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Abstract

Background: Cancer is a mosaic of tumor cell subpopulations, where only a minority is responsible for disease
recurrence and cancer invasiveness. We focused on one of the most aggressive circulating tumor cells (CTCs)
which, from the primitive tumor, spreads to the central nervous system (CNS), evaluating the expression of
prognostic and putative cancer stem cell markers in breast cancer (BC) leptomeningeal metastasis (LM).

Methods: Flow cytometry immunophenotypic analysis of cerebrospinal fluid (CSF) samples (4.5 ml) was performed
in 13 consecutive cases of BCLM. Syndecan-1 (CD138), MUC-1 (CD227) CD45, CD34, and the putative cancer stem
cell markers CD15, CD24, CD44, and CD133 surface expression were evaluated on CSF floating tumor cells. The
tumor-associated leukocyte population was also characterized.

Results: Despite a low absolute cell number (8 cell/μl, range 1–86), the flow cytometry characterization was
successfully conducted in all the samples. Syndecan-1 and MUC-1 overexpression was documented on BC cells in
all the samples analyzed; CD44, CD24, CD15, and CD133 in 77%, 75%, 70%, and 45% of cases, respectively. A strong
syndecan-1 and MUC-1 expression was also documented by immunohistochemistry on primary breast cancer
tissues, performed in four patients. The CSF tumor population was flanked by T lymphocytes, with a different
immunophenotype between the CSF and peripheral blood samples (P ≤ 0.02).

Conclusions: Flow cytometry can be successfully employed for solid tumor LM characterization even in CSF
samples with low cell count. This in vivo study documents that CSF floating BC cells overexpress prognostic and
putative cancer stem cell biomarkers related to tumor invasiveness, potentially representing a molecular target for
circulating tumor cell detection and LM treatment monitoring, as well as a primary target for innovative treatment
strategies. The T lymphocyte infiltration, documented in all CSF samples, suggests a possible involvement of the
CNS lymphatic system in both lymphoid and cancer cell migration into and out of the meninges, supporting the
extension of a new form of cellular immunotherapy to LM. Due to the small number of cases, validation on large
cohorts of patients are warranted to confirm these findings and to evaluate the impact and value of these results
for diagnosis and management of LM.
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Background
Leptomeningeal metastasis (LM) is a dramatic complica-
tion in neuro-oncology and breast cancer (BC) is one of
the most common solid tumors to metastasize to the
leptomeninges [1]. Although BCLM remains an incurable
disease by current therapies, treatments started in an early
stage of the disease significantly increase survival [2, 3].
New approaches are dramatically needed to facilitate
diagnosis and treatment response monitoring, as well as
the identification of new prognostic biomarkers, able to
stratify patients according to risk of metastasis and cere-
brospinal fluid (CSF) cancer dissemination. Moreover, the
identification of biological markers to utilize as a target
for treatment will significantly improve tailoring the best
strategies for individual patients, enhancing the poor
clinical response rate of LM.
According to the tumor stem cell hypothesis, a subset

of cells, defined as cancer-initiating cells, has a primary
relevance in tumor metastases and cancer recurrence
after chemotherapy [4–6]. This subpopulation, residing
in a heterogeneous primary tumor, exhibits enhanced
invasive properties as well as the ability to grow in
anchorage-independent conditions [7, 8]. Isolated from
solid biopsies and tumor cell lines, cancer stem cells are
currently identified by surface antigen expression using a
number of putative stem cell markers including CD15,
CD24, CD44, and CD133 [9–13].
An aberrant protein expression can be significantly

associated with cancer dissemination and poor progno-
sis. In BC, MUC-1 (CD227) overexpression has been
correlated with cell adhesion inhibition and increased
metastatic potential of tumor cells [14–17] while
syndecan-1 (CD138), a transmembrane receptor in-
volved in cell-cell adhesion, cell mobility, proliferation
and differentiation, has been related to an aggressive
phenotype and poor clinical behavior [18–20].
Flow cytometry is a sensitive method for the identifica-

tion of CSF infiltration in onco-hematology [21–23].
However, studies regarding the role of CSF flow cytome-
try in solid tumors LM are still limited [24–27].
Focusing on one of the most aggressive BC cell sub-

populations that reach the CNS from the primitive
tumor, we evaluated, by flow cytometry, the expression
of putative prognostic, cell adhesion molecules and can-
cer stem cell markers on CSF floating tumor cells of pa-
tients with BCLM. The tumor-associated population of
lymphocytes was also characterized and compared to the
peripheral blood immunophenotype.

Methods
Patients
Patients with a BC who underwent lumbar puncture for
neurological signs and symptoms and a gadolinium-
enhanced magnetic resonance strongly suspicion for LM

[28] entered the study. The Central Ethics Committee
IRCCS Lazio, Section IRCCS I.F.O. approved the study.
An informed consent was obtained from all patients.

Histopathology
Patients were staged according to the International Union
Against Cancer Tumor Node Metastasis (UICC-TNM)
classification by conventional histology (H&E) and
immunohistochemistry (IHC) on formalin-fixed, paraffin-
embedded tissue utilizing the following antibodies: estro-
gen receptor (ER), progesterone receptor (PgR) and human
epidermal growth factor receptor 2 (HER2) from Dako,
Milan, Italy. A subset of cases was also investigated for
syndecan-1 (CD138, clone MI15, Dako, Italy) and MUC-1
(CD227, clone HMPV, from BD Pharmingen, San Diego,
CA, USA). Immunostaining was performed on 3-micron
sections treated with the microwave antigen retrieval
system, incubated for 1 hour at room temperature with the
primary antibodies and processed by a streptavidin-biotin-
enhanced immunoperoxidase technique, according to the
manufacturer’s recommendations.

CSF collection
A total volume of 7 ml (range 1.5–11) of CSF was col-
lected in a tube without any transport medium and proc-
essed within 1–3 hours from collection to minimize cell
loss. To avoid peripheral blood contamination, the first
0.2–0.4 ml of CSF was discarded before sample collection.

CSF cell count and morphological analysis
A volume of 1.5 ml (range 1–3) of CSF was utilized for cell
count and morphology. Standard cell count was performed
by using the Turk reagent and a Nageotte chamber.
Morphological examination was performed on cytospin
using the Thinprep plus Papanicolaou method [29] by
experienced cytopathologists unaware of the flow cytome-
try analysis. We defined CSF localization as any positive
sample by cytology.

CSF flow cytometry assay
A volume of 4.5 ml (range 1–10) of CSF was utilized for
flow cytometry analysis. The CSF was spun at 1500 rpm
for 7 minutes, the supernatant fluid was discarded and the
cell pellet was suspended in PBS and stained, according to
the manufacturer’s recommendations. The following
monoclonal antibodies (mAbs) were used: CD15Fitc,
CD24Pe, CD34Pe-Cy7, CD44Fitc, CD45PerCP, CD133Pe,
CD133APC, CD138Pe, CD138APC, and CD227Fitc.
Incubation was performed using the BD Biosciences (San
Diego, CA, USA) FACS Lyse and Wash Assistant accord-
ing to the Duo-Lyse program. Prior to sample acquisition,
a flow cell cleaning with distilled water (for 1 to 2 minutes
run) was performed to avoid sample carryover. The whole
volume of the sample was acquired and analyzed using
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the FACSCanto II 2L flow cytometer and the FACSDiva
software Version 6.1.3 (BD Biosciences). Single-stained
cellular controls and BD FACS™ 7-color setup beads were
used to adjust detector voltage, to set fluorescence
compensation, and to monitor instrument performance.
Positive and negative markers on different subpopulations
were used as an internal isotype control. Tumor cell
markers were repeated up to three times in a proportion
of cases. Moreover, syndecan-1 expression was evaluated
using different fluorochromes in six cases. The BC
phenotype was evaluated on CSF floating cells by gating
on the CD45 negative versus side scatter (SSC) large cells
(lymphocytes expressing bright CD45). The population of
CSF lymphocytes was characterized according to the fol-
lowing mAbs: CD3Fitc, CD56Pe, CD56APC, CD45PerCP,
CD4PE-Cy7, CD19APC, CD19APC-Cy7, and CD8APC-
Cy7. The CD4 and CD8 subsets were evaluated as the
percentage of CD3-positive T lymphocytes. Monocytes
were identified using the CD4 dim and CD14APC-Cy7.
All mAbs were from BD Biosciences, except CD133 from
Miltenyi Biotec, Bergisch Gladbach, Germany and
CD138Pe (Clone B-A38) from Beckman Coulter, Brea,
CA, USA. Data are presented as the percentage of positive
cells, evaluated on the CD45-negative/SSC large cells for
BC cell analysis and on the CD45-positive population for
the tumor-associated leukocytes. The mean fluorescence
intensity (MFI) ratio for the syndecan-1 and MUC-1 anti-
gens was calculated by comparison with negative control.
The lymphocyte characterization was also conducted on
corresponding peripheral blood (PB) samples.

Statistical analysis
Wilcoxon rank-sum test was conducted to evaluate the
different distribution between CSF and PB lymphoid
subpopulations. The test was two-sided with a p value of
0.05 indicating a statistically significant difference.

Results
Patient characteristics
Thirteen patients with a BC who underwent lumbar
puncture for clinical suspicion of LM at the Regina
Elena National Cancer Institute were enrolled. All
patients were female with a median age of 50 years
(range 44–69). In all cases neurological signs, symptoms,
and a gadolinium-enhanced magnetic resonance suspi-
cion for LM was documented.

Histopathology
The histological and IHC characteristics of the primary BC
tumor are presented in Table 1. In three patients, BC was
diagnosed in other centers and detailed histological data
were not available; these three outpatients were referred to
the Regina Elena National Cancer Institute Neuro-Oncology
Division for diagnosis and treatment of LM clinical

symptoms. An infiltrating BC carcinoma was documented
in all the cases analyzed by histopathology. MUC-1 and
syndecan-1 IHC staining of breast primary carcinoma tis-
sues, performed in four patients (number 6, 9, 11, and 13),
revealed strong brown staining of in situ and infiltrating
breast carcinoma cells with both MUC-1 and syndecan-1
antibodies. Intense staining appears to be both cytoplasmic
and on the cell surface. By contrast, non-neoplastic breast
epithelium from patients with breast cancer showed clear
glandular architecture with weak staining with MUC-1 and
syndecan-1 antibodies. Tumor-infiltrating lymphocytes were
negative for both antibodies (Fig. 1).

CSF cell count and cytology
The CSF samples had a median cell count of 8 cell/μl
(range 1–86) with an increased leukocyte count (>3/
mm3) in 61% of cases (Table 2). A diagnosis of BCLM
was documented in all 13 cases by cytological identifica-
tion of malignant cells. The cancer cell population was
sided by reactive lymphocytes and monocytes in all
samples. A peripheral blood contamination was docu-
mented in two cases by a prevalence of red blood cells
and neutrophil granulocytes between the cancer cells
(Table 3; case number 1 and number 13.).

Flow cytometry assessment
CSF samples
Lumbar puncture yielded adequate material for flow
cytometry analysis in all the cases. Despite the low CSF
absolute cell number, a median of 8455 (range 1183–
181,000) evaluable cells were analyzed. The CD45-
negative large cancer cells (35%, range 4–96) were sided
by CD45-positive leukocytes in all CSF samples (Table 3).

Breast cancer markers expression
BC cells were identified by gating on CD45 negative versus
SSC. BC cells were CD138 and CD227 bright positive in
all the cases analyzed, with a median of 83% (54–99) and
93% (82–97) positive tumor cells, respectively (Fig. 2)
(Table 2). The MFI ratio was 442 (range 128–599) for
CD138 and 566 (range 391–1715) for CD227.
Regarding the putative cancer stem-cell marker expres-

sion, seven of ten CSF samples (70%) were CD15 positive
with more than 20% CD15+/CD45neg cells in all but one
case (Table 2; case number 11). BC cells were CD24
positive in 6/8 (75%), CD44 positive in 7/9 (78%) and
CD133 positive in 5/11 cases (45%) respectively (Table 2).
Additional file 1: Figure S1. A number of positive BC
markers were repeated up to three times in ten samples,
confirming the previous acquisition in all the cases. More-
over, syndecan-1 expression was confirmed using different
fluorochromes in six cases. CD34-positive cells were not
found in any of the samples analyzed. No CD45-negative
cells were documented in 20 CSF samples evaluated for
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hematological malignancies, used as a negative control
(data not shown).

Phenotype of tumor-associated leukocytes
Beside the BC cells, a tumor-associated population of
CD45-positive leukocytes (60%; range 4–96%) was identified
in all CSF samples, represented by lymphocytes (61%; range
6–85%) and monocytes (CD14 positive = 18%; range 6–57%)
(Fig. 2 a and d). Blood contamination was observed in two

cases where a majority of neutrophil granulocytes (CD45/
CD15 bright = 78% and 82% respectively) was documented
(case number 1 and number 13; Table 3). The lymphoid
population was represented by CD3-positive T cells with a
prevalence of CD4-positive lymphocytes in 10/13 (77%)
cases and 9% of CD56-positive cells (range 3–24).
Rare CD19-positive B cells were identified. No BC
cells were CD3, CD4, CD8, CD56, CD19, CD45 or
CD14 positive.

Table 1 Histological and immunohistochemical staining of the primary breast cancer tissue from patients with leptomeningeal
metastasis

Case number Histology pTNM ER PgR HER2

1 na na na na na

2 Infiltrating ductal carcinoma na pos pos neg

3 Infiltrating ductal carcinoma pTc1, N0, stage 1 neg neg neg

4 Infiltrating lobular carcinoma na neg pos pos

5 na na na na na

6 Infiltrating ductal carcinoma pT4b, N3a, M1 (UICC 2002) 40% 70% neg

7 Infiltrating lobular carcinoma pT2, pN3a, M0 75% 100% pos

8 na na na na na

9 Infiltrating lobular carcinoma pT1c, N1bi, Mx (UICC 1997) 30% 30% neg

10 Infiltrating ductal carcinoma na pos pos neg

11 Infiltrating lobular multifocal pT1c (m); pN1biv; Mx (UICC 1997) 20% 20% pos

12 Infiltrating ductal carcinoma na neg neg neg

13 Infiltrating ductal carcinoma pT1c(m), N2, Mx (UICC 2002) neg 40% pos

pTNM pathological tumor-node-metastasis stage, ER estrogen receptor, PgR progesterone receptor, HER2 human epidermal growth factor receptor, na not
available, pos positive, neg negative

A1

A2

B1

B2

Fig. 1 Primary breast cancer tissue immunostaining of patients with leptomeningeal metastasis. Breast cancer cells are syndecan-1 (CD138)
(a1 and a2) and MUC-1 (CD227) (b1 and b2) strongly positive (intense brown staining of both in situ and infiltrating tumor cells). Non-neoplastic
breast epithelium (arrow) shows glandular architecture with weak staining for both syndecan-1 and MUC-1 antibodies
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Immunophenotype of peripheral blood lymphocytes
The peripheral blood lymphocyte subset was evaluated
in 8/13 cases and compared to the CSF lymphoid sub-
populations. The absolute number of lymphocytes was
1300 cell/μl (range 300–3600). A population of CD3-
positive cells (68%, range 51–76) with a CD4/CD8 ratio
of 1.14 (range 0.86–2.26), sided by CD56 positive (27%;
range 16–49%) and CD19 positive (10%; range 1–18%)
lymphocytes was documented. A different distribution of
CD3, CD56 and CD19 lymphoid subpopulations was

observed comparing peripheral blood and corresponding
CSF samples (P ≤ 0.02) (Fig. 3 and Additional file 2:
Table S1).

Discussion
Metastasis is the main reason for cancer-related mortal-
ity and currently there are no established biomarkers
that stratify BC patients at risk for LM [30–32]. Focus-
ing on one of the most aggressive CTC type, which from
the primitive tumor spreads to the CNS, we documented

Table 2 CSF flow cytometry characterization of cancer floating cells in 13 cases of breast cancer leptomeningeal metastasis

Case
number

CSF cellularity
(cells/μl)

Number of
events analyzed

Percentage of BC
cells (CD45-negative)

Percentage of positive cells within the CD45-negative BC population

CD15% CD138% CD227% CD24% CD44% CD133%

1 32 181,000 9 nd 82 nd nd nd nd

2 1 2887 47 nd 99 nd nd nd nd

3 86 132,260 43 24 96 nd 98 94 96

4 66 12,817 96 51 97 nd nd nd neg

5 2 6078 4 75 80 nd nd nd 93

6 50 45,134 20 neg 91 93 94 97 neg

7 1 4612 20 66 54 97 90 88 59

8 2 1183 35 nd 80 94 nd 87 80

9 30 24,300 47 neg 56 82 neg neg neg

10 17 29,798 40 92 98 96 77 96 neg

11 1 1293 60 12 93 96 100 99 neg

12 8 3550 45 98 89 97 neg 56 neg

13 8 8455 36 neg 66 88 89 neg 88

Breast cancer marker expression is reported as the percentage of positive cells within the CD45-negative/side-scatter large population
CSF cerebrospinal fluid, BC breast cancer, nd not done, neg negative

Table 3 CSF flow cytometry characterization of the infiltrating leukocyte in 13 cases of breast cancer leptomeningeal metastasis

Case
number

CD45-positive
cells (%)

Leucocytes distribution among the
CD45+ population

CSF lymphocytes subpopulation

% lymphocytes
(CD45 SSC)

% monocytes
(CD14+)

% neutrophils
(CD15+)

% CD3 % CD56 % CD3/CD4 % CD3/CD8 % CD3/CD56 T4/T8
ratio

%
CD19

1 91 16 6 78 93 9 67 32 4 2.09 1

2 53 42 38 20 94 8 58 42 9 1.38 1

3 57 85 12 3 92 9 63 30 4 2.1 0

4 4 70 18 12 94 5 58 41 1 1.41 0

5 96 84 10 6 97 6 63 36 5 1.75 1

6 80 80 19 1 96 3 68 30 1 2.26 1

7 80 64 29 7 92 10 58 40 4 1.45 0

8 65 74 22 4 98 24 68 33 30 2.06 0

9 53 55 40 5 85 10 47 51 5 0.9 0

10 60 40 57 3 87 19 47 53 7 0.9 3

11 40 85 12 3 92 6 45 52 3 0.86 0

12 55 80 12 8 83 14 58 43 4 1.34 3

13 64 6 12 82 75 5 59 36 2 1.6 0

The CSF lymphocytes immunophenotype is reported as percentage of positive cells within the lymphoid population, identified as CD45-strong/intermediate
side-scatter signals
CSF cerebrospinal fluid, BC breast cancer
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that CSF floating cancer cells overexpress syndecan-1,
MUC-1 and, in a proportion of cases, the putative stem-
cell markers CD15, CD24, CD44, and CD133 in BCLM.
This is a pilot study, conducted on a limited number of

patients, focusing on a subset of rare samples. In ten cases,
CSF staining was repeated for some markers, confirming
the previous result; moreover, syndecan-1 expression was
also confirmed using different fluorochromes in six cases.
Although there was a high rate of repeatability observed
in our cases, reproducibility, determination of the limits of

detection and quantification need to be confirmed in a
large cohort of patients.
Surface syndecan-1 and MUC-1 were brightly overex-

pressed, with a high MFI, on BC cells in all the CSF sam-
ples analyzed by flow cytometry. Analysis of MUC-1 and
syndecan-1 was carried out by IHC on breast primary
carcinoma tissues in four patients. As observed by flow
cytometry on CSF floating cancer cells, a strong expression
was documented by IHC on breast primary carcinoma
tissues, while a weak/negative staining was observed on

Fig. 2 Cerebrospinal fluid (CSF) flow cytometry characterization in breast cancer leptomeningeal metastasis. Breast cancer cells (blue) are CD45
negative (a), CD138 (b), and CD133 (c) positive, sided by CD45-positive T lymphocytes (green) and monocytes (purple) (a and d)

Fig. 3 Flow cytometry characterization of cerebrospinal fluid (CSF) and peripheral blood (PB) lymphocytes in patients with breast cancer
leptomeningeal metastasis. Wilcoxon rank-sum test documents a significant different distribution between CSF and PB lymphoid subpopulations

Cordone et al. Breast Cancer Research  (2017) 19:46 Page 6 of 10



non-neoplastic breast epithelium. Validation on large co-
horts of patients with BC and LM and with BC without
LM is required. Moreover, multicenter studies, comparing
the immunophenotype of primary tumor and CSF floating
cancer cell in LM, are warranted to confirm these data and
to investigate the clinical-pathological relevance.
High syndecan-1 is an independent marker of poor

prognosis [18–20]. The prospective measurement of
syndecan-1 on breast biopsies at diagnosis can potentially
contribute to patient risk stratification toward tailored
anti-cancer therapies. Highly expressed on neoplastic
plasma cells, syndecan-1 has shown to be a viable target
for myeloma therapy [33, 34]. Our results suggest
syndecan-1 as a potential molecular therapeutic target for
innovative antibody-based treatment strategy in BC.
One of the most challenging aims in cancer research is

the identification and characterization of the cancer
stem cell subset. Anchorage-independent culture of
tumor cells enriches cultures from cancer-initiating cells;
however the expression of putative cancer stem cell
markers can be significantly influenced by in vitro cul-
ture conditions [35]. The nature provides a perfect
model of anchorage-independent tumor growth in LM.
Thereafter, hypothesizing that a BC cell could take ad-
vantage from a cancer stem cell phenotype for CSF infil-
tration, we investigated the expression of a number of
putative cancer stem cell markers on BC floating cells,
documenting a stem cell-like phenotype, CD15, CD44,
CD24, and CD133 positive, in a proportion of cases. Our
in vivo approach avoided all the possible phenotypic
changes related to the in vitro culture conditions, pro-
viding evidence of the potential involvement of a stem
cell-like phenotype in the mechanism of CSF invasion,
highlighting a number of surface markers as potential
targets for inhibition of cancer dissemination.
CD15 (Lewis x) is overexpressed on various cancers and

it has been reported as a cell adhesion molecule with a
key role in non-CNS cancer metastasis [36, 37]. Lewis x
increased expression correlates with poor survival in colo-
rectal and prostate carcinomas [38, 39] and has been iden-
tified as a potential cancer stem cell marker in glioma
spheroids [40]. In vitro studies have shown CD15 to be in-
volved in the adhesion of MCF-7 human breast cancer
cells to human umbilical endothelial cells (HUVEC) and
that the anti-Lewis x mAb MCS-1 inhibits this interaction
and efficiently lyses BC cells bound to HUVEC without
damaging endothelial cells [41]. More recently, a crucial
role of CD15 in cancer cell-endothelium adhesion for
non-small cell lung cancer cell extravasation to the brain
has been reported [42]. Our in vivo study documents, for
the first time, the CD15 overexpression in CSF cancer
floating cells of BCLM samples. This data supports the
interaction between BC cells and endothelium through
Lewis x epitopes as a mechanism for CSF invasion in LM.

These results are consistent with previous studies that
referred to the correlation between elevated levels of
CD15 and brain metastasis in different types of non-CNS
cancers [43, 44] supporting CD15 as a putative marker of
poor prognosis, involved in the aggressive behavior and
tumor recurrence, and a possible target for prevention of
brain metastases. The adhesion of cancer cells to endothe-
lium can be significantly decreased by absence of CD15
and CD15 immunoblocking [42]. Our study supports the
hypothesis of Lexis x as a potential target for inhibition of
BC metastasis utilizing anti-Lewis x immunoblocking.
Emerging evidence suggests that a small subpopula-

tion of tumor cells, identified by the CD44+/CD24
−/low cancer stem cell markers expression in breast
cancer tissue, have strong abilities of self-renewal and
are responsible for tumor aggressiveness, recurrence,
metastasis, and therapeutic resistance [45–48]. CD44-
positive and CD24-positive cells have been proposed
as predictors of prognosis and treatment response in BC,
with clinical implications for cancer treatment because of
their role in chemoresistance [49]. The results of the present
study document the CD24 and CD44 overexpression in CSF
cancer floating cells of BC patients with LM. This finding
supports a possible mechanism of positive selection of the
stem cell-like phenotype in the genesis of CSF infiltration.
The cancer stem cell marker CD133 has been associated

with the presence of adverse biomarkers and subtypes,
with a potential predictive role in clinical management of
BC patients [50]. Moreover, a close association between
CD133 expression and tumor angiogenesis has been re-
ported in invasive breast cancer [51]. Despite the small
number of cases, our study documents, in a proportion of
case, CD133 overexpression on CSF floating cells of BC
patients, supporting the role of CD133 as a marker of
poor prognosis.
Biomarkers able to identify patients at risk of undergoing

metastatic spread are urgently needed to develop early
detection methods and more effective treatment strategies.
The peripheral blood CTC detection and enumeration
holds promise to provide information on tumor burden
and dissemination, disease progression, and treatment
response monitoring. Detection of these rare cells on a
background of millions of leukocytes poses a great
challenge, and several techniques are currently being con-
sidered by the international scientific community [52–56].
Our data potentially add a number of surface markers to be
tested for CTCs search, flanking the epithelial cell antigen
molecule (EpCAM)-positive strategies utilized in epithelial
primary tumors [57].
CSF cytology, the diagnostic gold standard for LM

identification, is a procedure with considerable limitations
regarding sensitivity and no molecular characterization
regarding specificity, with a reported false-negative rate of
up to 60% and a leukocyte count <4 cell μL in about 30%
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of cases [58]. Thereafter, patients with low-volume disease,
who are likely to benefit more from treatment, are more
likely to be false negative. Magnetic resonance imaging
with gadolinium enhancement is the technique of choice
to evaluate patients with suspected LM [28, 59] and, with
suggestive radiological evidence of LM, treatment is war-
ranted despite persistently negative CSF cytology [60].
Thereafter, treatment response is evaluated by clinical
improvement of neurological signs and symptoms [61].
Flow cytometry is a proven valuable diagnostic tool in
hematological CSF infiltration detection [21, 22, 62]. We
have recently documented that flow cytometry can dis-
criminate between reactive and neoplastic plasma cells in
CSF samples with very low cell counts, confirming it to be
significantly more sensitive than standard approaches [23].
However, so far, only limited published experiences about
the use of flow cytometry for the identification of solid
tumor LM are reported [24–27]. This study supports the
role of flow cytometry as a simple and reliable technique
for LM identification, including CSF samples with normal
cell count. In fact, despite the CSF low volume (median
4.5 m) and low cell count (median 8 cell/μL), flow cytome-
try characterization was successfully conducted in all sam-
ples, including the five patients (40%) with a cell count
<3 ml. More recently, EpCAM-based flow cytometry assay
has shown to represent a sensitive approach for the diag-
nosis of LM in patients with primary epithelial tumors
[27]. We documented syndecan-1 and MUC-1 overexpres-
sion on BC cells in the cases analyzed. These markers po-
tentially represent innovative and powerful tools for BCLM
diagnosis by flow cytometry, able to reduce the proportion
of diagnostic failure of LM, to prevent multiple lumbar
punctures, and reduce treatment delay. Moreover, their
potential role as diagnostic markers for LM of primary
epithelial tumors other than BC deserves to be evaluated.
Finally, morphology being a very poor technique in
minimal residual disease evaluation, they could repre-
sent new tools for treatment monitoring of solid
tumor LM by flow cytometry, particularly in CSF
samples with low cell count.
The tumor inflammatory response is involved in both

cancer growth inhibitions as well as in cancer invasive-
ness [63–67]. However, little is known about the tumor-
associated population in LM [25, 26]. The long-held
dogma of the lymphatic system absence in the CNS has
been recently disproved. In searching for meningeal T
cell gateways, functional lymphatic vessels lining the
dural sinuses have been discovered. These structures, ex-
pressing the molecular hallmarks of lymphatic endothe-
lial cells, are able to carry both fluid and immune cells
from the CSF and are connected to the deep cervical
lymph nodes [68]. Regarding the immune cell migration
into CNS, we have recently documented evidence of an
active mechanism of reactive CD8 T lymphocytes

migration in primary brain lymphomas [69]. Beside BC
cells, infiltrating T lymphocytes and monocytes were
documented in all CSF samples of BCLM, with a signifi-
cant difference in lymphoid immunophenotype between
CSF and PB (P ≤ 0.02). This finding supports a lympho-
cytes subpopulation selection in LM, suggesting a pos-
sible involvement of the meningeal lymphatic network in
both lymphoid and cancer cell migration into the men-
inges as a potentially alternative route to the cardiovas-
cular system. In two cases, a prevalence of red blood cells
and neutrophil granulocytes between cancer cells was
documented, due to PB contamination of the lumbar
puncture. In all the cases without PB contamination, neu-
trophils were not identified, highlighting the importance
of excluding the first drops of sample from the collection
in order to obtain a reliable evaluation of the CSF
leukocyte population. The field of cancer immunotherapy
has been re-energized by the application of chimeric anti-
gen receptor (CAR) T cell therapy in cancers [70]. Cell
surface antigens can serve as target for tumor rejection.
More recently, CAR that recognized cancer-associated
Tn-glycoform of MUC-1 has been developed, with target-
specific cytotoxicity and tumor growth control in xeno-
graft models of T cell leukemia and pancreatic cancer [71].
A strong MUC-1 expression in CSF floating BC cells of
patients with LM was documented in this study.
Engineered CAR T cells directed against MUC-1 could
potentially represent a rationale for the investigation, in
preclinical models, of cellular immunotherapy in LM, for
future possible designs of immune-based cancer therapies.

Conclusions
Overexpression of syndecan-1, MUC-1, and the putative
cancer stem cell markers CD15, CD24, CD44, and
CD133 has been documented on CSF floating cancer
cells of BC patients with LM. This is an exploratory ana-
lysis. These results and their value for diagnosis and
management of BCLM need validation in large cohorts
of patients. Further studies are necessary to determine
the sensitivity and specificity of the technique and rec-
ommend the diagnostic use of flow cytometry next to
cytology in CSF samples of patients clinically suspected
for LM. Moreover, further research regarding the prom-
ising role of flow cytometry in CSF treatment monitor-
ing need to be performed. Studies investigating the role
of the surface markers here identified as putative prog-
nostic biomarkers for tumor invasiveness and CNS in-
volvement, molecular targets in CTC detection, as well
as primary targets for innovative and selective treatment
strategies are promising research topics. New forms of
cellular immunotherapy for brain metastasis could take
advantage from the infiltrating population of T lympho-
cytes and monocytes, very much represented in LM.
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