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Normal breast tissue DNA methylation
differences at requlatory elements are
associated with the cancer risk factor age
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Abstract

Background: The underlying biological mechanisms through which epidemiologically defined breast cancer risk
factors contribute to disease risk remain poorly understood. Identification of the molecular changes associated with
cancer risk factors in normal tissues may aid in determining the earliest events of carcinogenesis and informing
cancer prevention strategies.

Methods: Here we investigated the impact cancer risk factors have on the normal breast epigenome by analyzing
DNA methylation genome-wide (Infinium 450 K array) in cancer-free women from the Susan G. Komen Tissue Bank
(n=100). We tested the relation of established breast cancer risk factors, age, body mass index, parity, and family
history of disease, with DNA methylation adjusting for potential variation in cell-type proportions.

Results: We identified 787 cytosine-guanine dinucleotide (CpG) sites that demonstrated significant associations (Q
value <0.01) with subject age. Notably, DNA methylation was not strongly associated with the other evaluated breast
cancer risk factors. Age-related DNA methylation changes are primarily increases in methylation enriched at breast
epithelial cell enhancer regions (P =7.1E-20), and binding sites of chromatin remodelers (MYC and CTCF). We validated
the age-related associations in two independent populations, using normal breast tissue samples (n = 18) and samples
of normal tissue adjacent to tumor tissue (n = 97). The genomic regions classified as age-related were more likely to be
regions altered in both pre-invasive (n =40, P = 3.0E-03) and invasive breast tumors (n =731, P=1.1E-13).

Conclusions: DNA methylation changes with age occur at regulatory regions, and are further exacerbated in cancer,
suggesting that age influences breast cancer risk in part through its contribution to epigenetic dysregulation in normal

breast tissue.

Epigenetic drift
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Background

An effective way to decrease breast cancer-related mor-
bidity and mortality is to identify individuals who may
be at increased risk of developing breast cancer and
apply early intervention strategies. In addition to inher-
ited gene mutations, there are several demographic fac-
tors that are associated with an increased risk of breast
cancer including increasing age, being overweight after
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menopause, alcohol intake, having never been pregnant
(that is, nulliparous), earlier age at menarche, and a fam-
ily history of breast cancer [1-4]. However, the under-
lying biologic mechanism(s) through which many of
these epidemiologically defined breast cancer risk factors
contribute to carcinogenesis remains unclear.

Biomarkers strongly associated with breast cancer risk
factors provide an opportunity to understand cancer devel-
opment. One such potential biomarker investigated for its
role in the early detection of breast cancer is DNA methyla-
tion. DNA methylation is the covalent addition of a methyl
group to cytosine, often in the context of a cytosine
followed by a guanine in the 5' to 3' direction (that is, a
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cytosine-guanine dinucleotide (CpG)), and is necessary for
cell-type-specific differentiation, including in the mammary
gland [5, 6]. DNA methylation is a stable, yet modifiable
epigenetic modification and DNA methylation alterations
are known to occur early in breast carcinogenesis [7, 8]. It
has been hypothesized that disease risk factors may mediate
their disease-predisposing effects through perturbation of
epigenomic control. Candidate gene studies in normal
breast tissues indicate that DNA methylation changes are
related to age and to other known breast cancer risk fac-
tors. For example, women without breast cancer, but at
high risk (Gail model score) are more likely to have aber-
rant methylation of the tumor suppressor genes APC and
RASSFI compared with women at low risk [9]. In another
candidate gene study of normal breast tissue, the same
group observed that RASSFI methylation is associated with
breast cancer risk level, and that increasing parity is associ-
ated with decreased APC methylation [10]. More recently,
a study identified cancer-related field defects in DNA
methylation based on study of both normal breast tissues
from disease-free subjects and tumor-adjacent normal
breast tissues [11]. In addition, preliminary results from an-
other study provide evidence that genome-wide age-related
DNA methylation changes in tumor-adjacent normal breast
tissues are more likely to be altered in breast tumors than
in randomly selected regions [12]. However, the relation-
ship between breast cancer risk factors and DNA methyla-
tion changes in normal breast tissue from disease-free
subjects remains unclear.

Here we extended the foundational work to tissues from
disease-free women with detailed breast cancer risk factor
data and applied more comprehensive epigenomic profil-
ing methods. We tested the relationship between DNA
methylation patterns and breast cancer risk factors such
as age, body mass index (BMI), and reproductive and fam-
ily history, using an epigenome-wide association study
(EWAS) approach. Importantly, we adjusted for potential
variation in cellular proportions across samples. Age is the
strongest risk factor for breast cancer and we have shown
that the patterns of age-related DNA methylation are
dependent upon genomic context and that these age-
related methylation patterns were consistent across nor-
mal breast tissue from independent populations. We
found that these molecular alterations become further al-
tered in pre-invasive and invasive cancerous lesions. To-
gether, the epigenetic changes we identified here provide
insights into how the breast cancer risk factor of age may
influence disease development.

Methods

Study population

The discovery population consisted of 100 cancer-free
women who donated breast tissue biopsy specimens to
the Susan G. Komen Tissue Bank after providing written
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informed consent. We selected biospecimens from
women with a biopsy that scored for a high proportion of
epithelial cells as determined by the Susan G. Komen Tis-
sue Bank study pathologist (z=100) [13]. The sample
population was selected for an approximately equal distri-
bution of parous and nulliparous women, and to include a
wide age range of subjects. Subject demographic and
breast cancer risk factors were collected from tissue do-
nors using a questionnaire administered by the Susan G.
Komen Tissue Bank. Family history of cancer was defined
by whether or not the donor had at least one first-degree
blood relative (i.e., mother or sister) diagnosed with breast
cancer. This work was performed in accordance with the
ethical principles in the Declaration of Helsinki.

DNA methylation quantification and normalization
Fresh-frozen tissue samples were manually dissected and
DNA was extracted using Qiagen DNeasy Blood and Tis-
sue Kit according to the manufacturer’s protocol (Qiagen,
Valencia, CA, USA). DNA was quantified using a Qubit
fluorometer and 1 ug of DNA was then bisulfite-modified
using the EZ DNA methylation kit (Zymo Research, Or-
ange, CA, USA) according to the manufacturer’s recom-
mended protocol. The resulting material was used as input
for the hybridization on the Infinium HumanMethyla-
tion450 BeadChip (Illumina, San Diego, CA, USA). Sam-
ples were randomized to plates and subjected to
epigenome-wide DNA methylation assessment. The methy-
lation status for each CpG locus was calculated as the ratio
of fluorescent signals (B=Max (M, 0)/[Max(M,0)+
Max(U,0) + 100]), ranging from 0 (non-methylated) to 1
(completely methylated), using average probe intensity for
the methylated (M) and unmethylated (U) alleles.
Normalization and background correction of raw signals
was performed using the FunNorm procedure available in
the R/Bioconductor package minfi (version 1.10.2) [11].
Ilumina probe-type normalization was carried out with
beta-mixture quantile normalization (BMIQ) [14]. Prior to
analysis we removed CpG sites on sex chromosomes, and
those corresponding to probes previously identified as
cross-reactive or containing single nucleotide polymor-
phisms (SNPs), resulting in 390,292 CpGs remaining for
analysis [15].

Validation in independent populations and The Cancer
Genome Atlas

Independent breast tissue samples were available from
the National Disease Research Interchange (NDRI,
GSE74214, n =18) and The Cancer Genome Atlas Data-
base (TCGA, n=97) [16]. Raw intensity data (IDAT)
files were available for both studies and DNA methyla-
tion data were processed and normalized using the same
methods described above. Likewise, raw DNA methyla-
tion IDAT files were accessed and processed using the
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same methods outlined above for both ductal carcinoma
in situ (n = 55, GSE66313) and invasive ductal carcinoma
(n =749, TCGA) to compare DNA methylation differ-
ences between normal-adjacent tissue and pre-invasive
or invasive lesions [8].

Statistical analysis
All data analysis was conducted in R version 3.3.1.

Cell-mixture deconvolution

Differences in cellular composition across samples repre-
sent a potential confounder when testing associations be-
tween DNA methylation and quantitative traits in EWAS
[17]. Cellular proportions for each sample can be esti-
mated through cytometric methods or by applying cell
mixture deconvolution algorithms to DNA methylation
measurements [18, 19]. Cellular proportions can then be
incorporated into a statistical model as covariates to adjust
for potential cellular heterogeneity. In the absence of dir-
ect cell counts or tissue-specific reference DNA methy-
lomes, statistical methods that account for cell proportion
variability across tissue samples without a reference DNA
methylome have been widely used [18, 20-23]. To per-
form a reference-free EWAS we used the R package
RefFreeEWAS to deconvolute the cellular populations
present in the tissue biopsy samples using DNA methyla-
tion data as detailed previously in Houseman et al. [23].
Briefly, this method seeks to represent the largest axes of
variation in the DNA methylation data set and decom-
poses the DNA methylation data for a sample of heteroge-
neous cell populations into its constituent methylomes.
As a convex variant of non-negative matrix factorization,
the RefFreeEWAS method is similar to approaches used
to deconvolute gene expression levels in heterogeneous
tumor tissues [24, 25]. In the present study, we selected
the 10,000 most variable CpGs in each data set and used a
bootstrap technique (specifically sampled the specimens
with replacement 1000 times) to estimate the optimal
number of putative cell types (K). The optimal number of
cell-types defined in each data set was: K =6 (Komen), K
=10 (TCGA adjacent normal), and K=2 (NDRI normal
breast). The discrepancy in estimated cell-types for each
population can be explained in part by the sample size
(i.e., small for the NDRI population) and potential epige-
nomic field defects in normal-adjacent to tumor tissue
(i.e, TCGA).

Analysis of CpG-specific associations

We used a multivariable linear models for microarray
data (limma) procedure as described in the R/biocon-
ductor library limma [26] to model CpG-specific associ-
ations between logit-transformed beta values (i.e., M
values) and breast cancer risk factors (e.g., age, BMI, par-
ity). Genome-wide significance was determined by taking
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into account the false discovery rate with a threshold of
statistical significance set at Q =0.01. We ran separate
multivariate limma models both unadjusted and adjusted
for putative cell proportions to assess the impact of cell
proportion differences on significant associations and
effect-size estimates. To identify loci that may be most
confounded by differences in cell type we calculated the
difference in the effect-size estimates (i.e., delta coeffi-
cient value) between the cell-type unadjusted and ad-
justed models.

Associations with metadata

To test the associations between putative cellular propor-
tions and subject metadata (e.g., age) we applied the
methods described in Houseman et al. to fit a quasi-
binomial model for each putative cell-type across the data
set [23]. More specifically, for each estimated value of K
(that is, total number of cell types), we generated a model
for each cell type (1 to K) and used the minimum P value.
We then computed the permutation distribution of these
minimum P values (spanning all potential values of K).

Genomic region enrichment

To assess the enrichment of risk-factor-related CpG sites
at cell-type-specific histone modifications we used the
eFORGEv1.2 tool with the selected option of all H3
marks measured for the consolidated Roadmap to Epige-
nomics data set [27]. To examine whether risk-factor-
related CpGs were associated with transcription factor
binding sites in ENCODE data we used the Locus Over-
lap Analysis (LOLA) software [28]. In this analysis, our
query input set of genomic regions to be tested for en-
richment were the genomic locations of the risk-factor-
related CpG sites (Q < 0.01) and the background set was
the genomic locations of the 390,262 CpGs used in the
entire analysis. For the LOLA, the ENCODE transcrip-
tion factor binding sites included 42 different chromatin
immunoprecipitation sequencing experiments.

Epigenetic clock analysis

DNA methylation age (biological age) of the Komen
breast tissues was calculated using the Horvath and epi-
genetic timer of cancer (EpiTOC) methods [29, 30].

Results

Differential DNA methylation is associated with breast
cancer risk factors in normal breast tissues

Patient demographics and characteristics are presented
in Table 1. The study participants ranged in age from 18
to 82 years with a median age of 37. A small proportion
of participants were underweight (2%; BMI <18), 40% in
the normal BMI range (> = 18 and <25), 30% were over-
weight (> =25 and <30), and 28% were obese (>30). Over
half of subjects had at least one full-term birth (56%),
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Table 1 Subject demographics and characteristics
Variable

Value in subjects (n = 100)

Age (median, range) 37.2 (18-82)
Body mass index (median, range) 276 (16.8-53.7)
Pregnancy (parity), n

No 44

Yes 56
Family history, n

No 44

Yes 46

Missing 10
Race, n

African American 5

Hispanic 9

White 86
Alcohol consumption - drinks per week, n

Not current drinker 28

<7 64

7-14 5

15-21 2

and the remaining 44% were nulliparous. To test the hy-
pothesis that DNA methylation differences in normal
breast tissue are related to known breast cancer risk fac-
tors we used the approach outlined in Additional file 1.
Using the RefFreeEWAS deconvolution algorithm, we
identified the optimal number of putative cell-types as
K=6 as this estimate minimized the deviance of the
bootstraps (see “Methods” and Additional file 2A). To
investigate whether the heterogeneity in cellular propor-
tions across samples was associated with phenotypic var-
iables (e.g., subject age) we applied a quasi-binomial
model for each subject. To avoid dependence on the se-
lection of K (putative cell-types) we examined associa-
tions over a range of evaluated K using a permutation
test (1000 permutations) for inference of each pheno-
typic variable. As shown in Additional file 2B, estimated
cell mixture proportions were significantly associated
with subject age (permutation P value = 2.0E-03), but
not subject BMI or parity (Additional file 2B).

To study the relationship between DNA methylation
and breast cancer risk factors we applied both un-
adjusted and cell-type-adjusted linear models for micro-
array (limma) to examine the influence of subject age,
BM]I, and parity on the DNA methylome. Since the esti-
mated cellular proportions for each sample sum to
nearly one, we included all but the estimated cell-type
with the smallest proportion to avoid multi-collinearity
in our models. In a multivariable limma model adjusted
for differences in cellular mixtures, 787 CpG sites were
significantly associated with age, 0 CpG sites were
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associated with BMI, and 0 CpG sites were associated
with parity, after correcting for multiple hypothesis test-
ing (Q < 0.01, Fig. 1a). The full list of 787 CpG sites with
genome annotation and statistical results is presented in
Additional file 3. Notably, age-related DNA methylation
alterations were predominantly hypermethylation events,
i.e., increased DNA methylation was associated with in-
creased age (545 CpG sites, 69.3%). To assess the impact
that adjusting for cellular proportions had on the identi-
fication of significant associations and effect sizes, we
computed the difference between the coefficients (i.e., a
delta coefficient value) at each CpG for the models un-
adjusted and adjusted for cell type. A large CpG-specific
delta value provides evidence for associations between
DNA methylation and risk factors that may be most
confounded by differences in cellular proportions.
Visualization of CpG-specific P values and coefficients
from cell-type unadjusted and adjusted models demon-
strated that adjustment attenuated both the strength and
magnitude of CpG-specific associations genome-wide
(Additional file 4). Moreover, the number of significant
associations (Q <0.01) in the unadjusted limma model
for subject age was 4099 CpG sites compared with 787
from the adjusted model, suggesting that a large number
of false-positives are likely to be reported when differ-
ences in cell proportions are not considered (Additional
file 4A-C). In addition, at the age-related CpG sites (n =
787, Q<0.01) the DNA methylation patterns across
purified cell populations of myoepthial cells, luminal
cells, and adipocytes were consistent, suggesting that
age-related changes may occur largely independent of
tissue type in the normal human breast (Fig. 1b).

There were missing data on family history in 10 individ-
uals in the present data set. To explore whether family
history was associated with DNA methylation differences
we applied the aforementioned limma approach un-
adjusted and adjusted for cellular proportions (= 90),
and found no significant associations (Q >0.01) between
family history and DNA methylation differences after cor-
recting for multiple comparisons (Additional file 4D).

Independent validation of age-associated methylation

We next moved to validate our age-related DNA methy-
lation findings in two independent 450 K data sets from
97 normal adjacent-to-tumor breast samples (TCGA)
and 18 normal breast tissues from disease-free women
(NDRI, GSE74214). Subject demographics and charac-
teristics for these two data sets are presented in Table 2.
In a reference-free cell-mixture-adjusted limma re-
stricted to the 787 CpG sites identified in the discovery
(Komen) population we observed that 548 CpG sites
(TCGA, 69.4%) were differentially methylated in a direc-
tion consistent with the discovery population at a nom-
inal P value <0.05 (Additional file 5A). Similarly, we
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DNA methylation values at age-related CpG sites (Komen, n = 100) visualized alongside CpGs measured in specific cell-types form the Roadmap to
Epigenomics data set (n =691 CpG sites). Each column represents a given tissue sample and each CpG is presented in rows
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observed highly consistent results in the NDRI popula-
tion (389 out of 787 CpG sites, 49.4%) (Additional file
5B). Strikingly, there were 345 CpG sites (43.8%) in the
TCGA data set and 109 CpGs (13.9%) in the smaller
NDRI data set that were considered significant at the
stringent Bonferroni threshold for multiple comparisons
(Additional file 5A and B, P < 6.4E-05). In both valid-
ation cohorts, putative cell-mixture proportions were
significantly associated with subject age (permutation P
< 0.05) (Additional files 5C-D).

Table 2 Independent population subject characteristics

NDRI

Mean (range) n=18
Age 49 (13-80)
BMI 283 (14.59-62.73)
TCGA

Mean (range) n=97
Age 57.57 (28 —90)
BMI Unavailable

NDRI National Disease Research Interchange, TCGA The Cancer Genome Atlas,
BMI body mass index

While it is appreciated that DNA methylation can mod-
ify chromatin structure and distally regulate the transcrip-
tome, the most well-defined function of DNA methylation
is the cis-regulation of gene transcription [31]. In the
present study, sample-matched RNA-sequencing data
were available only for a subset of the subjects from the
TCGA data set (n = 88). Many of the age-related CpG sites
that localize to gene regions (n =630 CpG sites) demon-
strated strong associations with gene expression (259 CpG
sites at P < 0.05, Additional file 6A). The direction of the
CpG-gene correlations demonstrated a dependency upon
genomic context (Additional file 6B). For example, CpG
sites tended to be negatively correlated in the promoter
region, while there was an even distribution of positive
and negative correlation in the gene body (that is, intron
and exon) regions (Additional file 6B).

Age-associated DNA methylation sites are enriched for
regulatory regions

To provide a broader biological interpretation of age-
related DNA methylation we next sought to identify
enrichment of these genomic locations in gene regulatory
regions, such as tissue-specific histone marks and
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transcription factor binding sites (TFBS). First, we
employed the eFORGE tool to identify cell-type-specific
signals in diverse tissues profiled by the Roadmap to Epige-
nomics Consortium. We observed robust enrichment of
H3K4mel, histone modifications that mark enhancers, in
both fetal tissues and mammary epithelial cells (Q < 1.9E-
37), and modest associations with other histone modifica-
tions (i.e.,, H3K4me3, H3K27me3) (Additional file 7). Fish-
er’s exact test confirmed that age-related CpGs localize to
enhancer elements specifically in mammary myoepithelial
cells (H3K4mel, Roadmap) (OR =2.00 CI (1.73-2.33), P =
7.1E-20). We next used the genomic coordinates of age-
related CpGs as a query set against the background of the
450 K array in LOLA scanning for enrichments of TEBSs.
Since hypermethylation events are likely to be biologically
distinct from hypomethylation events at TEBS we stratified
our LOLA into a hypermethylation and a hypomethylation
enrichment analysis (Fig. 2a and b). In the hypermethyla-
tion analysis, we observed a striking number of significant
enrichments for CpG sites that were hypermethylated with
age (14 TEBS, Q<0.01) and hypomethylated with age (8
TEBS, Q<0.01) (Additional file 8A and B). Among several
of the top-ranking results presented in Fig. 2a, MYC and
CTCE which are critical regulators of chromatin architec-
ture were enriched among hypermethylated CpG sites,
while hypomethylated CpGs localize to binding sites of
transcriptional activators c-Fos and Stat-3 [32—35].
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Accelerated epigenetic aging of human breast tissue

It has been recognized that DNA methylation patterns
change in a tissue-specific manner as an individual ages
[29]. Previous studies have found that measurements of
DNA methylation have the ability to accurately estimate
an individual’s age and that observed differences be-
tween predicted DNA methylation age (that is, biological
age) and chronological age are associated with disease-
risk factors [29, 30, 36, 37]. Further, it has been observed
that DNA methylation age predictions in the human
breast demonstrate age acceleration when compared
with other tissues, suggesting that normal breast tissue
tends to age more quickly than other tissues [29].

To examine whether the subject-specific differences be-
tween biological and chronological age (that is, age accel-
eration) are associated with breast cancer risk factors we
first calculated DNA methylation age from the 100 Komen
normal breast tissue samples using two distinct epigenetic
clocks [29, 30]. Briefly, the “Horvath epigenetic clock” uses
elastic net regression to integrate DNA methylation infor-
mation from 353 CpG sites to generate a multi-tissue age
predictor. The second method, “epiTOC”, is an epigenetic
clock that incorporates prior biological knowledge into a
mathematical model to generate an estimate of mitotic di-
visions using 385 CpG sites. Notably, there was limited
overlap between the 787 age-related CpGs and Horvath
(17 CpGs) and EpiTOC (3 CpGs). In analyses with the
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Horvath clock, we observed strong positive correlation be-
tween chronological age and the DNA methylation age of
the Komen breast tissues, with a Spearman correlation co-
efficient of 0.95 (P =2.83E-52, Fig. 3a). In univariate ana-
lyses of age acceleration, defined as the residual resulting
from regressing DNA methylation age (Horvath clock) on
chronological age, and the cancer risk factors listed in
Table 1, we observed a significant positive association only
with race (African American, n =5 subjects, P = 3.5E-02).
Age acceleration was not associated with any other of the
evaluated risk factors (P> 0.05). In a multivariate model
considering all measured cancer risk factors, we found that
race was significantly associated with increased epigenetic
aging (African American P=4.9E-02). In contrast to the
Horvath clock, there was no significant correlation be-
tween chronological age and epiTOC-predicted age (P =
7.5E-01, Fig. 3b). Nonetheless, the epiTOC estimated bio-
logical age was also positively associated with race in uni-
variate analyses (African American P =2.1E-02, Hispanic
P=28E-02) and in multivariate models including all risk
factors shown in Table 1 (African American P =2.7E-02,
Hispanic P =2.7E-02). The remaining breast cancer risk
factors were not associated with epiTOC-defined bio-
logical aging in either univariate or multivariate models
(P> 0.05).
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Age-related DNA methylation is further deregulated in
pre-invasive and invasive breast cancer

To ascertain whether differences in DNA methylation in
relation to disease risk factors are relevant for the devel-
opment of cancer, we compared DNA methylation in
breast tumors with adjacent normal tissue in both pre-
invasive and invasive cancer, at the 787 age-related
CpGs. In pre-invasive lesions (ductal carcinoma in situ,
DCIS), there were 268 CpG sites among 775 CpGs avail-
able for measure (34.5%) that demonstrated differential
methylation between DCIS and normal tissue using
limma models adjusted for subject age Fig. 4a (P < 0.05).
Importantly, changes at the age-related CpGs were
greater (Additional file 9A and B) and demonstrated
stronger associations than a randomly selected set of
CpG sites with similar properties regarding their loca-
tion within CpG islands Fig. 4b (Kolmogorov-Smirnov
test, P = 3.0E-03). If the epigenetic defects in age-related
DNA methylation are further deregulated in pre-invasive
breast cancer it would be expected that progressive
changes would occur in invasive breast cancer. To test
this, we assessed differential methylation using limma
models adjusted for subject age in TCGA breast cancer
data set. A large proportion of the age-related CpGs ex-
hibited significant differential DNA methylation changes
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in breast cancer (642 out of 787 CpGs (81.6%, P < 0.05))
(Fig. 4c). Again, we found that the age-related changes
demonstrated greater DNA methylation differences
(Additional file 9C and D) and stronger associations
than a randomly selected set of CpGs with matching
genomic distribution (Kolmogorov-Smirnov test, P =
1.1E-13) (Fig. 4d).

Discussion

In this study, we identified perturbations in the normal
breast epigenome that may contribute to age-related in-
creases in breast cancer risk. Age is the strongest demo-
graphic risk factor for breast cancer and is robustly
associated with DNA methylation changes. Emerging lit-
erature has demonstrated that aging exerts its profound
effects on the epigenome through a lifetime accumulation
of environmental exposures that interfere with the place-
ment or removal of methyl groups [11, 12, 38, 39]. Here,
we have described that the consistent changes in breast
DNA methylation are not randomly distributed through-
out the genome. Instead, age-related DNA hypermethyla-
tion events are enriched for breast epithelial-specific
enhancer regions and the binding sites of chromatin
remodelers, while hypomethylation was noted at tran-
scriptional activators. The enrichment of modifications at
critical regulators of cellular phenotype provide novel

insights into how cell-type-specific epigenetic states
change over time and may predispose cells to neoplastic
transformation. Our analysis revealed that further DNA
methylation alterations to these genomic regions in pre-
invasive and invasive disease may contribute to the
restriction of cellular differentiation and disruption of
transcriptional control observed in cancerous lesions.

The ability to produce reliable biological age predictions
in an individual and in specific tissues holds promise for
monitoring health, predicting disease risk, and providing
insights into modifiable lifestyle factors that promote
healthy aging. Indeed, discrepancies between chrono-
logical and biological age may suggest deregulation in
DNA methylation marks and indicate increased disease
risk. Horvath et al. demonstrated this phenomenon of age
acceleration in a recent publication, whereby researchers
found that the epigenetic age of the liver was increased by
2.7 years for every 10 units of BMI [36]. Using 450 K
methylation arrays we have applied the Horvath epigenetic
clock algorithm and epiTOC tool to 100 normal breast
tissue samples to determine the DNA methylation age of
each of these tissues. While there was an association be-
tween age acceleration and race in the Komen dataset,
there were only five African American women, and this
association requires additional analyses. Profiling a larger
number of breast tissue samples from African-American
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women would allow investigation of whether genetic dif-
ferences are associated with accelerated aging. In future
studies, the ability to accurately assess biological age, in
breast tissue samples from larger longitudinal studies with
a greater number of women of diverse racial and ethnic
backgrounds, may aid researchers in the determination of
factors that aim to assess and prevent disease.

While our findings provide strong evidence for a link
between epigenetic deregulation and the two processes
of aging and cancer, our study had a few limitations. For
example, the questionnaire administered by the Susan G.
Komen Tissue Bank is well-equipped to accurately clas-
sify a subject’s age, while other cancer risk factors such
as average alcohol consumption may be impacted by re-
call bias. This same limitation applies to the missing data
on family history in 10 subjects. Further, the small num-
ber of non-white subjects decreased the power to iden-
tify relationships between age acceleration and race.
Separately, although the RefFreeEWAS method effect-
ively accounts for the largest sources of variation in the
DNA methylation data set, the method is unable to dis-
cern the particular cell types in which epigenetic changes
occur. That said, the robustness of cell-type-independent
observation across multiple populations and progressive
alterations in cancer gives us confidence that a subset of
the epigenetic defects may be important in carcinogen-
esis. To this end, future prospective studies are needed
to investigate the relationship between DNA methylation
in normal tissue and the risk of developing breast can-
cer. Finally, mechanistic studies will also be needed to
elucidate the epigenetic contribution to increased breast
cancer risk. Research aimed at early detection and dis-
ease prevention would serve to relieve patient morbidity
and reduce the cost burden to the healthcare system.

In summary, we have shown that epigenetic differ-
ences are strongly associated with aging and these differ-
ences may reflect epigenetic defects that predispose
women at an older age to an increased risk of breast
cancer.

Conclusions

Epidemiological studies have firmly established factors
of personal choice and factors beyond personal choice
that alter the risk of breast cancer. Established risk fac-
tors for breast cancer include age, reproductive and
family history, and BMI [4, 40]. Indeed, modeled breast
cancer risk factors have been shown to account for ap-
proximately half of breast cancer cases [41, 42]. How-
ever, the biological mechanisms by which specific risk
factors impact disease risk are not well-understood. In
this study population, we did not observe significant as-
sociations between BMI or parity and genome-wide
DNA methylation. However, we observed consistent
cell-type-independent age-related DNA methylation in
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normal breast tissue from multiple populations. The
genomic locations of age-related DNA methylation
were more likely to be found in gene regulatory ele-
ments of breast epithelial cells, suggesting a loss of cel-
lular state control as an individual ages. Further, we
demonstrated additional support for a link between
age-related DNA methylation and cancer, as age-related
CpG sites were more likely to exhibit greater alterations
in both pre-invasive and invasive breast cancer. To-
gether, our research suggests that DNA methylation
changes in aging shift the epigenetic state toward a
compromised molecular phenotype, creating a novel
link between the risk factor of age and the potential ori-
gins of disease in breast cancer.
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transcription. A Distribution of P values for CpG-gene expression correla-
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