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Abstract

Background: Circulating cell-free DNA (cfDNA) has recently been recognized as a resource for biomarkers of cancer
progression, treatment response, and drug resistance. However, few have demonstrated the usefulness of cfDNA for
early detection of cancer. Although aberrant DNA methylation in cfDNA has been reported for more than a decade,
its diagnostic accuracy remains unsatisfactory for cancer screening. Thus, the aim of the present study was to
develop a highly sensitive cfDNA-based system for detection of primary breast cancer (BC) using epigenetic
biomarkers and digital PCR technology.

Methods: Array-based genome-wide DNA methylation analysis was performed using 56 microdissected breast
tissue specimens, 34 cell lines, and 29 blood samples from healthy volunteers (HVs). Epigenetic markers for BC
detection were selected, and a droplet digital methylation-specific PCR (ddMSP) panel with the selected markers
was established. The detection model was constructed by support vector machine and evaluated using cfDNA
samples.

Results: The methylation array analysis identified 12 novel epigenetic markers (JAK3, RASGRF1, CPXM1, SHF, DNM3,
CAV2, HOXA10, B3GNT5, ST3GAL6, DACH1, P2RX3, and chr8:23572595) for detecting BC. We also selected four internal
control markers (CREM, GLYATL3, ELMOD3, and KLF9) that were identified as infrequently altered genes using a public
database. A ddMSP panel using these 16 markers was developed and detection models were constructed with a
training dataset containing cfDNA samples from 80 HVs and 87 cancer patients. The best detection model adopted
four methylation markers (RASGRF1, CPXM1, HOXA10, and DACHT) and two parameters (cfDNA concentration and the
mean of 12 methylation markers), and, and was validated in an independent dataset of 53 HVs and 58 BC patients. The
area under the receiver operating characteristic curve for cancer-normal discrimination was 0.916 and 0.876 in the
training and validation dataset, respectively. The sensitivity and the specificity of the model was 0.862 (stages 0-1 0.846,
1A 0.862, IIB-Ill 0.818, metastatic BC 0.935) and 0.827, respectively.

Conclusion: Our epigenetic-marker-based system distinguished BC patients from HVs with high accuracy. As detection
of early BC using this system was comparable with that of mammography screening, this system would be beneficial
as an optional method of screening for BC.
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Background

Breast cancer (BC) is the most prevalent cancer and the
leading cause of cancer deaths in women all over the
world [1]. Currently, mammography is the standard
method for early detection of BC in many countries.
However, false-positive recall rates vary according to age,
breast density, and postmenopausal hormonal therapy,
among others [2, 3]. For women with dense breasts, the
accuracy of mammography is decreased. As the breast
density of Asian women is relatively high [4], there is an
unmet need for the development of accurate BC screen-
ing methods. It is reported that ultrasonography helps to
improve the sensitivity of detection in young Japanese
women; however, there are some technical hurdles for
standardization [5].

Blood-based methods for monitoring of BC have been
in development for several decades. Conventional tumor
markers, such as carcinoembryonic antigen (CEA), can-
cer antigen (CA)15-3 [6-8], and circulating tumor cell
(CTC) count [9], are clinically available. However, their
usefulness is mostly limited to patients with advanced
and metastatic BC (MBC). Recently, circulating cell-free
DNA (cfDNA) has received considerable attention as a re-
source of cancer biomarkers. Dawson et al. demonstrated
that cfDNA-based markers (cancer-derived gene muta-
tions) were more useful for monitoring metastatic BC
than conventional tumor markers and CTC count [10]. As
the cfDNA is thought to contain DNA derived from
tumor cells in the whole body, tumor evolution can be
also monitored by profiling the DNA mutation pattern.

Somatic gene mutations are highly specific events in
cancer and precancerous lesions that can be useful in
detecting cancer using remote samples. Technological
approaches to quantifying tiny amounts of mutated
DNA have been developed, such as digital PCR and bar-
code next-generation sequencing. However, in terms of
cancer screening, next-generation sequencing is too ex-
pensive, and has a throughput capacity that is too low to
process a large number of samples. In addition, detecting
unknown mutated genes in c¢fDNA by a PCR-based
method is difficult because mutation sites vary, even in
highly mutated genes.

DNA methylation is an epigenetic system that regu-
lates gene expression, and aberrant DNA methylation is
associated with various pathologic events, including
tumorigenesis and aggressive phenotypes of cancer.
Since Silva et al. detected a methylated DNA fragment
of the pl6 promoter region in plasma samples from
patients with BC [11], many reports have shown
aberrantly-methylated DNA in plasma and serum
[12-20]. However, the detection rates of these DNA
methylation markers in the blood are low even in
cases of advanced disease, and are therefore inad-
equate for early detection of BC [12, 13, 16-18]. In

Page 2 of 14

the present study, we aimed to develop a highly sensitive
cfDNA-based system for early detection of BC using epi-
genetic biomarkers and digital PCR technology.

Methods
Detailed information on the materials and methods used
in this study is provided in Additional file 1.

Cell culture

The cell lines used in this study are listed in Additional
file 2: Table S1. Cells were grown according to the dis-
tributors’ recommended conditions.

Collection of clinical samples

All blood and tissue samples were provided from a
multi-institutional biobank project, the Breast Oncology
Research Network (BORN)-Biobank, which was initiated
and is maintained by the Department of Breast Surgery,
Kyoto University. Blood samples from patients with BC
were obtained after they received a traditional diagnosis of
BC. In this study, BC stage 0-1 was considered early BC.

Laser capture microdissection (LMD) of BC tissue
specimens

Individual 10-pm-thick formalin-fixed paraffin-embedded
(FFPE) specimens of surgically resected BC tissue were
placed on Leica foil membrane slides, and immunohisto-
chemically stained by pan-cytokeratin antibody cocktails
(AE1/AE3, Dako, Glostrup, Denmark, M3515). Histo/
Zyme (Diagnostic BioSystems, Pleasanton, CA, USA;
DBS-K046-15) was used for antigen retrieval, and VEC-
TOR Red Alkaline Phosphatase Substrate Kit (VECTOR
Laboratories, Burlingame, CA, USA; SK-5100) was used
for visualization. LMD of the stained FFPE slides was per-
formed using LMD7000 systems (Leica microsystems,
Wetzlar, Gemany). Cancer cell clusters from the BC
samples were selectively microdissected (Additional file 3:
Figure S1). Normal samples obtained from adjacent nor-
mal mammary epithelia and intraductal papilloma epithe-
lia were also microdissected. Adjacent normal epithelia
from 10 patients were pooled as a single sample.

Comprehensive DNA methylation profiling

Using an [llumina Infinjum Human Methylation 450
BeadChip Assay (Illumina, San Diego, CA, USA), we
conducted comprehensive DNA methylation profiling of
56 laser-microdissected FFPE samples (38 luminal, 4
luminal human epidermal growth factor receptor 2
(HER2), 1 HER2, and 11 triple-negative (TN) types of
BC, one pooled normal epithelia sample, and one intra-
ductal papilloma sample), 34 samples of DNA from 31
cultured cells (4 luminal, 3 luminal HER2, 2 HER2, and
18 TN types of BC, 1 unknown type of BC, and 3 non-
BC cells), and 29 white blood cell DNA samples from
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healthy volunteers (HVs), as listed in Additional file 2:
Tables S1-S3. The peak bias in B-values of the two differ-
ent probe types was corrected by an NIMBL toolbox
[21] for MATLAB software.

At the selection of candidate markers, we attached im-
portance to the difference of the methylation patterns
based on the BC subtypes. To build a generalized multi-
marker mathematical model for BC detection and avoid
over-fitting, it is important to use several types of vari-
ables. Thus, we decided to select candidate markers
from subtype-specific methylation loci, not only from
loci commonly methylated in BC.

The mean [B-values of the non-BC samples (meanNC),
all BC samples (meanBC), and the luminal-type (mean-
Lum) and TN-type (meanTN) of BC samples, were cal-
culated. We selected the candidate markers from array
probes with meanNC <0.05. The additional selection
conditions of the candidate markers were as follows; (a)
top 20 loci of the widest gap between meanBC and
meanNC; (b) top 20 loci of the lowest meanNC with
meanBC >0.6; (c) top 50 loci with the largest values of
meanLum — meanTN; and (d) top 50 loci with the largest
values of meanTN — meanLum. We referred to (a)
and (b) as common BC markers, (c) as luminal-dominant
markers, and (d) as TN-dominant markers. As the propor-
tions of the cell lines and FFPE samples were different in
the luminal and TN samples, direct calculation of the
mean by sample type would be biased. To avoid such a
bias, the mean [-values of each group were calculated as
an average of the mean of the cell line samples and the
mean of the FFPE samples. To evaluate the statistical sig-
nificance of these markers, we calculated the p values
using the Welch ¢ test (Additional file 2: Table S4).

Screening of DNA methylation markers using real-time
quantitative methylation-specific PCR (MSP)

We used the Tagman-based MSP method in this screen-
ing step. To save screening costs and time, we utilized
the Universal Probe Library (UPL, Roche Diagnostics
GmbH, Mannheim, Germany) to design Tagman-MSP
primers and probes. As the sequence variety of UPLs is
limited, we designed primers and probes as close as pos-
sible to the candidate loci selected by the methylation
array analysis (Additional file 2: Table S4). The MSP re-
action mix consisted of 10 ul of FastStart Universal
Probe Master (ROX) (Roche Diagnostics GmbH), 1 ul of
primer mix for MSP (finally 0.5 uM), 0.4 pl of UPL
probe, 2 pl of template bisulfite-treated DNA, and H,O
up to 20 pl in total. The PCR reaction was performed
using the StepOnePlus Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA) as follows; one cycle
at 95 °C for 10 minutes, fifty cycles at 95 °C for 15 sec
and 60 °C for 1 minute. A standard curve was generated
using serially diluted, fully methylated DNA synthesized
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by SssI methyltransferase (New England Biolabs, Ips-
wich, MA, USA), and methylation values were normal-
ized by MSP values of the ACTB gene as previously
described [22].

Primers were selected on the basis of the following: (1)
the efficiency of MSP was >70% and <110%; (2) methylation
was detected in one or none of the samples of blood DNA
from HVs; (3) methylation was detected in more than one
sample of the DNA from the cultured cell lines; (4) methy-
lation was not detected in the DNA derived from FFPE
samples of adjacent normal epithelia; and (5) expression of
the related genes was regulated by DNA methylation.

Validation of candidate DNA methylation markers with
the public database

To evaluate the universality of candidate markers, we ana-
lyzed the methylation data of peripheral blood mononuclear
cells (PBMC, GSE58888) [23], and BC in The Cancer
Genome Atlas (TCGA) Project [24] generated by the
TCGA Research Network (http://cancergenome.nih.gov/).
Then we showed the methylation pattern of samples with
candidate markers in a heat map format. The distributions
of the p-values for the selected methylation markers were
compared among PBMC samples, all cancer samples,
luminal BC samples, and basal-like BC samples using the
Welch ¢ test.

Pharmacological unmasking of epigenetically silenced
genes

To determine whether the expression of the screened
marker genes was epigenetically regulated, MCF7, T47D,
MDA-MB-231, and Hs578T were treated with the
demethylating agent 5-Aza-2-deoxycytidine (5’-Aza-dC)
(Sigma-Aldrich, St. Louis, MO, USA) at 1 uM for
48 hours, and both 5-Aza-dC and histone deacetylase
inhibitor trichostatin A (Sigma-Aldrich) at 300 nM for
24 hours. DNA and RNA samples were then extracted.
The methylation status of each selected marker was
measured by quantitative MSP, as described. The RNA
expression level of each gene was assessed by one-step re-
verse transcription PCR (RT-PCR) using a QuantiTect
Probe RT-PCR Master Mix (QIAGEN, Venlo, Netherlands)
according to the manufacturer’s protocol.

Establishing the MSP assay using droplet digital PCR

To quantify tiny amounts of methylated DNA in cfDNA,
we employed droplet digital PCR. To adjust selected pri-
mer/probe sets to duplex droplet digital PCR format,
custom dual-labeled locked nucleic acid probes with
FAM or Alexa Fluor® 532 dye and Black hole-1 quencher
were synthesized for certain markers (Gene Design Inc.,
Ibaraki, Osaka, Japan). The final sequences of MSP
primers and probes for selected markers are listed in
Additional file 2: Table S5.
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In epigenetic research, a primer/probe set developed
by Eads et al, which targets the upstream region of
ACTB [22], was traditionally used as an internal control
reaction of MSP and also used in marker screening
steps. However, in this study, the amplification efficiency
of this primer/probe set was not sufficient. In addition,
because the amounts of loaded cfDNA samples in droplet
digital methylation-specific PCR (ddMSP) reactions are
unknown and considerably varied, precise quantification
is very important in an assay detection system. Therefore,
we developed a panel of four novel internal control
markers. We selected four internal control genes of which
the copy number alteration ratios were less than 5%, ac-
cording to the cBioPortal database (http://cbioportal.org)
[25, 26]. The primer/probe sets for internal control
markers were designed to target genomic regions contain-
ing no CpG, in order to amplify the region regardless of
methylation status (Additional file 2: Table S6).

Detecting methylated DNA markers in ¢fDNA by ddMSP
The extraction of cfDNA from plasma was conducted
using QIAmp Circulating Nucleic Acid Kit (QIAGEN)
with a modification of the manufacturer’s protocol to
improve the cfDNA vyield. Briefly, 900 ul of thawed
plasma was mixed with 100 pl of PBS, 800 pl of Buffer
ACL (lysis buffer), and 100 pl of proteinase K solu-
tion, and then was incubated at 48 °C for 18 hours
with shaking. The sample was then mixed with an
additional 100 pl of proteinase K solution by pulse-
vortexing for 30 seconds, and was incubated for a
further 6 hours. Finally, approximately 20 pl of cfDNA
solution was eluted.

Following the manufacturer’s protocol, duplex ddMSP
reactions were performed in a T100 thermal cycler (Bio-
Rad, Hercules, CA, USA), and droplet signals were
quantified by a QX100™ Droplet Reader (Bio-Rad). In
total, 278 cfDNA samples from 145 patients with BC
and 133 HVs were analyzed using this ddMSP assay, and
all raw droplet signal data were exported from the built-
in software, and manually analyzed using MATLAB soft-
ware as follows.

Data analysis of ddMSP data and development of the
detection model

First, a sample dataset of 278 cases was randomly di-
vided into a training set (n=167) and a validation set
(n=111), each set being in accordance with the propor-
tion of cancer patients and HVs, and with BC stage. Clini-
copathological characteristics of the patients for cfDNA
are shown in Table 1 and Additional file 2: Table S7. A de-
tection algorithm was developed using the training dataset
only. For each marker, optimized lower and upper cutoff
thresholds for droplet amplitude were determined to
maximize the area under the curve (AUC) of the receiver
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operator characteristic (ROC) curve as a single marker.
The concentration of the methylated marker DNA frag-
ments (copies/ml) was then calculated for each sample.
The cutoff concentration for each marker was determined
to divide the samples into marker-negative and marker-
positive groups. All marker concentration values were
converted into loglO values. Thus, the whole training
dataset consisted of a total of 15 variables, including the
concentration values of 12 DNA methylation markers and
their mean value, a mean of four internal control markers,
and the number of methylation-positive markers.

We developed a BC detecting model using a support vec-
tor machine (SVM) to distinguish patients with cancer from
HVs. To determine the best variable set for the model, we
tested all of the variable combinations (1 = 2*° - 1). For each
combination, the detection accuracy was estimated by
leave-one-out cross-validation (LOOCYV). The model that
achieved the best AUC and coefficients of each variable
that were >0, was then selected as the detection model.

To validate the robustness of the selected model, an in-
dependent dataset was used. The validation dataset was
prepared using thresholds of droplet signals and cutoffs for
marker concentration determined by the training dataset.
The best SVM model selected above was applied to the
validation data set. The accuracy of the detection model
for the validation set was assessed using the AUC. Further-
more, we also performed ROC analysis and calculated the
AUC to evaluate the performance of the model within each
stage of BC as a subgroup analysis.

Statistical analysis

Methylation assay analysis, processing of ddMSP data, and
algorithm construction were performed using MATLAB
software. Statistical analyses, such as correlation analysis,
tendency analysis, and ¢ statistics, among others, were per-
formed using R software.

Results

Comprehensive DNA methylation array analysis
According to DNA methylation array data, a total of 140
candidate markers, including 40 common BC markers,
50 luminal-dominant markers, and 50 TN-dominant
markers, were selected. Figure 1 shows the distribution
of meanNC and meanBC among the whole of the array
probes (n =482,421), and the distribution of meanLum
and meanTN in the array probes with meanNC <0.05
(n=121,079). The colored dots represent the selected 140
candidate markers. The methylation values of these
markers are shown in a heat map format in Fig. 2. All the
selected candidates had a low methylation status in the
non-BC samples (8-value <0.05), shown in blue. Some of
the luminal-dominant marker candidates were highly
methylated, even in the TN samples, probably because the
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Table 1 Characteristics of healthy volunteers and patients with breast cancer
Whole set (n=278) Training set (n=167) Validation set (n=111)
Number of samples HVs 133 80 53
Patients with BC 145 87 58
Mean age (range) HVs 453 (22-70) 458 (26-70) 445 (22-66)
Patients with BC 59.5 (36-81) 59.8 (36-81) 59.1 (36-81)
Subtype Luminal 98 58 40
Triple-negative 25 14 1
HER2 10 6 4
Luminal HER2 8 6 2
not assessed (DCIS) 4 3 1
Stage 0 4 3 1
I 47 27 20
IIA 31 19 12
1B 22 1 11
If 9 8 1
i\ 32 19 13
Early BC (Stage0-I) Luminal 36 22 14
Triple-negative 8 3 5
HER2 2 2 0
Luminal HER2 1 0 1
not assessed (DCIS) 4 3 1

HVs healthy volunteers, BC breast cancer, HER2 human epidermal growth factor receptor 2, DCIS ductal carcinoma in situ, Subtype immunohistochemically
categorized subtype
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Fig. 1 Methylation array data in a scatter plot format. Colored dots represent 140 candidate loci selected according to methylation array analysis.
a Distribution of the mean (3-values of the non-breast cancer (BC) samples (meanNC) and of the BC samples (meanBC) in the whole of the array
probes (n=482,421). All selected candidate markers had <0.05 of meanNC. b Distribution of mean B-values of luminal BC (meanLum) and of
triple-negative BC (meanTN) in array probes with meanNC <0.05 (n=121,079). Red dots common BC markers selected by condition (a). Magenta
dots common BC markers selected by condition (b). Green dots luminal-dominant markers. Blue dots TN-dominant markers
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Common BC markers[

Luminal-dominant
markers

TN-dominant
markers

Subtype

Sample type || FFPE specimens

Triple Negative
Cell lines Blood

cancer, TN triple-negative, FFPE formalin-fixed paraffin-embedded

Fig. 2 Heat map of 140 selected candidate markers. In the heat map, the color of each square represents the methylation level (3-value) by
methylation array, as a color scale bar (right) indicates. The ribbons (a-d) indicate the selectiong conditions described in “Methods". BC breast

Non breast cancer |

luminal androgen-receptor-positive subtype samples may
be included in these TN samples.

Validation of candidate DNA methylation markers using
the public database

As the number of samples of FFPE tissue specimens was
relatively small, we validated the methylation status of
the candidate markers using relatively large public data-
sets. There were 143 samples of PBMC in GSE 58888
[23] and 610 samples of BC in TCGA [24] datasets using
the Illumina Infinjum Human Methylation 450 Bead-
Chip Assay platform. In 610 samples of TCGA data, we
analyzed 213 samples which were linked with subtype
information of PAM50. In the BC samples, the numbers
of samples in the luminal A, luminal B, HER2-enriched,
normal-like, and basal-like subtypes were 140, 46, 14, 5,
and 40, respectively. A heat map generated using these
datasets demonstrated that luminal A/B and PBMC
samples had a similar methylation pattern to our luminal
samples and blood samples (Additional file 3: Figure
S2A). The basal-like subtype in PAM50 and the clinical
TN subtype are not identical but partially overlaped;
they also had a similar methylation pattern in our ana-
lysis. Although the TCGA samples were not laser-
microdissected, the methylation pattern was similar,
which indicated that methylation marker status would
not be affected by the contaminated stromal cells.

Screening of selected candidate markers

The steps for screening the selected candidate markers
are illustrated in Fig. 3. Briefly, the screening steps in-
cluded (1) a primer/probe quality check, (2) quantitative
MSP screening using BC cell lines and normal blood
samples, (3) quantitative MSP screening using laser-
microdissected FFPE samples of normal epithelia, (4)

checking the gene silencing function of candidate
markers, and (5) checking the signal amplitude pattern in
ddMSP reactions. We selected JAK3, Ras-specific guanine
nucleotide-releasing factor 1 (RASGRFI), carboxypepti-
dase X (CPXM1), and Src homology 2 domain-containing
adapter protein F (SHF) as the common BC markers,
Dynamin 3 (DNMa3), Caveolin 2 (CAV2), Homeobox
protein Hox-A10 (HOXA10), and B3GNT5 as the
luminal-dominant markers, and ST3GAL6, Dachshund
homolog 1 (DACHI), P2X purinoceptor 3 (P2RX3), and
chr8:23572595 as the TN-dominant markers (Table 2,
Additional file 2: Tables S4 and S5). DNA methylation sta-
tus and a differentially methylated region in the genomic
area surrounding the selected markers are illustrated
in Additional file 3: Figure S3. For the common BC
markers and the luminal-dominant markers, we se-
lected the markers possessing an epigenetic gene silen-
cing function (Additional file 3: Figures S4 and S5).
Selected subtype-specific methylation markers are sta-
tistically significantly differentially methylated in the lu-
minal and basal subtypes in the TCGA dataset [24]
(Additional file 3: Figure S2-B).

Performance of the internal control marker panel

In this study, we adopted an internal control marker
panel to assess the concentration of cfDNA in the
plasma sample. For precise assessment of cfDNA con-
centration, the markers should not be affected by copy
number alteration (CNA) of the cancer genome. There-
fore, we chose four markers (cAMP-responsive element
modulator (CREM), Glycine N-acyltransferase-like pro-
tein 3 (GLYATL3), ELMO/CED-12 domain containing 3
(ELMOD3), and Kruppel-like factor 9 (KLF9)), for which
the CNA rates were less than 5% in BC, according to the
cBioPortal database. A geometric mean of four markers



Uehiro et al. Breast Cancer Research (2016) 18:129 Page 7 of 14

Differentially methylated loci from array analysis Luminal-dominant marker | TN-dominant marker

BC vs non-BC / TNBC vs Luminal BC 40 loci 24 genes 50 loci 30 genes 50 loci 23 genes

Step 1 Design of MSP primer/probe sets for candidates 57 primers
p Design the primer/probe sets with Universal Probe Library 37 loci 23 genes 39 loci 27 genes 33 loci 21 genes
Step 2 Performance check of MSP primer/probe set 47 primers 50 primers 37 primers

PCR efficiency within 70-110% 34 loci 21 genes 33 loci 24 genes 30 loci 19 genes

Prevalence of aberrant DNA methylation in : P .

Methylation negative in all of 5 normal blood DNA samples,

and positive at least one of 28 breast cancer cell lines il Lhaenes 23 loci 17 genes 12 loci 7 genes

. 4 v ¥ ¥

Step 4 12 primers 122 primers 19 phmers

Not methylated in normal epithelium (FFPE samples) 11 loci 9 genes 17 loci 13 genes 9 loci 5 genes
Step 5 Checking epigenetic gene silencing function 4 primers 11 primers skipped
Select primer sets of epigenetically-regulated genes 4 loci 4 genes 13 loci 11 genes

Fig. 3 Screening of epigenetic markers. BC breast cancer, TNBC triple-negative breast cancer, MSP methylation-specific PCR, FFPE formalin-fixed
paraffin-embedded, ddMSP, droplet digital methylation-specific PCR
A

represented the cfDNA concentration of the samples. (Additional file 3: Figure S6). There was good correlation
We compared the performance of this internal control  between cfDNA concentration measured by this panel
panel and conventional ACTB primer/probe in the and by ACTB. However, the amounts of cfDNA detected
ddMSP assay system, using white blood cell DNA sam- by the panel were significantly higher than by the ACTB
ples derived from 16 HVs and 16 patients with BC  primer/probe set.

Table 2 Epigenetic markers employed in the ddMSP assay

Gene Name Product length  Chr  CpG
Common BC markers
JAK3 Tyrosine-protein kinase JAK3 129 19 s-shore
RASGRF1 Ras-specific guanine nucleotide-releasing factor 1 104 15 island
CPXM1 Carboxypeptidase X1 94 20 island
SHF Src homology 2 domain-containing adapter protein F 117 15 island

Luminal-dominant markers

DNM3 Dynamin 3 105 19 n-shore

CAV2 Caveolin 2 141 7 island

HOXA10 Homeobox protein Hox-A10 135 7 island

B3GNTS UDP-GIcNAc:betaGal beta-1,3-N acetylglucosaminyltransferase 5 97 3 island
TN-dominant markers

ST3GAL6 ST3 beta-galactoside alpha-2,3-sialyltransferase 6 82 3 s-shore

DACH1 Dachshund homolog 1 110 13 n-shore

P2RX3 P2X purinoceptor 3 118 11 island

Chr8:23572595  Intergenic locus corresponding to probe cg23495581, located at chr 8: 23,572,595 in GRCh37 83 8 s-shore
Internal control markers for MSP

CREM cAMP-responsive element modulator 75 10

GLYATL3 Glycine N-acyltransferase-like protein 3 107 6

ELMOD3 ELMO/CED-12 domain containing 3 90 2

KLF9 Kruppel-like factor 9 89 9

ddMSP droplet digital methylation-specific PCR, Chr chromosome, island CpG island, shore CpG shore (region within 2000 bps from CpG island), n-shore/s-shore
northern/southern CpG shore (CpG shore attached to upstream/downstream side of CpG island, respectively), GRC Genome Reference Consortium
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Development of a BC detection model using the ddMSP
system

First, the detection performance of each variable was
assessed by univariate analysis (Additional file 3: Figure
S7A and B). The AUC for methylation markers in the
ROC analysis ranged from 0.56 to 0.71. The AUC of
each internal control surpassed 0.80, and the AUC for
the mean of the internal controls was 0.89. The AUCs
for the mean value of the 12 methylation markers and
the number of positive methylated markers were 0.77
and 0.82, respectively.

Optimization of variable combinations is important to
obtain a detection model with high accuracy. In this study,
we tested all of the possible combinations using 15 vari-
ables (n=2'"-1) by the LOOCV method. The SVM
model using RASGRF1, CPXMI1, HOXA10, and DACHI,
the mean of 12 markers, and the mean of the internal con-
trols had the highest AUC of 0.92, thus, we selected this
variable combination from the detection models. The sen-
sitivity and specificity of this model was 0.91 and 0.83, re-
spectively (Additional file 2: Table S8). The equation of
the selected SVM model is expressed below:

Detection index = 0.62449 x [RASGRF1] + 0.78110
x[CPXMI] + 0.12115 x [HOXA10]
+0.36760 x [DACH1] + 0.65288
x [Mean12] + 2.44704 x [IC]-6.98073

where [RASGRF1], [CPXM1], [HOXA10], [DACH1],
[Mean12], and [IC] represented the loglO concentration
of the methylated DNA fragments of RASGRFI, CPXM1,
HOXA10, DACHI gene loci, mean concentration of 12
methylation markers, and the mean concentration of four
internal control markers, respectively. According to the
ROC curve analysis, samples with a detection index of
more than -0.07923 were defined as positive for BC. All
the ddMSP data are shown in Additional file 2: Table S7
and are also presented in a heat map format (Fig. 4a and
Additional file 3: Figure S7C). The pattern of IC was similar
to that of the detection index, which indicated that the IC
largely contributed to the detection index. However, their
patterns were not the same. Thus, other epigenetic markers
might contribute to increasing specificity of the model.

As a validation study, the developed SVM model was
applied to the validation dataset. The AUC, sensitivity,
and specificity of the validation set were 0.88, 0.84, and
0.79, respectively. Using all the data, the sensitivity and
specificity of this model was 0.88 and 0.81, respectively.
In addition, the positive/negative predictive values and
accuracy of the model was 0.84, 0.85, and 0.85, respect-
ively (Additional file 2: Table S8). The ROC curves of
the selected model for the training and validation sets
are shown in Fig. 4b.
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Age bias in the detection index in patients with BC

The cells of elderly individuals tend to be hypermethy-
lated, compared to the cells of younger individuals. In
addition, the HVs who participated in this study were
significantly younger than the patients with BC. To de-
termine whether the detection accuracy of this model
was biased by age, we tested correlation between the de-
tection index and age in the BC samples. As shown in a
scatter plot (Additional file 3: Figure S8), there was al-
most no relationship between age and the detection
index (Pearson’s correlation, r=0.075, p =0.39). There
was weak but significant correlation between age and 3
out of the 12 markers, and as a single marker
(Additional file 2: Table S9). Among the six variables
employed in the fixed model, only RASGRFI was biased
by age. This may be the reason why the detection index
was not biased by age as a whole.

Correlation between stage, subtype, and the detection
index

There was a statistically significant trend toward a
higher detection index in advanced-stage BC samples
(Jonckheere-Terpstra (JT) test, p = 0.0087) (Fig. 5). How-
ever, this did not mean that the samples in the early
stages tended to be diagnosed as false negatives. All four
patients with ductal carcinoma in situ (DCIS) and 85%
of patients with stage-I BC were correctly categorized
into the cancer group. For more detail, in 41 of the 47
patients with stage-I cancer, the size of the primary
tumor was recorded; the sensitivity for patients with T1a
(m=2), Tlb (n=12), and Tlc (n=27) BC was 1, 0.83,
and 0.85, respectively. Furthermore, the AUC of ROC
analysis of early BC was 0911 in the training set and
0.854 in the validation set, which was comparable with
the AUC for advanced BC, ranging from 0.896 to 0.960
in the training set, and from 0.881 to 0.901 in the valid-
ation set (Additional file 3: Figure S9).

The research aim of this study was to develop a tool
for the early detection of BC. Thus, the detection accur-
acy in these early-stage samples would have significant
impact for future clinical application. As our detection
index correlated with the stage of BC, the index might
indicate the prognosis of patients with BC. However, all
of the cfDNA samples were collected after December
2011. Thus, the follow-up period was too short to derive
any statistical conclusions about survival in BC.

The detection index did not differ among the four BC
subtypes (Kruscal-Wallis test, p = 0.074) (Fig. 6a). In the
TN BC cases, there was also a significant trend toward a
higher detection index in samples from patients in the
advanced stage of BC (JT test, p=0.021) (Fig. 6c),
whereas there was no such significant trend in the
patients with luminal BC (JT test, p =0.05) (Fig. 6b).
There was also no trend in the patients with HER2
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Fig. 4 Droplet digital methylation-specific PCR (ddMSP) data and receiver operating characteristic (ROC) curves of the best support vector machine
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and luminal HER2 BC (JT test, p =0.20 and p =0.81,
respectively), which is likely due to the small sample
size (Additional file 3: Figure S10).

All the TN, HER2, and luminal HER2 BC samples,
even those at stage I, were stratified into the cancer
group. In contrast, 17 out of the 98 luminal BC samples
(17.3%) were falsely stratified into the non-cancer group,

which contained some advanced/metastatic cases (Fig. 5).
Limited to the early stage, 7 patients (19.4%) were diag-
nosed as non-cancer. In the 17 false-negative patients,
15 had >50% estrogen-receptor-positive cells, and 13
also had >20% progesterone-receptor-positive cells in
primary tumors. Furthermore, the Ki-67 index of 10
false-negative patiets was under 14%. Taken together, the
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fixed model had relatively lower detection accuracy for
the luminal A-like subtype [27] of BC samples than that
for the other subtype samples.

Discussion

In this study, we developed a cfDNA-based system for
early diagnosis of BC using an epigenetic marker panel.
Most previous studies of DNA methylation markers in
cfDNA for BC utilized the MSP method by real-time
PCR, and obtained a wide range of diagnostic accuracy,
as shown in Additional file 2: Table S10 [12—15, 17-20].
Generally, methylation markers were detected frequently
in patients with metastatic BC, unlike in patients with early
BC, in whom methylation markers were less frequent.

In comparison with other studies, our study had
unique and advantageous key points. First, we selected
epigenetic markers from genome-wide screening by
array analysis, whereas most previous studies chose
markers in a knowledge-based way. Screening novel
markers from genome-wide analysis required consider-
able effort to identify the final markers; however, this
method may have a better chance of obtaining accurate
marker sets than the knowledge-based method. Further-
more, we validated the results of our methylation array
analysis, using large sample cohorts of PBMC samples
[23] and TCGA BC samples [24]. This validation analysis
confirmed that selected candidate markers were differ-
entially methylated among subtypes in independent
datasets.

Second, we employed the cfDNA concentration data
in the detection algorithm to improve detection per-
formance. The mean IC, which represented the cfDNA

concentration, largely contributed to the high accuracy
of the algorithm. Third, our model was highly accurate
even in the detection of patients with early BC. The sen-
sitivity of detection in patients with BC stage 0-1 was
90.0% in the training set and 81.0% in the validation set.
The ROC of AUC for this stage was 0.911 in the training
set, and 0.854 in the validation set. In the previous stud-
ies conducted in the USA, Europe, and Asia, the sensi-
tivity and specificity of mammography ranged from 74.6
to 92.5% and from 83.1 to 99.5%, respectively [5, 28—30].
In addition, the sensitivity and specificity of mammog-
raphy in women aged 40-49 years was lower than in
women aged 50-70 years [2]. Taking into consideration
that 42% of patients (n=117) in this study was below
50 years of age, the detection of early BC by our model
was comparable with that of mammography. Thus, these
results indicated that our system could be an optional
method in BC mass screening in the future. Finally, we val-
idated the accuracy of the fixed model using a large cohort
(n=111). We proved that our system could have general-
ized potential to distinguish patients with BC from HVs.
Similar to other reports, each methylation marker in
this study had low-range to mid-range sensitivity. The
low sensitivity is reasonable because we intentionally se-
lected luminal-dominant and TN-dominant markers that
were unmethylated in the other subtypes. In general, the
keys to building a good multi-marker mathematical
model for prediction or diagnosis include avoiding over-
fitting to obtain a generalized model, and covering as
large a variety of data patterns as possible. According to
the results of the TCGA Project [24] and the Carolina
Breast Cancer Study [31], there are some subtypes



Uehiro et al. Breast Cancer Research (2016) 18:129

within the DNA methylation pattern. If we chose
markers only by sensitivity as a single marker, epigenetic
data from these markers would be redundant and would
miss some important features. Thus, we intentionally se-
lected subtype-specific markers, not only common BC
markers. Adding different types of information, such as
mean methylation values and a c¢fDNA concentration
measured by internal control markers, helped to im-
prove the accuracy of the model. Moreover, the numbers
of variables are important. The model should include
enough data to accurately show the potential variety
without overfitting the model. Sixteen markers, the
number used in our model, would be a reasonable size,
and feasible in terms of clinical application by the PCR-
based assay system, similar to Oncotype Dx [32].

Markers targeting four genes were employed in the fixed
model. Three of the four genes were recognized as tumor
suppressor genes according to previous functional studies.
RASGREF1 activates Ras by stimulating the dissociation of
GDP from RAS protein. RASGRF1/2 regulates Cdc42-
mediated tumor cell transformation and cell motility,
working as a tumor suppressor gene [33]. Hypermethyla-
tion in the promoter region of RASGRFI has been ob-
served in gastric cancer cells and precancerous tissues of
the gastric mucosae [34]. Our report is the first to show
that the RASGRF1 promoter region is hypermethylated in
both the luminal and TN BC subtypes.

CPXM1, also known as CPX1, encodes a metallocar-
boxypeptidase protein. Although one study reported that
CPXM1 may regulate osteoclastogenesis in mice [35], its
function in human cancer cells remains unknown. Our
analysis indicates that its expression is epigenetically reg-
ulated, and it may act as a tumor suppressor gene in BC
cells. However, further functional studies are required to
confirm its function.

HOXA 10 encodes one of the DNA-binding transcription
factors that regulate gene expression, morphogenesis and
differentiation, functioning as a tumor suppressor gene.
HOXAI0 is methylated in differentiated CD24-positive
normal mammary cells and luminal BC cells [36], and
the methylation level increases during the progression
of BC from DCIS via a primary invasive ductal carcinoma,
to a metastatic tumor [36, 37]. These data are consistent
with our results, that HOXAI0 is a luminal-dominant
marker.

DACHI encodes a chromatin-associated protein that
regulates gene expression and cell fate determination
during development, and also functions as a tumor sup-
pressor gene. DACHI is epigenetically silenced in colo-
rectal and hepatocellular carcinoma [38, 39]. In BC,
DACHLI represses aggressive characteristics such as stem
cell function, epithelial-mesenchymal transition, migra-
tion activity, and so on [40-45]. Moreover, DACH1 ex-
pression is higher in the luminal subtype than in the
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basal subtype [42, 43, 46]. These facts support our obser-
vation that DACH1 is selected as a TN-dominant methy-
lation marker.

This panel also contained four novel internal control
markers for MSP to measure cfDNA concentration pre-
cisely. The primer/probe sets were designed to target
DNA sequences with no CpGs. In this study, the mean
value of these internal controls had a good AUC, which
largely contributed to the high detection accuracy of the
developed SVM model. This finding was consistent with
previous articles showing that the c¢fDNA concentration
in patients with BC was significantly higher than that of
HVs [47-50]. However, the methods in these previous re-
sults have not been implemented in BC screening. As the
quantity of DNA was measured by spectrophotometry or
PCR in these studies, the data may not have been accurate
enough to detect early BC. In the present study, we
employed a digital PCR system to enable absolute quanti-
fication of the amount of ¢fDNA and aberrantly methyl-
ated DNA fragments. The mean of the internal controls
had a high AUC as a single marker, contributing to
the development of a more accurate algorithm by
adding information to cfDNA methylation data. Ac-
cording to the cBioPortal data, the genes of the in-
ternal control markers were mutated, amplified, and
lost in less than 5% of other malignancies [25, 26].
Thus, this internal control panel could be beneficial
for the detection of other types of cancer as well.

On the other hand, this ddMSP-based detection sys-
tem has some limitations. First, there were 23 (15.5%)
false positives among the HVs. Although methylation
markers were selected with an emphasis on specificity,
some methylation markers have low specificity. One ex-
planation is the non-specific elevation of cfDNA concen-
tration. In fact, the cfDNA concentration in the false-
positive HVs was significantly higher than the true-
negative HVs (Additional file 3: Figure S11). According
to the coefficients of the model equation, the contribu-
tion of cfDNA concentration to the detection index is
large. Thus, elevated cfDNA concentration caused by
non-cancerous events such as inflammation or a benign
cell-proliferative lesion may result in a false-positive
diagnosis. Another possible reason is the existence of a
pre-diagnostic malignant lesion, and not only BC. Our
clinical data contained the BC screening results of the
HVs by imaging and physical examination, which could
not deny the existence of pre-diagnostic BC or other ma-
lignancies. Longitudinal analysis using serially obtained
samples is required to check whether false-positive indi-
viduals have such lesions. However, the false-positive rate
in this study was within a comparable level to current BC
screening methods based on clinical breast examination
and imaging, such as mammography and ultrasonography,
with specificity ranging from 6.9 to 19.6% [2, 3, 5].
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Second, there were 17 (17.3%) false-negative patients
with luminal BC, which included some with advanced/
metastatic BC, and 7 (19.4%) were limited to early BC.
The false-negative patients had low mean values of 12
methylated markers (¢ test, p <0.0001) and low cfDNA
concentration (¢ test, p<0.0001) (Additional file 3:
Figure S11). Ten false-negative patients were categorized
as having the luminal A-like subtype of BC. Due to the
fact that in patients with cancer, cfDNA may consist of
circulating tumor DNA derived from the necrotic or
apoptotic tumor cells and cell-free DNA from cells in
the tumor microenvironment, luminal BC with low pro-
liferation and low activity in its tumor microenviron-
ment might produce relatively low cfDNA, and may
cause false-negative diagnosis.

Pepe, et al., statisticians in the Early Detection Re-
search Network (EDRN), defined five phases of screen-
ing biomarker development, and described the aims,
study design, and evaluation methods for each phase.
According to these definitions, this study was in phase 1
(preclinical exploratory studies) and phase 2 (clinical
assay development for clinical disease) [51]. The useful-
ness of this system in the BC screening setting should be
demonstrated in the later phases. According to our re-
sults, this detection system for BC seems to be worth-
while for advancement into the next phase.

The original objective of this system was early detec-
tion of BC for screening purposes. However, this system
can be applied to clinical uses other than for detection
of BC. Previous DNA methylation studies using cfDNA
demonstrated that methylation status of several genes
was different at baseline in responders and non-
responders to therapy, and the methylated DNA marker
decreased in responders during therapy [16]. In the
present study, as cfDNA samples in the more advanced
stages had a higher detection index, the index repre-
sented tumor burden. Thus, this ddMSP system could
also be a useful tool to monitor the therapeutic response
of metastatic BC. Furthermore, this panel could distin-
guish early TN BC, and could have potential as an alter-
native to screening by magnetic resonance imaging in
patients and carriers of the BRCA-mutation. These is-
sues will be investigated in a further study.

Conclusion

We established an epigenetic marker panel for cfDNA
and a detection algorithm to distinguish patients with
BC from HVs with high accuracy. As the detection of
early BC using this system was comparable with mam-
mography screening, this cfDNA-based detection system
would be beneficial as an option for BC screening. A fur-
ther study is necessary to demonstrate its clinical useful-
ness as an optional method for BC screening.
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