 0.243 with a p value of 0.128, respectively (Table 6
in Appendix). That is, despite the small number of cases,
we were able to validate the association with fPC2

12. This
association had a p value that was lower than that for the
association between case–control status and PD in this
dataset. The apparent and honest AUCs for the model
with no fPCs were 0.687 and 0.634, respectively, whilst for
the model with the selected fPCs, the apparent and hon-
est AUCs were 0.703 and 0.643, respectively. Delong’s test
(based on the apparent AUCs) gave a p value of 0.386.

Discussion
In this paper, we investigated the role of the spatial organi-
sation of different regions comprising the breast, onmam-
mograms, in terms of the risk of developing breast cancer.
The results of our main analysis showed that the spa-
tial relations between the fatty and semi-fatty tissue along
with the spatial relations between the fatty and dense tis-
sue are associated with breast cancer risk after adjustment
for PD and other possible confounders. These findings are
consistent with the idea that fibroglandular and adipose
tissue play a role in breast cancer risk.
Several studies have already explored the role of breast

fatty tissue, but have reported conflicting results [2, 3].
However, it has been noted that studies reporting a neg-
ative association between adipose tissue area and breast
cancer risk based their measurements on the craniocau-
dal view, whereas those reporting a positive association
used the mediolateral view. Our results show that the
location of adipose tissue (both our fatty and semi-fatty
regions) has an impact on breast cancer risk and provides
additional information to explain these contrasting stud-
ies and may help in understanding the role of the fatty
tissue. To define better estimates for breast cancer risk,
it will likely be important to clarify the biological mecha-
nisms regulating the spatial distribution of adipose tissue
inside the breast.
In our validation study, we were able to verify that it

is possible to identify the same characteristics of breast
tissue organisation in digital images as in analogue images.
Moreover, despite the small sample size of our validation
study, we were able to validate the association between
risk and our measure of the spatial relations between the
fatty and semi-fatty tissue. It would, though, be valuable
to study the association between the two specific FH vari-
ables identified here (or related measures developed to
capture directly the important spatial features identified
here) with breast cancer status using larger digital external
datasets and to investigate their use in breast cancer risk
prediction.
We have adopted one approach for segmenting the

images prior to carrying out statistical analyses. Other

approaches could be employed. Moreover, the segmen-
tation method used in this study will always divide the
breast into four regions, even for a very low-density mam-
mogram. Since the proposed features are unavoidably
influenced by the choice of the segmentation method, an
adaptive approach taking into consideration the quantity
of dense tissue in the breast might yield more precise
descriptors, which could be easier to interpret.
Our approach could also be used on other types of

images. In this study, we included only MLO mammo-
grams. It would be interesting to investigate the spatial
organisation by including craniocaudal views to give a
more precise and more exhaustive description of the spa-
tial relations of regions of density inside the breast. It
would also be interesting to extend the method described
here to digital breast tomosynthesis images, which pro-
vide a detailed three-dimensional view of the breast where
patterns of fibroglandular tissue are not subject to over-
lapping tissue. Finally, we point out that the approach
we described here, for capturing relevant patterns in the
organisation of breast tissue, may be useful in numerous
contexts, for example, in studying in detail the role of
tissue density in screening sensitivity.

Conclusions
Much attention has been paid to the dense and non-dense
areas of the breast and the role of their sizes as breast can-
cer risk factors. In this study, we go further and find an
association between the spatial organisation of breast tis-
sue and breast cancer risk that is independent of (overall)
mammographic density and a number of other established
risk factors for breast cancer. The concentration of adi-
pose tissue in the lower quadrants (which is associated
with high parity and young age at first birth) and the
absence of dense tissue in the retromammary space can be
protective against breast cancer. These findings are com-
pletely novel and may provide a basis for more detailed
biological hypotheses concerning the role of breast tissue
in breast cancer.

Endnotes
1Array Corporation, Hampton, NH, USA
2http://www.stat.ucdavis.edu/PACE/

Appendix
Modes of variation plots
For a particular fPC, of a particular FH, the set of functions
(defined across a range of values of α) viewed on the
modes of variations plots were calculated as

V = μ(θ) ± α
√

λφ(θ),

whereμ(θ) is themean function of the considered FH, λ is
the corresponding eigenvalue and φ(θ) is the correspond-
ing eigenfunction.

http://www.stat.ucdavis.edu/PACE/
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Fig. 6 Visualisation of variability in fPC212 and fPC114 in CAHRES (analogue images). a and d show FH12 and FH14 for all images. The second mode of
variation of FH12 and its eigenfunction are displayed in b and c, respectively. The red lines at angles 54°, 152° and 268° indicate the locations of the
maxima of variations in the set of all the FH12. The first mode of variation of FH14 and its eigenfunction are displayed in e and f, respectively. The red
line at angle 192° indicates the maximum of variation in the set of all the FH14

a b c

d e f
Fig. 7 Visualisation of variability in fPC212 and fPC114 in KARMA (digital images). a and d show FH12 and FH14 for all images. The second mode of
variation of FH12 and its eigenfunction are displayed in b and c, respectively. The red lines at angles 56°, 156° and 270° indicate the locations of the
maxima of variations in the set of all the FH12. The first mode of variation of FH14 and its eigenfunction are displayed in e and f, respectively. The red
line at angle 196° indicates the maximum of variation in the set of all the FH14
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Validation study (KARMA)

Table 5 Key characteristics of individuals (KARMA)

Characteristic Cases Controls P value

Number 69 231

HRT use 0.179

Never 42 (61%) 125 (54%)

Past 18 (26%) 86 (37%)

Current 9 13%) 20 (9%)

Parity and AFB 0.192

Nulliparous 9 (13%) 26 (11%)

Parity ≤ 2 and AFB ≤ 25 19 (27%) 75 (33%)

Parity ≤ 2 and AFB > 25 24 (35%) 66 (29%)

Parity > 2 and AFB ≤ 25 15 (22%) 40 (17%)

Parity > 2 and AFB > 25 2 (3%) 24 (10%)

Age 63.06 (±6.05) 60.95 (±6.71) 0.021

BMI 25.93 (±4.48) 25.37 (±3.65) 0.283

PD 20.156 (±7.268) 18.908 (±8.252) 0.258√
PD 4.410 (±0.8481) 4.238 (±.976) 0.187

Means (with standard deviations in parentheses) are given for continuous variables
and counts (with percentages in parentheses) are given for categorical variables. P
values are obtained using likelihood ratio tests based on fitting logistic regression
models without adjustment for additional covariates
AFB age at first birth, BMI body mass index, HRT hormone replacement therapy, PD
percentage density

Table 6 Logistic regression results with age, BMI,
√
PD, Parity

and AFB, HRT and fPCs as covariates (KARMA)

Covariate Estimated Standard P value
coefficient error

Intercept −8.680 2.300 2 × 10−04

Age 0.072 0.024 0.002

BMI 0.070 0.046 0.128√
PD 0.388 0.186 0.037

Parity and AFB

Nulliparous

Parity ≤ 2 and AFB ≤ 25 −0.490 0.502 0.330

Parity ≤ 2 and AFB > 25 −0.022 0.485 0.963

Parity > 2 and AFB ≤ 25 −0.125 0.528 0.816

Parity > 2 and AFB > 25 −1.331 0.857 0.121

HRT use

Never

Past −0.772 0.347 0.026

Current 0.246 0.476 0.605

Spatial relations fPCs

fPC212 −0.344 0.160 0.031

fPC114 0.243 0.160 0.128

AFB age at first birth, BMI body mass index, fPC Functional principal component, HRT
hormone replacement therapy, PD percentage density

Abbreviations
AFB: Age at first birth; AUC: Area under the receiver operating characteristic
curve; BMI: Body mass index; FH: Forces histogram; FHxy(θ): Forces histogram
between regions x and y at angle θ ; fPC: Functional principal component; fPCzxy :
Functional principal component number z from the forces histogram between
regions x and y; HRT: Hormone replacement therapy; MLO: Mediolateral
oblique; PCA: Principal component analysis; PD: Percentage density

Funding
This research was supported by the Swedish Cancer Society (grant CAN
2014/472), the Swedish Research Council (2016-01245), the Cancer Health Risk
Prediction Centre (CRISP; www.crispcenter.org) and a Linneus Centre (contract
ID 70867902) financed by the Swedish Research Council.

Availability of data andmaterials
Subject to participants’ consent and legal requirements, data can be made
available upon request to the primary department of the corresponding
author.

Authors’ contributions
MAA and KH were involved in the development and application of the
methodology, were responsible for interpreting the results, and drafting and
revising the manuscript. LE helped in interpreting the results, and in revising
the manuscript. KC and PH helped in collection and assembly of data and in
revising the manuscript. All authors read and approved the final manuscript.

Ethical approval and consent to participate
All participants in the studies had provided written informed consent, and the
studies had the approval of the ethics review board at Karolinska Institutet,
Stockholm, Sweden.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet,
Stockholm, Sweden. 2Swedish eScience Research Centre (SeRC), Karolinska
Institutet, Stockholm, Sweden. 3Department of Oncology and Pathology,
Cancer Centre Karolinska, Karolinska Institutet and University Hospital,
Stockholm, Sweden.

Received: 3 April 2017 Accepted: 7 August 2017

References
1. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al.

Mammographic density and the risk and detection of breast cancer. N
Engl J Med. 2007;356(3):227–36.

2. Lokate M, Peeters PH, Peelen LM, Haars G, Veldhuis WrB, van Gils CH.
Mammographic density and breast cancer risk: the role of the fat
surrounding the fibroglandular tissue. Breast Cancer Res. 2011;13(5):1–8.

3. Pettersson A, Hankinson SE, Willett WC, Lagiou P, Trichopoulos D,
Tamimi RM. Nondense mammographic area and risk of breast cancer.
Breast Cancer Res. 2011;13(5):1–10.

4. Shepherd JA, Kerlikowske K, Ma L, Duewer F, Fan B, Wang J, et al.
Volume of mammographic density and risk of breast cancer. Cancer
Epidemiol Biomarkers Prev. 2011;20(7):1473–82.

5. Keller BM, Conant EF, Oh H, Kontos D. Breast cancer risk prediction via
area and volumetric estimates of breast density. In: Breast imaging: 11th
International Workshop. Berlin Heidelberg: Springer; 2012. p. 236–43.

6. NielsenM, Vachon CM, Scott CG, Chernoff K, Karemore G, Karssemeijer N,
et al. Mammographic texture resemblance generalizes as an
independent risk factor for breast cancer. Breast Cancer Res. 2014;16:R37.

7. Haberle L, Wagner F, Fasching PA, Jud SM, Heusinger K, Loehberg CR,
et al. Characterizing mammographic images by using generic texture
features. Breast Cancer Res. 2012;14(2):R59.

www.crispcenter.org


Alsheh Ali et al. Breast Cancer Research  (2017) 19:103 Page 13 of 13

8. Wei J, Chan HP, Wu YT, Zhou C, Helvie MA, Tsodikov A, et al. Association
of computerized mammographic parenchymal pattern measure with
breast cancer risk: a pilot case–control study. Radiology. 2011;260(1):42–9.

9. Manduca A, Carston MJ, Heine JJ, Scott CG, Pankratz VS, Brandt KR,
et al. Texture features from mammographic images and risk of breast
cancer. Cancer Epidemiol Biomarkers Prev. 2009;18(3):837–45.

10. Pereira SMP, McCormack VA, Moss SM, dos Santos Silva I. The spatial
distribution of radiodense breast tissue: a longitudinal study. Breast
Cancer Res. 2009;11(3):1–12.

11. Matsakis P. Understanding the spatial organization of image regions by
means of force histograms: a guided tour In: Matsakis S, editor. Applying
soft computing in defining spatial relations. Heidelberg: Springer.
Physica-Verlag; 2002. p. 99–122.

12. Shyu CR, Matsakis P. Spatial lesion indexing for medical image databases
using force histograms. In: Computer vision and pattern recognition IEEE,
vol. 2. IEEE; 2001. p. 603–608.

13. Garnier M, Alsheh Ali M, Seguin J, Mignet N, Hurtut T, Wendling L.
Grading cancer from liver histology images using inter and intra region
spatial relations. In: International conference image analysis and
recognition. Portugal: Springer; 2014. p. 247–254.

14. Alsheh Ali M, Garnier M, Humphreys K. Spatial relations of
mammographic density regions and their association with breast cancer
risk. Procedia Comput Sci. 2016;90:169–74.

15. Eriksson L, Czene K, Rosenberg L, Humphreys K, Hall P. The influence of
mammographic density on breast tumor characteristics. Breast Cancer
Res Treat. 2012;134(2):859–66.

16. Gabrielson M, Eriksson M, Hammarström M, Borgquist S, Leifland K,
Czene K, et al. Cohort profile: The Karolinska Mammography Project for
Risk Prediction of Breast Cancer (KARMA). Int J Epidemiol. 2017.
doi:10.1093/ije/dyw357.

17. Bertrand KA, Tamimi RM, Scott CG, Jensen MR, Pankratz VS, Visscher D,
et al. Mammographic density and risk of breast cancer by age and tumor
characteristics. Breast Cancer Res. 2013;15(6):R104.

18. Aitken Z, McCormack VA, Highnam RP, Martin L, Gunasekara A,
Melnichouk O, et al. Screen-film mammographic density and breast
cancer risk: a comparison of the volumetric standard mammogram form
and the interactive threshold measurement methods. Cancer Epidemiol
Biomarkers Prev. 2010;19(2):418–28.

19. Byng JW, Boyd N, Fishell E, Jong R, Yaffe MJ. The quantitative analysis of
mammographic densities. Phys Med Biol. 1994;39(10):1629.

20. Cheddad A, Czene K, Eriksson Ml, Li J, Easton D, Hall P, et al. Area and
volumetric density estimation in processed full-field digital mammograms
for risk assessment of breast cancer. PloS ONE. 2014;9(10):e110690.

21. Bora VB, Kothari AG, Keskar AG. Robust automatic pectoral muscle
segmentation from mammograms using texture gradient and Euclidean
distance regression. J Digit Imaging. 2016;29(1):115–25.

22. He W, Juette A, Denton ERE, Oliver A, Martí R, Zwiggelaar R. A review on
automatic mammographic density and parenchymal segmentation. Int J
Breast cancer. 2015;2015. http://dx.doi.org/10.1155/2015/276217.

23. Wolfe JN. Breast patterns as an index of risk for developing breast cancer.
Am J Roentgenol. 1976;126(6):1130–7.

24. Gong YC, Brady M, Petroudi S. Texture based mammogram classification
and segmentation. In: Digital mammography: 8th International
Workshop. Berlin Heidelberg: Springer; 2006. p. 616–25.

25. Shang HL. A survey of functional principal component analysis. AStA Adv
Stat Anal. 2014;98(2):121–42.

26. Yao F, Müller HG, Wang JL. Functional data analysis for sparse
longitudinal data. J Am Stat Assoc. 2005;100(470):577–90.

27. Harrell FE, Lee KL, Mark DB. Tutorial in biostatistics multivariable
prognostic models: issues in developing models, evaluating assumptions
and adequacy, andmeasuring and reducing errors. Stat Med. 1996;15:361–87.

28. DeLong ER, DeLong DM. Clarke-Pearson DL. Comparing the areas under
two or more correlated receiver operating characteristic curves: a
nonparametric approach. Biometrics. 1988;44:837–45.

29. Jones MC, Rice JA. Displaying the important features of large collections
of similar curves. Am Stat. 1992;46(2):140–5.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1093/ije/dyw357
http://dx.doi.org/10.1155/2015/276217

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Materials
	Percentage density measurement used in this study
	Spatial relations measurements
	Image preprocessing
	Partition of breast images
	Forces histogram

	Statistical methods

	Results
	Main analysis
	Validation

	Discussion
	Conclusions
	Appendix
	Modes of variation plots
	Validation study (KARMA)

	Abbreviations
	Funding
	Availability of data and materials
	Authors' contributions
	Ethical approval and consent to participate
	Competing interests
	Publisher's Note
	Author details
	References

