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Abstract

Background: Although genome-wide association studies (GWASs) have identified thousands of disease susceptibility
regions, the underlying causal mechanism in these regions is not fully known. It is likely that the GWAS signal
originates from one or many as yet unidentified causal variants.

Methods: Using next-generation sequencing, we characterized 12 breast cancer susceptibility regions identified by
GWASs in 2288 breast cancer cases and 2323 controls across four populations of African American, European, Japanese,
and Hispanic ancestry.

Results: After genotype calling and quality control, we identified 137,530 single-nucleotide variants (SNVs); of those,
87.2 % had a minor allele frequency (MAF) <0.005. For SNVs with MAF >0.005, we calculated the smallest number of
SNVs needed to obtain a posterior probability set (PPS) such that there is 90 % probability that the causal SNV is
included. We found that the PPS for two regions, 2q35 and 11q13, contained less than 5 % of the original SNVs,
dramatically decreasing the number of potentially causal SNVs. However, we did not find strong evidence
supporting a causal role for any individual SNV. In addition, there were no significant gene-based rare SNV
associations after correcting for multiple testing.

Conclusions: This study illustrates some of the challenges faced in fine-mapping studies in the post-GWAS era,
most importantly the large sample sizes needed to identify rare-variant associations or to distinguish the effects
of strongly correlated common SNVs.
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Background
Breast cancer is the most common malignancy among
women in the United States, with more than 230,000
new diagnoses expected in 2015 [1]. Breast cancer has a
heritable component [2], and researchers in recent
genome-wide association studies (GWASs) have identi-
fied more than 90 [3–20] genetic regions associated with

breast cancer risk. However, the underlying causal
mechanism in these regions is not fully known, and it is
likely that the index GWAS signal originates from one
or many as yet unidentified causal variants. Because
GWASs rely on linkage disequilibrium (LD) or correl-
ation between neighboring common genetic variants,
they cannot be used to localize causal variants with
precision. Instead, one genetic variant is used to tag seg-
ments of the genome over which LD is maintained (“LD
blocks”), which can contain multiple genes. Localizing
causal variation is further complicated by the possibility
of multiple causal variants within one tagged segment of
the genome.
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Moreover, GWAS-identified regions that contain com-
mon risk variants may also contain rare variations associ-
ated with disease risk. For example, rare susceptibility
variants for ulcerative colitis [21] and inflammatory bowel
disease [22] have been identified in GWAS regions. In
principle, GWAS-identified risk single-nucleotide pol-
ymorphisms (SNPs) may be proxies for multiple rare risk
alleles (“synthetic association”) [23]. Indeed, dense
genotyping of the HOXB region revealed a cluster of com-
mon, low-penetrance prostate cancer risk alleles that ap-
pear to tag the rare, moderate-penetrance coding variant
rs138213197 [24]. However, in practice, the LD between
common SNPs on GWAS platforms and rare variants is
low. This implies that direct measurement of rare variants
is needed to identify rare-variant associations at GWAS-
identified loci. Fine-mapping of GWAS-identified regions
with the aim of identifying and prioritizing causal variants
requires not only large sample sizes but also a comprehen-
sive capture of the genetic variation, with the latter often
not achieved through standard GWAS arrays. Sequencing
is an attractive approach, but until recently it has been
prohibitively expensive to do on a large-scale basis. Early
fine-mapping studies sequenced a small number of cases
and then genotyped detected SNPs in a larger population
[22, 25]. Like GWAS, however, this approach will likely
miss rare variants because of the low number of subjects
initially sequenced.
A limitation in previous breast cancer studies is the

lack of well-powered studies across multiple ancestral
populations. Although breast cancer GWASs have been
conducted in populations of Asian [5, 11, 12, 19, 20],
African [26], and Hispanic [27] ancestry, the vast
majority of studies have been conducted in European
[3, 4, 6–8, 10, 13, 14, 16–18] ancestry populations, and
only a few GWASs have been conducted across ethnici-
ties [9, 15]. LD blocks differ by ancestry, which limits
the consistency of some GWAS findings across popula-
tions, and studies with subjects of a single ethnicity
may miss risk alleles that are observed at higher fre-
quencies in other populations [28]. Indeed, multiethnic
studies of genetic susceptibility regions discovered in a
specific ethnicity often identify different “top” variants
across ethnicities [29–33]; therefore, multiethnic studies
have been proposed to aid fine-mapping of causal variants
[28]. In this study, we attempted to overcome many of the
issues related to fine-mapping of GWAS regions by using
next-generation sequencing to characterize 12 breast can-
cer susceptibility regions in a multiethnic sample of 2288
breast cancer cases and 2323 controls.

Methods
Study subjects
The Nurses’ Health Study (NHS) was initiated in 1976,
when 121,700 U.S. registered nurses aged 30 to 55 years

returned an initial questionnaire. The NHS breast cancer
case-control study is nested within a subcohort of
32,826 women who donated blood during 1989 and
1990 and were followed until 2004 for incident disease
[34, 35]. In 1989, 116,430 additional U.S. registered
nurses returned an initial questionnaire (Nurses’ Health
Study II [NHSII]). The NHSII breast cancer case-
control study is nested within a subcohort of 29,611
women who donated blood during 1996–1999 and were
followed until 2005 [36]. Medical records were used to
confirm the diagnoses in women who reported a diag-
nosis of breast cancer on the biennial questionnaires
for both NHS and NHSII. Control subjects were
matched to cases based on age, menopausal status, re-
cent hormone replacement therapy, and blood draw-
specific variables (such as date and time of day). For
this study, we included a total of 771 cases and 789
controls from the NHS and NHSII who have previously
been genotyped as a part of a GWAS [10] and had
DNA available (Additional file 1: Table S1).
The Multiethnic Cohort (MEC) is a population-based

prospective cohort study (n = 215,251) that was initiated
between 1993 and 1996 and includes subjects from
various ethnic groups: African Americans and Latinos pri-
marily from California (Greater Los Angeles area), Native
Hawaiians, Japanese Americans, and European Americans
primarily from Hawaii [37]. State driver’s license files were
the primary sources used to identify study subjects in
Hawaii and California. Additionally, in Hawaii, state voter
registration files were used, and in California, Health Care
Financing Administration files were used to identify
additional African American study subjects. In the cohort,
incident cancer cases are identified annually through
cohort linkage to population-based cancer Surveillance,
Epidemiology, and End Results registries in Hawaii and
Los Angeles County as well as to the statewide California
Cancer Registry. Blood sample collection in the MEC
began in 1994 and targeted incident breast cancer cases
and a random sample of study participants to serve as
controls for genetic analyses. Subjects are frequency-
matched on age at blood draw and on ethnicity. For this
study, we included subjects who had already been geno-
typed as part of a GWAS [15] and had DNA available: 468
cases and 469 controls of African American ancestry, 452
cases and 458 controls of Latino ancestry, and 622 cases
and 638 controls of Japanese ancestry (Additional file 1:
Table S1).

Sequencing
We selected and sequenced 12 regions because of their as-
sociation with breast cancer (Additional file 2: Table S2).
These regions were 2q35 (rs13387042),TERT (rs10069690),
MAP3K1 (rs889312), ESR1 (rs2046210), 8q24 (rs1562430),
ZNF365 (rs10995190), ZMIZ1 (rs704010), FGFR2 (rs298
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1579), 11q13 (rs614367), RAD51B (rs99737), TOX3 (rs38
03662), and 19p13 (rs8170). In addition, we sequenced the
TERC region on chromosome 3 because of its involvement
in telomere length. Initial quality control (QC) was con-
ducted on all 13 regions, but we present results for only the
12 regions associated with breast cancer here. Region
boundaries were defined by nearest recombination hot spot
downstream and upstream from the original GWAS signal
as identified using the HapMap CEU (Utah residents with
ancestry from northern and western Europe), YRI (Yoruba
in Ibadan, Nigeria), JPT (Japanese in Tokyo, Japan), and
CHB (Han Chinese in Beijing, China) populations. We set
out to hybrid-capture and sequence a total of 5500 kb
(Additional file 2: Table S2). Sequencing was conducted at
The Broad Institute using an Illumina HiSeq sequencing
system (Illumina, San Diego, CA, USA). Sequencing was
performed using a capture method that uses biotinylated
RNA “baits” to fish targets out of a “pond” of DNA frag-
ments [38]. Agilent eArray software (Agilent Technolo-
gies, Santa Clara, CA, USA) was used to design the baits
using 2× tiling frequency and a centered layout strategy,
avoiding standard repeat masked regions, and allowing a
maximum of 20-bp overlap with repeat masked regions. A
complex pool of ultralong 200-mer oligonucleotides
(“baits”) consisting of a target-specific 170-mer sequence
flanked by 15 bases of a universal primer sequence on each
side are synthesized in parallel on an Agilent microarray
and then cleaved from the array. We then used in vitro
transcription to generate a single-stranded RNA
hybridization bait for fishing targets of interest out of a
“pond” of randomly sheared, adaptor-ligated, and polymer-
ase chain reaction-amplified DNA. RNA bait-DNA hybrids
are “fished” out of the complex mixture by incubation with
streptavidin-labeled magnetic beads and captured onto a
strong magnet. After the beads are washed, the RNA bait
is digested so that the only remaining nucleotide is the tar-
geted DNA of interest. A few cycles of DNA amplification
are performed at the end of the capture, and the targeted
sample is then loaded onto the sequencing instrument.
This method allows preparation of large amounts of bait
from a single oligonucleotide array synthesis that can be
tested for quality, stored in aliquots, and used repeatedly
over the course of a large-scale targeted sequencing pro-
ject. Within the nonrepetitive regions, we could design
baits to cover 82.8 % of the sequence.

Alignment and genotype calling
We used Burrows-Wheeler Aligner (BWA) software to
align reads to the genome [39]. Genotype calling was
done using GATK software with default standard filters
[40, 41]. GATK takes the raw BAM files and does initial
checking by correcting for possible SNP artifacts due to
local realignment around indels and mark reads that
were duplicately sequenced. Owing to the size of the

dataset, it was not practically feasible to recalibrate the
base quality scores that are provided by the sequencing
machine. Therefore, we used the following filtering for
SNP calling: QD <2.0, MQ <40.0, FS >60, Haplotype-
Score >13.0, MQrankSum <12.5, and ReadPosRankSum
<8.0. We used QD <2.0, FS >200, Read PosRankSum
<20.0, and InbreedingCoeff <0.8 for indel calling. Variant
calling was made in 47 different batches (about 100 sam-
ples in each batch). We randomly assigned subjects to
batches after conditioning on ethnicity and case-control
status to ensure full representation in each batch. All
variant calls with a quality score <30 were omitted. To
account for variants that were seen in only one or a few
batches, we recalled all individuals in batches where the
variant was not seen from missing to reference
homozygous.

Genotype and sample filtering
We initially observed 158,265 single-nucleotide variants
(SNVs). We removed SNVs where >10 % of the samples
had no reads or when the total of reads across all samples
was <20,000. We then set individual genotypes to missing
if the number of reads was <5 or the quality score was
<10. Finally, we removed SNVs with >10 % missing or due
to evidence of departure from Hardy-Weinberg equilib-
rium (p < 10−6) in any ancestry group. We excluded 8
samples that were unexpected pairwise duplicates, 43
samples that showed <90 % concordance with GWAS data
(indicating sample mixup), 16 samples that had a call rate
<90 % (Fig. 1d), 36 samples for which we did not have
GWAS data, and 5 samples showing unexpected non-
European ancestry. After applying these filters, there were
138,792 SNVs left for analysis.

Baited vs. nonbaited regions
We were not able to design baits for 48.9 % of the ori-
ginal targeted sequences. Before QC, 32 % of the SNVs
fell within nonbaited regions. Across all samples, 61.6 %
of nonbaited SNVs had an average read depth >10×
compared with 99.0 % of the baited SNVs, and 43.2 % of
nonbaited SNVs had an average read depth >20× com-
pared with 96.9 % of baited SNVs. After QC, 23.5 %
SNVs fell in the nonbaited regions. Of those, 94.2 % had
an average read depth >10× compared with 99.7 % of
the baited samples, and 67.4 % of nonbaited SNVs had
an average read depth >20× compared with 97.4 % of
baited SNVs. Of the SNVs that were removed in the QC,
86.5 % were in nonbaited regions (Additional file 3:
Figure S1).

Coding variant annotation
Annotation of variants or assignment of a variant to a
gene was implemented using GEMINI (GEnome MINIng)
[42]. GEMINI is a flexible, UNIX-compatible framework
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for exploring genome variation that pulls information
from SnpEff [43] as mapped by build 37 of the human
genome. We further annotated each variant with Poly-
morphism Phenotyping version 2 (PolyPhen-2) scores
[44], which predict the functional impact of individual var-
iants using Variant Effect Predictor (VEP) [45]. Of the
2085 nonsynonymous coding variants that passed QC fil-
ters in our study population, we obtained PolyPhen-2
scores for 1975 (95 %). Of those, we obtained exclusive
predictions for 1852 variants after excluding variants with
none or unknown predictions. Lower scores correspond
to less damaging qualitative values, and scores ranged
from 1 to 617 (Additional file 4: Table S3). Scored variants
were assigned to at least one of PolyPhen-2 qualitative
prediction: benign; possibly damaging; probably damaging;
or, in the case of insufficient data, unknown or none. For
the rare-variant tests, we further refined the set of variants
in each gene and included only nonsynonymous variants
that were predicted by PolyPhen-2 to be possibly dam-
aging or probably damaging.

Statistical methods
We used logistic regression to assess the association be-
tween each common SNV and breast cancer risk by
population as well as across populations. We conducted
ethnicity-specific analysis adjusting for the top three
principal components within each ethnicity to adjust for
potential population stratification [46]. We combined re-
sults across ethnicities using fixed-effect meta-analysis.
We adjusted for multiple testing using a modified
Bonferroni correction, which allows for dependence be-
tween tests within each GWAS region by calculating a
region-specific effective number of tests [47]. To assess
whether regions contained multiple statistically inde-
pendent risk alleles, we reran the association analysis,
conditioning on the top SNP/index SNP in each region.
We also conducted an approximate Bayesian analysis

to estimate the posterior probability that a given SNP is

a causal variant, assuming there is only one causal SNP in
the region. We estimated the posterior probability using
the ratio of the likelihood from the logistic regression for
a particular SNP to the sum of the likelihoods for individ-
ual SNPs in the region. The highest posterior density set is
then defined as the smallest set of SNPs such that the total
posterior density (summed over all SNPs in the set) is
>90 %. All analyses were performed in PLINK ([48],
http://pngu.mgh.harvard.edu/~purcell/plink/), R [49], and
METAL [50]. We conducted additional analysis using a
novel fine-mapping framework (PAINTOR) [51] that inte-
grates external functional annotation with genetic data for
prioritization of causal variants. PAINTOR jointly models
multiple causal variants from all included loci simultan-
eously, increasing localization accuracy. We included two
sets of annotations in our analysis, coding variants and
variants located in DNase I hypersensitive sites (DHSs)
identified in the breast tissue cell lines MCF-7, HMEC,
and HMF. We ran two sets of analyses, the first assuming
one causal SNP per region and the other assuming two
causal SNPs per region.
We used two gene-based rare-variant tests in each eth-

nicity: a burden test and a sequence kernel association test
(SKAT) [52]. Each association test was performed separ-
ately by ethnicity and adjusted for the first three ethnicity-
specific principal components. To combine evidence
across ethnicities, we applied two meta-analytic tech-
niques: inverse-variance (BURDEN)-weighted fixed-effect
meta-analysis [53] and meta-analysis of SKAT assuming
the effect of each variant is homogeneous, regardless of
ethnicity (Hom-Meta-SKAT) [54]. Each technique uses a
distinct approach: a mean-based approach for fixed-effect
meta-analysis and a variance-based approach for Hom-
Meta-SKAT.

Results
We sequenced 937 women of African American ances-
try, 1256 women of Japanese American ancestry, 907

Fig. 1 Number of single-nucleotide variants (SNVs) that passed quality control within and across ethnicities for 4611 women. The majority of
variants were population-specific, and only 9420 (6.8 %) of SNVs were shared among all ethnicities
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women of Hispanic ancestry, and 1511 women of
European ancestry (Additional file 1: Table S1). Sub-
jects were participants in NHS [34], NHSII [36], and
MEC [37]. In total, we sequenced 2288 breast cancer
cases and 2323 controls. We were not able to capture
a total of 2740 kb (49.8 %) originally targeted, primarily
because of repetitive sequence content. The median
proportion of captured regions with coverage >20× was
higher than 93 % across all regions (range 93.8–99.9 %).
After quality control of the 12 regions (see the Methods

section above), we obtained genotype data on 137,530
SNVs. Of those, 34,532 (25.11 %) were located in inter-
genic regions, 62,427 (45.39 %) were intronic, 1306
(0.95 %) were synonymous, and 1983 (1.44 %) were nonsy-
nonymous. The rest (27 %) were located upstream/down-
stream genes, 3′ and 5′ untranslated regions, and in
coding regions (e.g., nonsense variants) (Additional file 5:
Table S4). On average, each region contained 6.3 genes
(range 1–26), and the median number of SNVs by region
was 8401 (range 1833–23,757). We observed an abun-
dance of rare SNVs, with 119,980 SNVs (87.2 %) having a
minor allele frequency (MAF) <0.005; of these, 64,747
SNVs (47.1 %) were private mutations (54 variants were
homozygous in one carrier). The number of polymorphic
variants ranged from 36,799 in Japanese Americans to
64,632 in African Americans. Most variants were
population-specific: 70 % of all variants were observed
in only one ethnicity (Fig. 1), emphasizing the genetic
diversity across populations. In contrast, a total of 9420
(6.8 %) SNVs were shared across all ethnicities. In gen-
eral, Japanese Americans had the largest proportion of
SNVs not shared with others (61 %), whereas Latinas
had the smallest proportion of population-specific
SNVs (35 %).
The majority of observed SNVs were novel: Only

27.3 % were observed in the 1000 Genomes Project [55]
(Additional file 6: Figure S2, Additional file 7: Figure S3,
and Additional file 8: Figure S4). Due in part to the low
read depth in uncaptured repetitive sequences, 42,105
(47.4 %) of the SNVs present in the 1000 Genomes Pro-
ject for these regions were not observed in the targeted
sequencing data (Additional file 9: Figure S5). However,
we observed 26,205 (73.4 %) of the 35,714 1000
Genomes Project SNVs that were located in captured re-
gions in our targeted sequencing data, suggesting that
the majority of 1000 Genomes Project SNVs that were
not observed in our targeted sequencing data were lo-
cated within regions not captured by our sequencing
technology.
We first conducted individual SNP analysis of com-

mon variants in at least one ancestry (MAF >0.005,
n = 27,380). After Bonferroni correction, we did not
observe any significant associations in ethnicity-specific
analyses (data not shown) or across all ethnicities

(Additional file 10: Table S5). Given the strong correlation
between SNPs in these regions, we also applied a more re-
laxed p value threshold, adjusting for number of effective
tests [47]. Using this approach, we observed four SNPs
that remained statistically significant after correcting for
multiple testing (p < 4.59 × 10−6), all in the 11q13 region
(rs61041893, rs7123796, rs597587, rs644376). These SNPs
are all within 13 kb of each other, and SNPs rs7123796,
rs597587, and rs644376 are all in strong LD with each
other (r2 > 0.74), whereas rs61441893 show only moderate
correlation with the other SNPs (r2 = 0.31–0.39) with the
others. Interestingly, these SNPs are not correlated with
the GWAS index SNP rs614367 (r2 < 0.01) and approxi-
mately 40 kb away from the nearest gene (CCND1). The
strongest association was observed for rs61041893 (OR
0.63, 95 % CI 0.52–0.76, p = 2.15 × 10−6). Of note, this
SNP was evaluated only in African Americans and His-
panics because it was not observed in Japanese Americans
and was very rare (MAF = 0.002) in European Americans.
Of the 12 GWAS index SNPs previously reported in the
literature, we replicated 6 across all populations using an
unadjusted p value threshold of 0.05 (Table 1).
We used SnpEff [43] to annotate and predict SNV

effects. We observed 81 SNVs that had a predicted
disruptive impact (e.g., splice site donators/acceptors,
loss of start/stop codon, gained stop codon, frame shift
variants), 1983 nonsynonymous coding SNVs, 1374 syn-
onymous coding SNVs, and 134,092 noncoding SNVs
(Fig. 2, Additional file 5: Table S4). Two SNVs with pre-
dicted disruptive function had a MAF >0.005 in the full
dataset. SNP rs79619171 in the FGFR2 region is a splice
site donor in the TACC2 gene; it was observed only in
the Japanese American samples (MAF 0.08) and was
moderately associated with breast cancer (OR 1.47, 95 %
CI 1.09–1.98, p = 0.01). SNP rs55670604 is a splice site
acceptor in the RAD51L1 gene; it was observed in
Latinas (MAF 0.03), African Americans (MAF 0.02), and
European Americans (MAF 0.08), but it was not associ-
ated with breast cancer in any population (data not
shown) or across all ethnicities (OR 1.00, p = 0.99).
To identify multiple independent signals, we reran the

association analysis, conditioning on the top SNP in
each region. We observed no new significant associa-
tions after correcting for multiple testing (all p > 10−4)
(Table 1). We also assessed if there was evidence of
additional signals beyond the index SNP in these
regions by conditioning on the original GWAS index
SNP (Table 1). For the ZNF365 and 11q13 regions, we
observed evidence of association signals beyond the
index signal (p < 10−4), in agreement with previous studies
[5, 56, 57]. We also conducted an approximate Bayesian
analysis [58] to estimate the posterior probability that a
given SNP is a causal variant, assuming there is only one
causal SNP in the region (Additional file 11: Figure S6).
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Table 1 Breast cancer association results

Region Index SNP (locus) Chromosome Length (Mbp) SNV MAF
≤0.005

SNV MAF
>0.005

High-impact
SNVsb

p value
(index SNP)

p value (top SNP) Conditional analysis on
top SNP p value (top SNP)

Conditional analysis on index
SNP p value (top SNP)

1 rs13387042 (2q35) 2 0.122 3469 674 0 0.00016 2.68E-05 (rs6721996) 0.0070 (rs116670542) 0.0066 (rs116670542)

2 rs10069690 (TERT) 5 0.046 1681 167 0 0.0044 0.0044 (rs10069690) 0.025 (rs34768248) 0.025 (rs34768248)

3 rs889312 (MAP3K1) 5 0.308 6663 986 4 0.098 0.00035 (rs111944656) 0.0022 (rs79128470) 0.0021 (rs111944656)

4 rs2046210a (ESR1) 6 0.243 4209 727 10 0.015 0.00023 (rs9383938) 0.0074 (rs80347946) 0.0077 (rs80347946)

5 rs1562430 (8q24) 8 0.973 20,730 3260 5 0.18 9.87E-05 (rs112613843) 0.00020 (rs4871810) 0.00019 (rs4871841)

6 rs10995190 (ZNF365) 10 0.876 7635 1056 1 0.76 2.7E-05 (rs12570941) 0.0085 (rs73282644) 5.39E-05 (rs12570941)

7 rs704010 (ZMIZ1) 10 0.398 13,622 1822 4 0.019 0.00025 (Chr10-81107117) 0.00076 (rs117770051) 0.00019 (Chr10-81107117)

8 rs2981579 (FGFR2) 10 0.473 20,081 3033 15 0.00046 4.42E-05 (rs10736303) 0.00020 (rs192776427) 0.00024 (rs192776427)

9 rs614367 (11q13) 11 0.259 6743 1010 5 0.75 2.15E-06 (rs61041893) 0.00032 (rs11823311) 5.47E-05 (rs598003)

10 rs999737 (RAD51B) 14 0.815 15,992 2025 8 0.067 0.00050 (rs76904544) 0.00086 (rs113627141) 0.00074 (rs113627141)

11 rs3803662 (TOX3) 16 0.269 7337 910 0 0.036 0.00013 (rs12922061) 0.0013 (rs8048809) 0.0013 (rs4784227)

12 rs8170 (MERIT40) 19 0.712 13,080 1880 31 0.67 0.0035 (rs62126223) 0.0069 (rs117673644) 0.0035 (rs62126223)

MAF Minor allele frequency, SNP Single-nucleotide polymorphism, SNV Single-nucleotide variant
The results shown are derived from genome-wide association study index single-nucleotide polymorphisms and best associated single-nucleotide variant in sequenced regions spanning 12 breast cancer genome-wide
association study loci. Results are also shown for conditional analysis adjusted for either best associated (“top”) SNP or the original index genome-wide association study SNP
aSNP was filtered in quality control, p value for rs12662670
bAs defined by SnpEff [43]
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The highest posterior probability set (PPS) is then defined
as the smallest set of SNPs such that the total posterior
density (summed over all SNPs in the set) is >90 % and
can help guide the selection of candidate SNPs for further
downstream functional and bioinformatic analyses. The
number of SNPs included in the highest posterior density
set varied widely, between 11 (11q13) and 2954 (8q24), in
analysis across all ethnicities (Table 2). For two regions
(2q35 and 11q13), <5 % of the original SNVs were needed
to obtain a 90 % PPS. Population-specific analysis showed

similar results (data not shown). We conducted additional
fine-mapping analyses using a novel fine-mapping frame-
work (PAINTOR) [51] that integrates external functional
annotation with genetic data and calculates SNV-specific
posterior probabilities for causality. We included two sets
of annotations in our analysis: coding variants and variants
located in DHSs identified in the breast tissue cell lines
MCF-7, HMEC, and HMF [59]. We limited our analysis
to SNPs with an allele frequency >0.01. In total, we
included 13,373 SNPs, and of those, 104 (0.8 %) were cod-
ing, 371 (2.8 %) were located in breast tissue DHSs, and
one SNP was both coding and located in a DHS. We ran
two sets of analyses, the first assuming one causal SNP
per region and the other assuming two causal SNPs per
region. Overall, the results from either of these
analyses did not qualitatively differ from the Bayesian
analysis without incorporating functional annotation
data (Additional file 12: Table S6). However, for the
11q13 region, we noticed that while both the Bayesian
approach and PAINTOR assuming one causal variant
predicted that rs61041893 had the highest posterior
probability (0.22 using both approaches), this SNP had
a posterior probability of only 2.2 × 10−5 when we ran
PAINTOR assuming two causal variants. Instead,
rs12279395 and rs11823311 both had high posterior
probabilities (>0.99) of being causal. These two variants
were located 74 kb and 75 kb apart from rs61041893,
respectively, and 150 kb apart from each other, They
were both nominally associated with breast cancer risk
(p < 0.0005). SNP rs12279395 is a nonsynonymous SNP
located in the ORAOV1 gene, whereas rs11823311 is
located in an intergenic region. Interestingly, these three
variants (rs12279395, rs11823311, and rs61041893) all

Table 2 Results of posterior probability analysis

Region Index SNP (locus) Chromosome SNPs in PPS
(proportion)

Proportion of SNPs in PPS (all SNPs) according to functional annotationa

High impact Moderate impact Low impact Modifier impact

1 rs13387042 (2q35) 2 42 (0.04) 0 (0) 0 (0) 0 (0) 1 (1.00)

2 rs10069690 (TERT) 5 224 (0.74) 0 (0) 0.009 (0.01) 0.027 (0.023) 0.964 (0.967)

3 rs889312 (MAP3K1) 5 802 (0.58) 0 (0) 0.005 (0.005) 0.012 (0.012) 0.983 (0.983)

4 rs2046210 (ESR1) 6 455 (0.44) 0 (0) 0.026 (0.019) 0.009 (0.01) 0.965 (0.971)

5 rs1562430 (8q24) 8 2954 (0.59) 0 (0) 0.001 (0.003) 0.001 (0.001) 0.997 (0.996)

6 rs10995190 (ZNF365) 10 716 (0.41) 0 (0) 0.007 (0.006) 0 (0.003) 0.993 (0.992)

7 rs704010 (ZMIZ1) 10 2108 (0.72) 0 (0) 0.001 (0.001) 0.007 (0.005) 0.992 (0.994)

8 rs2981579 (FGFR2) 10 2827 (0.59) 0.0004 (0.0002) 0.01 (0.011) 0.007 (0.008) 0.982 (0.981)

9 rs614367 (11q13) 11 11 (0.007) 0 (0) 0 (0.007) 0 (0.002) 1 (0.990)

10 rs999737 (RAD51B) 14 2451 (0.77) 0 (0.0003) 0.004 (0.005) 0.003 (0.003) 0.993 (0.991)

11 rs3803662 (TOX3) 16 850 (0.55) 0 (0) 0.001 (0.003) 0.007 (0.006) 0.992 (0.991)

12 rs8170 (MERIT40) 19 2274 (0.79) 0 (0) 0.035 (0.035) 0.049 (0.047) 0.916 (0.917)

PPS Posterior probability set, SNP Single-nucleotide polymorphism
Results are shown for PPSs and proportions of PPS SNPs by functional annotations compared with the overall distribution of annotations by region
aAs defined by SnpEff [43]

Fig. 2 Minor allele frequency distribution of observed single-nucleotide
variants (SNVs). SNVs are categorized by functional impact (high,
moderate, low, or modifier) as predicted by the SnpEff algorithm
[43]. High (n = 81) is defined as disruptive impact SNVs, moderate
(n = 1983) as nonsynonymous coding SNVs, low (n = 1374) as
synonymous coding SNVs, and modifier (n = 134,092) as
noncoding SNVs
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show regulatory properties in breast tissue in ENCODE
[59] as defined by HaploReg [60].
Three of the sequenced regions have shown a stronger

association with estrogen receptor negative (ER−) breast
cancer [4, 9, 61], which is a more aggressive subtype of
breast cancer. A total of 393 breast cancer cases in our
data were ER−. Recognizing the limited power of our
study, we reran the analysis with ER− breast cancer as the
outcome. No SNP was significantly associated with ER−

breast cancer after our analysis was adjusted for number
of tests (Additional file 13: Table S7). The strongest associ-
ated SNP was rs112613843 on 8q24 (p = 0.0002). How-
ever, this SNP was observed only in African Americans.
In population-specific analysis, the GWAS index SNP
rs10069690 in the TERT gene was significantly
associated with ER− breast cancer in African Americans
(p = 1.11 × 10−6) but in no other population (all p > 0.3).
Of the 12 sequenced regions, 11 contained coding

regions with rare (MAF <0.005), nonsynonymous vari-
ation. For each of the 47 genes in these 11 regions, we
performed 2 aggregate tests of association between
breast cancer risk (overall and by ER status) and all non-
synonymous rare variants (a burden test and SKAT
[52]); we also repeated these tests restricting the analysis
to nonsynonymous rare alleles predicted to be damaging
by PolyPhen-2 [44]. Tests were conducted stratified by
ethnicity (Additional file 14: Table S8) and then meta-
analyzed across ethnicities (Table 3). After applying the
Bonferroni correction for the number of genes tested,
we did not observe any significant findings using either
SKAT or the burden test: The smallest p value was 0.004
(SKAT) for overall breast cancer when we included all
nonsynonymous rare variants in ORAOV1 on chromo-
some 11q13 (Table 3, Fig. 3). Of note, rs12279395, which
was highlighted by the PAINTOR analysis in the two-
causal model, is a common nonsynonymous variant (MAF
0.12) in ORAOV1, providing additional support that
ORAOAV1 is important in breast cancer development.

Discussion
In this study, we sequenced 12 genetic regions that have
been found to be associated with breast cancer in 2288
breast cancer cases and 2323 controls. We found no
strong evidence for a single causal allele in any of the
regions. It is likely that the lack of strong signals in our
data is due to the inadequate sample size resulting in a
low signal-to-noise ratio. The initial GWASs identifying
these loci were larger than our study population for many
of these regions. It has been shown that fine-mapping
studies that use multiple ethnic populations and leverage
the genetic variability across populations have greater
ability to localize causal variants [28]. Although we
included four different ethnicities in this study, our total
sample size of 4611 subjects was most likely too small for

pinpointing causal variants with high probability. Further,
subsequent population-specific efforts have shown that
not all regions are associated with breast cancer across
ethnicities. A recent study of 3016 cases and 2745
controls of African American ancestry replicated only 4
(2q35, TERT, FGFR2, and MERIT40) of the 12 regions
investigated here at p < 0.05 [30]. A study of up to
15,130 cases and 14,584 controls of East Asian descent
replicated 7 (2q35, MAP3K1, ESR1, ZMIZ1, FGFR2,
11q13, and TOX3) of the 12 regions at a significance
level of 0.05 (although strong evidence has been found
for the rs10822013 SNP located in the ZNF365 region).
In addition, the TERT region was associated with ER−

breast cancer [62]. In Latinas, 4 (MAP3K1, ZMIZ1,
FGFR2, and TOX3) of the 12 regions have been associ-
ated with breast cancer in 1497 cases and 3213 controls
[27]. However, when taking tumor subtypes into account,
associations were also observed for ER− breast cancer
(MERIT40) and 2q35 and ZNF365 (ER+ breast cancer).
Another weakness of our study was the incomplete

capture of our targeted regions. The capture method we
used was able to capture only 50.1 % of the original
targeted regions (range 38.8–79.1 %). Nevertheless, we
discovered a large proportion of novel variants not
observed in the 1000 Genomes Project, illustrating the
importance of sequencing depth as well as large, diverse
populations to obtain a comprehensive catalogue of the
genetic variation within a specific region. Despite the
large number of novel and low-frequency variants, we
did not detect a significant association between rare,
nonsynonymous variation and breast cancer risk. Of
note, the vast majority (>98 %) of the variants se-
quenced in our study were outside coding regions, and
one region, 2q35, did not contain any rare, nonsynon-
ymous variants.
Earlier breast cancer fine-mapping studies [30, 56, 63–65]

identified multiple candidates for causal variants, but it
remains a challenge to determine the evidence required to
confidently declare a variant causal. In contrast to previous
studies, this is the first study, to our knowledge, to use
sequence data rather than genotyped and imputed data,
greatly improving genomic coverage. We attempted to
identify secondary signals by running conditional analyses
as well as using Bayesian approaches to identify the best
candidate(s) for causal variants. For two of the regions,
2q35 and 11q13, the Bayesian analysis allowed us to create
90 % PPSs including <5 % of the original SNVs, greatly re-
ducing the number of potential candidate causal SNVs. We
also incorporated functional annotations with the goal of
upweighting SNVs that were of functional importance. We
included coding and breast-specific DHS as our two anno-
tations, but none of these annotations showed evidence of
being enriched for causal SNVs. It is possible that our lack
of findings for these annotations is due either to limited
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power in our analysis or to these annotations not truly
being enriched for causal breast cancer SNVs. Generation
of large-scale databases including functional annotations
throughout the genome is a constantly evolving area, and,
as more data become available, annotations such as those
used here can readily be updated and expanded.
For the 2q35 region, our results agree with those of a

previous fine-mapping study [63] of the same region. On
the basis of data from 46,451 cases and 42,599 controls
of European ancestry and 6269 cases and 6624 controls
of Asian ancestry in the Breast Cancer Association Con-
sortium (BCAC), the investigators found evidence that
one of two highly correlated SNPs (rs4442975 and

rs6721996) is likely to explain the association signal
observed in this region. This is in agreement with our
results where we found that rs6721996 (p = 2.68 × 10−5,
posterior probability 0.29) and the strongly correlated
rs13412666 (p = 2.98 × 10−5, posterior probability 0.25)
showed the strongest association in our data. SNP
rs6721996 is also strongly correlated (r2 = 0.97) with the
original GWAS SNP rs13387042. Our results, together
with the BCAC results, argue that the breast cancer signal
from 2q35 can be explained with only a few SNPs.
In another fine-mapping study [66] by the BCAC, the

authors found evidence for three independent signals
in the 5q11.2 (MAP3K1) region. After adjustment for

Table 3 Nominally significant rare-variant tests for breast cancer overall and by estrogen receptor status, across all ethnicities

Outcome Gene Chromosome: index SNP Number of variants CP Significant test(s) p value OR (95 % CI)

Breast cancer overall ORAOV1 Chr11: rs614367 43 4.80 % SKAT 0.004 0.8 (0.6–1.1)

GTPBP3 Chr19: rs8170 48 3.50 % SKAT 0.01 1.3 (0.9–1.8)

GLT25D1 Chr19: rs8170 55 2.50 % SKAT 0.015 0.9 (0.7–1.4)

DDA1 - p2 Chr19: rs8170 1 <1.0 % SKAT 0.046 2.0 (0.9–4.1)

NSMCE4A Chr10: rs2981579 17 0.70 % BURDEN 0.023 0.4 (0.2–0.9)

ANO8 - p2 Chr19: rs8170 8 <1.7 % BURDEN 0.034 5.3 (1.1–24.2)

ER+ GTPBP3 Chr19: rs8170 48 3.50 % SKAT 0.007 1.4 (1.0–2.1)

TMEM221 - p2 Chr19: rs8170 5 <2.1 % SKAT 0.013 0.4 (0.2–1.0)

GLT25D1 Chr19: rs8170 55 2.50 % SKAT 0.018 0.8 (0.5–1.3)

ZNF365 - p2 Chr10: rs10995190 8 <2.0 % SKAT, BURDEN 0.019 2.5 (1.0–5.9)

ORAOV1 Chr11: rs614367 43 4.80 % SKAT 0.024 0.8 (0.6–1.1)

TMEM221 Chr19: rs8170 24 2.10 % SKAT 0.028 0.6 (0.4–1.1)

ZFYVE26 Chr14: rs999737 126 5.70 % SKAT 0.041 1.2 (0.9–1.5)

MAP1S - p2 Chr19: rs8170 22 <4.9 % SKAT 0.045 0.9 (0.6–1.5)

GLT25D1 - p2 Chr19: rs8170 15 <2.5 % SKAT 0.049 0.9 (0.4–1.9)

ZNF365 Chr10: rs10995190 38 2.00 % BURDEN 0.013 1.8 (1.1–2.9)

PLVAP Chr19: rs8170 31 1.80 % BURDEN 0.016 1.8 (1.1–3.0)

FGFR2 Chr10: rs2981579 41 1.50 % BURDEN 0.016 2.0 (1.1–3.4)

C6orf211 Chr6: rs2046210 34 2.70 % BURDEN 0.044 0.6 (0.4–1.0)

ER− ORAOV1 Chr11: rs614367 43 4.80 % SKAT 0.028 0.9 (0.5–1.4)

ANO8 - p2 Chr19: rs8170 8 <1.7 % SKAT 0.028 4.4 (0.3–74.5)

FAM129C Chr19: rs8170 62 6.80 % SKAT 0.035 0.9 (0.6–1.3)

BABAM1 Chr19: rs8170 24 1.40 % SKAT 0.041 2.1 (0.9–5.1)

ORAOV1 - p2 Chr11: rs614367 2 <4.8 % SKAT 0.042 3.3E + 06 (0.0– > 1E50)

UNC13A Chr19: rs8170 69 3.70 % SKAT 0.045 1.5 (0.9–2.5)

ZFYVE26 Chr14: rs999737 126 5.70 % SKAT 0.049 1.5 (1.0–2.3)

USE1 Chr19: rs8170 14 0.40 % BURDEN, SKAT 0.022 7.2 (1.3–38.8)

ABHD8 Chr19: rs8170 19 1.30 % BURDEN 0.026 2.4 (1.1–5.0)

TMEM221 Chr19: rs8170 24 2.10 % BURDEN 0.029 2.1 (1.1–3.9)

ZFYVE26 - p2 Chr14: rs999737 29 <5.7 % BURDEN 0.031 2.5 (1.1–5.7)

Abbreviations: SNP Single-nucleotide polymorphism, p2 Subset of variants within gene predicted to be potentially or possibly damaging by Polymorphism
Phenotyping version 2, CP Carrier proportion or proportion of subjects who carry at least one rare, nonsynonymous variant in gene, BURDEN Inverse-variance-
weighted burden test, SKAT Meta-analysis of sequence kernel association test assuming the effect of each variant is homogeneous, regardless of ethnicity
Underlining = lowest p value if more than one significant test

Lindström et al. Breast Cancer Research  (2016) 18:109 Page 9 of 13



multiple testing, we did not identify any significant
associations in this region; however, our top finding
(rs111944656, p = 0.0004) is correlated (r2 = 0.63) with one
of the top signals in their study (rs113317823). The BCAC
also explored the FGFR2 region at 10q26 [64] and found
three independent signals. Our top SNP, rs10736303 (p =
4.42 × 10−5), is strongly correlated with two of their signals
(rs2981578 [r2 = 0.94] and rs2912779 [r2 = 0.79]). The
11q13 region was the only region where the results
dramatically changed if we assumed two causal vari-
ants rather than one in our PAINTOR analysis. The
initial top SNP rs61041893 lies between rs12279375
and rs11823311, and all three SNPs are in low to
modest LD in our data (r2 = 0.01–0.30). In a previous
fine-mapping study [57] of this region, the BCAC in-
vestigators identified three independent regions. Un-
fortunately, we did not capture their top variants in
our data, making it difficult to directly compare the
results. However, on the basis of our and their re-
sults, it seems likely that multiple independent breast
cancer associations exist in this region.
We used two approaches – SKAT and a burden test –

to assess if rare genetic variations in these regions were
associated with breast cancer. We limited our analysis to
nonsynonymous SNPs and conducted additional analysis
including only nonsynonymous variants predicted to be
damaging. After adjusting for the number of tests con-
ducted, we did not observe any evidence that rare varia-
tions in these regions affect breast cancer risk. Despite
some limitations, our study population is relatively large
for a sequencing study and incorporates multiple ethnic-
ities. Mensah-Ablorh et al. [67] found that multiethnic
studies with genetically diverse subjects were better
powered than some single-ethnicity study populations.
However, in this case, the power gain derived from

including multiple ethnicities was not large enough to
overcome the small number of cases and controls (<5000)
included in the analysis. For genes where a given popula-
tion did not carry much rare variation, multiethnic meta-
analysis allowed detection of gene-based rare-variant
associations that may have been missed in a monoethnic
study. Indeed, sufficiently large sample sizes that in-
corporate ancestral populations with greater genetic di-
versity and that target regions appropriate to the
phenotype under study are critical for effective fine-
mapping.
This study makes multiple important contributions to

the research field. First, the inclusion of multiple ethnici-
ties allowed us to explore the diversity of genetic
variation in these regions and highlight the importance
of conducting well-powered studies within multiple eth-
nicities. Further, we show evidence that sequencing, as
compared with genotyping, variants identified through
an existing database (e.g., the 1000 Genomes Project)
results in identification of many additional rare variants.
On the basis of our results, we show that, for breast
cancer specifically, there are no rare variants of very
large effect lingering at known GWAS loci.
We make the following recommendations for future

study design. Future fine-mapping studies should con-
duct more comprehensive sequencing (whole genome
rather than capture) to fully capture the genetic
variation in a region. Further, we argue that follow-up
studies require even larger and carefully selected study
populations than the initial GWAS.

Conclusions
We report the first large-scale follow-up of breast cancer
susceptibility loci using sequencing. We did not find any
strong evidence for a single causal variant in any of the

Fig. 3 Gene-based rare-variant association for overall breast cancer by distance from index genome-wide association study (GWAS) single-nucleotide
polymorphism (SNP). y-Axis displays log10 gene association p values. Horizontal red line represents alpha = 0.05. Only the lower of two p values is
plotted. For round points, the sequence kernel association test had the lower p value, and for square points, the burden test had a lower p value.
Points are color-coded for the 12 breast cancer GWAS-identified index SNPs on 9 chromosomes. Region legend: 2 = TERT, 3 =MAP3K1, 4 = ESR1,
5 = 8q24, 6 = ZNF365, 7 = ZMIZ1, 8 = FGFR2, 9 = 11q13, 10 = RAD51B, 11 = TOX3 and 12 = 19p13
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regions; however, we were able to narrow the number of
potential causal SNVs in two regions (2q35 and 11q13).
In addition, we did not find evidence that rare genetic
variation in these regions is associated with breast can-
cer risk. This study illustrates some of the challenges
faced in fine-mapping studies in the post-GWAS era.
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