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Abstract

Background: Women with high levels of mammographic density (MD) have a four- to six-fold increased risk of
developing breast cancer; however, most neither have a prevalent tumor nor will they develop one. Magnetic resonance
imaging (MRI) studies suggest that background parenchymal enhancement, an indicator of vascularity, is related to
increased breast cancer risk. Correlations of microvessel density (MVD) in tissue, MD and biopsy diagnosis have not been
defined, and we investigated these relationships among 218 women referred for biopsy.

Methods: MVD was determined by counting CD31-positive vessels in whole sections of breast biopsies in three
representative areas; average MVD was transformed to approximate normality. Using digital mammograms, we quantified
MD volume with single X-ray absorptiometry. We used linear regression to evaluate associations between MVD and MD
adjusted for age and body mass index (BMI) overall, and stratified by biopsy diagnosis: cases (in situ or invasive cancer,
n = 44) versus non-cases (non-proliferative or proliferative benign breast disease, n = 174). Logistic regression adjusted for
age, BMI, and MD was used to calculate odds ratios (ORs) and 95 % confidence intervals (CIs) for associations between
MVD and biopsy diagnosis. We also assessed whether the MVD-breast cancer association varied by MD.

Results: MVD and MD were not consistently associated. Higher MVD was significantly associated with higher odds of in
situ/invasive disease (ORAdjusted = 1.69, 95 % CI = 1.17–2.44). MVD-breast cancer associations were strongest among
women with greater non-dense volume.

Conclusions: Increased MVD in tissues is associated with breast cancer, independently of MD, consistent with MRI
findings suggestive of its possible value as a radiological cancer biomarker.
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Background
Mammographic density (MD), a radiographic reflection
of the proportion of fibroglandular tissue in the breast,
is one of the strongest risk factors for the development
of ductal carcinoma in situ (DCIS) and invasive breast
cancer [1, 2]. Nonetheless, most women with high MD
have neither a prevalent tumor nor will they develop
one during follow-up. Accordingly, identifying additional
risk markers that are independent of MD may improve
risk prediction.
Multiple breast imaging techniques [3], including

breast magnetic resonance imaging (MRI), can be used
to evaluate breast density, and most yield similar results
with respect to breast cancer risk. In addition, recent
data suggest that MRI performed with contrast provides
a measure of background parenchymal enhancement
(BPE), which reflects vascularity and vessel permeability
[4] and has been associated with breast cancer odds in
cross-sectional studies [5, 6]. Morphologically, the distri-
bution, shape and size of radiologic patterns of dense tis-
sue align well with areas of non-fatty tissue on gross
examination of surgical pathology specimens; however,
microscopically, areas of dense tissue appear highly vari-
able, ranging from hypocellular dense collagen to hyper-
cellular regions of invasive carcinoma. We hypothesized
that vascularity is correlated with cellularity, suggesting
that measurement of the former might prove useful in
distinguishing dense tissues harboring neoplastic lesions
from benign fibrosis. Accordingly, to assess this hypoth-
esis, we examined relationships between microvessel
density (MVD), a commonly used histologic measure of
tumor angiogenesis, with MD measures and concurrent
breast biopsy diagnoses.

Methods
Study population
This study included 465 women aged 40–65 years
undergoing image-guided breast biopsies at the Univer-
sity of Vermont College of Medicine and the University
of Vermont Medical Center that participated in the Na-
tional Cancer Institute (NCI) Breast Radiology Evalu-
ation and Study of Tissues (BREAST) Stamp Project
from October 2007 to June 2010, as previously described
[7]. Briefly, this study focused on patients referred for a
diagnostic image-guided breast biopsy. At the time of
mammogram, study participants completed a standard
health history questionnaire which assessed known
breast cancer risk factors. When a breast imaging study
was considered abnormal, indicating the need for a biopsy,
women were contacted by the study coordinator and
screened to determine eligibility, obtain verbal consent,
and administer an approximately 20-minute telephone
interview to collect additional health information, includ-
ing history of exogenous hormone use. Ninety percent of

study participants underwent biopsy within 10 days of
completing this interview. Eligible women were those
without a history of breast cancer or treatment, who had
not undergone breast surgery within the preceding year,
did not have breast implants, were not taking breast
cancer chemoprevention and were scheduled to have an
image-guided breast biopsy. On the day of the breast bi-
opsy, a research coordinator measured participants’ height
and weight.

Mammographic density assessment
Mammograms were acquired on one of six full-field digital
mammography systems. Raw images were encrypted and
transferred to the University of California at San Francisco
for quantitative volume and area density assessment. This
analysis was restricted to pre-biopsy views [craniocaudal
(96 %) or mediolateral oblique (4 %)] of the ipsilateral
breast. For three women who underwent bilateral breast
biopsies, the breast with the most severe diagnosis was se-
lected for analysis. If more than one mammogram was
available, the mammogram taken closest in time prior to
the breast biopsy date was selected.
Mammographic density (global and lesional) was quan-

tified as an absolute tissue volume (cm3) and percent tis-
sue volume using single X-ray absorptiometry (SXA), as
described previously [8, 9]. An SXA breast density phan-
tom was affixed to the top of the compression paddle and
included in the X-ray field during mammography exami-
nations. Mammographic grayscale values were compared
to the values of the SXA phantom with a known fibro-
glandular tissue volume (FGV) composition and thickness.
In this way, volumetric measures were achieved using a
planar image. Previous estimates of reproducibility for the
SXA test phantoms demonstrated a repeatability standard
deviation of 2 %, with a ±2 % accuracy for the entire thick-
ness and density ranges [8]. Area-based mammographic
density measures were also available as previously re-
ported in this study population [7]. As volume and area
measures were highly correlated [7], we limit our presen-
tation of results to volumetric measures.
To compute localized density measures of the biopsied

lesion, two radiologists (SDH, JMJ) recorded the biopsy
location and radius of the biopsy target on the pre-biopsy
standard digital mammogram (i.e., Digital Imaging and
Communications in Medicine format). Absolute lesional
volume (cm3) and percent lesional volume were estimated
using SXA within the biopsy target, centered at the biopsy
site [9]. A repeat set of 25 images was assessed for reliabil-
ity. The intraclass correlation coefficients (ICCs) for per-
cent lesional volume, absolute lesional volume, and total
lesional volume were 0.99, 0.50, and 0.44 respectively, in-
dicating fair to excellent reproducibility. Distributions of
density measures were examined and images with extreme
values were reviewed visually for validation. The American
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College of Radiology’s Breast Imaging Reporting and Data
System (BI-RADS, Fourth Edition) breast density assess-
ment (reported on the same images used for quantitative
analysis) was analyzed as (I) almost entirely fat; (II) scat-
tered fibroglandular densities; (III) heterogeneously dense;
and (IV) extremely dense [10].

Pathologic diagnosis assessment
Pathology reports from the breast biopsy and surgical
excision were reviewed to assign final pathologic diagno-
ses. We classified the following diagnoses as non-cases:
non-proliferative benign breast disease, proliferative
(ductal hyperplasia; sclerosing adenosis), and prolifera-
tive with atypia (atypical ductal or lobular hyperplasia)
(n = 174). Cases included diagnoses of ductal or lobular
carcinoma in situ (n = 36) and invasive cancer (n = 8).
As part of the clinical workup, tumor blocks from in

situ and invasive cancer were sectioned and stained for
estrogen receptor (ER) and progesterone receptor (PR).
We obtained these slides and one observer (RLC)
rescored all sections microscopically. The percentage of
stained cells (range: 0–100 %) and intensity (0 = negative,
1 = weak, 2 =moderate, 3 = strong) were recorded and
an overall score was calculated as the product of these
components (range: 0–300). We dichotomized expres-
sion as negative (<10) or positive (≥10). When informa-
tion on these stains was missing, we obtained tumor
blocks and performed immunohistochemistry according
to routine protocols, also scored by the same microscop-
ist (RLC).

CD31 immunohistochemical staining and MVD
assessment
Paraffin-embedded whole section slides were deparaffi-
nized and antigen retrieval performed with citrate buffer
pH6 using a pressure cooker. Endogenous activity was
blocked with 3 % peroxidase and primary antibody
CD31 (Clone JC70A, DAKO, Glostrup, Denmark) was
applied for 2 hours at room temperature. Subsequently,
antibody was detected using DAKO Env + labeling system
and visualized with 3,3′-diaminobenzadine (DAB) for
20 min. After rinsing, slides were counterstained with
modified Harris hematoxylin, dehydrated with graded
alcohol, cleared with xylene and a coverslip applied.
We performed a pilot study including 20 participants

to determine the within-woman variability of MVD on
whole section slides, based on counting vessels within
three regions, each consisting of ten × 400 high-power
fields, randomly selected from the (1) top, (2) center, and
(3) bottom portions of the slide. When multiple tissue
fragments existed, one randomly selected region from
each of the three largest fragments was selected for MVD
counting. Coefficient of variations (CVs) and ICCs were
similar based on analyzing 30 or 15 fields; accordingly, in

the full study, 15 MVD scores per slide were assessed by a
pathologist (PL) masked to biopsy diagnosis (see Fig. 1).
We analyzed the average MVD score per woman.
A masked independent review of 20 randomly selected

slides after study completion by two pathologists (PL, MES)
demonstrated an intra-rater agreement (ICC) of 0.88 and
inter-rater agreement (ICC) of 0.82.

Analytic population
Of 465 participants enrolled, 12 were not subsequently
biopsied and two went straight to surgery without a biopsy
and were excluded. We excluded women who underwent
ultrasound-guided core (n = 225) and MR-guided vacuum-
assisted biopsies (n = 1). Ultrasound-guided biopsies were
generally used to sample mass lesions, providing less non-
lesional tissue for MVD analysis than vacuum-assisted
breast biopsies, and were therefore excluded. We further
excluded participants with invalid SXA volumetric MD
measurements (n = 5) and insufficient tumor tissue on slide
(n = 2), resulting in a final sample of 218 women.

Statistical analysis
Relationships between baseline characteristics according
to final pathologic diagnosis (in situ and invasive cancer
versus benign diagnoses) were examined using chi-square
or Fisher’s exact tests for categorical variables and
Wilcoxon rank sum tests for continuous variables.
Spearman rank correlation coefficients were computed
to estimate correlations of MVD with age at biopsy,
body mass index (BMI), and MD measures overall and by

Fig. 1 Assessment of microvessel density (MVD) in CD31-stained
whole section slides. Three random regions from the top, central,
and bottom portions of the whole section slide were selected.
Within each region, five adjacent, non-overlapping × 400 high-power
fields were assessed for the number of CD31-staining microvessels
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final pathologic diagnosis. Based on a Box-Cox transform-
ation analysis, we used a power of 0.2 to improve normal-
ity of the average MVD score. Age- and BMI-adjusted
linear regression models were used to examine relation-
ships between MVD with participant characteristics and
MD measures overall and by case status. We tested for
differences by case status by including a multiplicative
term between participant characteristics and MD mea-
sures with a binary indicator for case status and evaluating
the Wald test p value. Age at biopsy (39–44, 45–49,
50–54, 55–59, 60–65 years) and BMI (<25, 25– < 30,
30+ kg/m2) were coded as categorical variables. Other
breast cancer risk factors were not significantly associated
with MVD, and were therefore not included as potential
confounders. We also examined the relationship between
MVD and MD measures stratified by menopausal status
based on previous findings demonstrating a decline in
BPE after menopause in some women [11].
Logistic regression models were used to estimate odds

ratios (ORs) and 95 % confidence intervals (CIs) for as-
sociations between MVD (the average of MVD within a
woman was standardized by one standard deviation) and
final pathologic diagnosis (benign versus in situ/invasive)
adjusted for age at biopsy and BMI. Subsequent models
were adjusted for individual MD measures. We also
evaluated whether a “gradient” of MVD and lesion sever-
ity existed using polytomous logistic regression with the
following outcome categories: (1) benign, carcinoma in
situ (ductal or lobular), and invasive cancer and, in a
second model, (2) benign, proliferative, proliferative with
atypia, carcinoma in situ (ductal or lobular) and invasive
cancer. We also examined the association between MVD
and final pathologic diagnosis stratified by MD. In these
analyses, each MD measure was dichotomized at the
median based on the distribution among the non-cases.
We formally tested whether the ORs in each MD stratum
were significantly different by including a multiplicative
term between the dichotomous MD variable and MVD
and evaluating the Wald test p value. We used SAS (ver-
sion 9.3, SAS Institute, Inc., Cary, NC, USA) software
for all analyses and two-sided p values less than 0.05
were considered statistically significant.

Results
Participant characteristics
Among the non-cases, 50 had benign diagnoses, 99 had
proliferative diagnoses, and 25 had proliferative disease
with atypia (Table 1). Cases reported past menopausal
hormone therapy use (40.9 % vs. 20.1 %) and current use
of oral contraceptives (9.1 % vs. 1.7 %) more frequently
than non-cases. Global volumetric density did not sig-
nificantly differ between cases and non-cases; however,
lesional non-dense volumes were significantly higher in
cases compared with non-cases. In univariate analysis,

MVD in cases and non-cases was not significantly differ-
ent (2.5 vs. 2.2, Kruskal-Wallis p value = 0.13).

Relationships between MVD with participant
characteristics and MD measures
Among non-cases, MVD was inversely correlated with age
at biopsy (rho = -0.33, p < 0.0001) and BMI (rho = -0.28,
p < 0.0002) (data not tabled). In multivariable linear re-
gression models adjusted for age and BMI, MVD was
inversely associated with age at biopsy and BMI among
non-cases (Table 2). Among cases, MVD was higher
among women with three or more live births (p = 0.04).
We did not observe significant associations between
MVD and other risk factors.
Age- and BMI-adjusted linear regression models were

used to evaluate associations between MVD and the MD
measures (Table 3). MVD was not significantly associated
with global or lesional percent dense volume measures.
Among all women and the non-cases, MVD tended to
be inversely associated with global measures of both
absolute dense and non-dense volume. In particular,
among all women, we observed statistically significant
inverse associations between MVD and non-dense volume
(β = -0.00007, p = 0.04). Among non-cases, MVD was
inversely related to absolute dense volume (β = -0.0003,
p = 0.008) and non-dense volume (β = -0.00008, p = 0.01).
We observed positive associations of MVD with non-
dense lesional volumes among all women and among
cases (p ≤ 0.04). Finally, when the association between
MVD and MD measures was stratified by menopausal sta-
tus, we did not observe significant deviations from these
patterns (data not tabled).

Associations between MVD and breast cancer odds
In logistic regression models adjusted for age and BMI,
we observed that a one standard deviation increase in
MVD was associated with a significant increased OR of
carcinoma in situ/invasive disease compared with non-
cases (OR = 1.69, 95 % CI = 1.17–2.44) (Table 4). Com-
pared with non-cases, MVD was positively associated
with carcinoma in situ (OR = 1.36, 95 % CI = 0.91–2.04)
and invasive cancer (OR = 4.86, 95 % CI = 1.91–12.38)
(Table 4). In models that further parsed the biopsy diag-
noses as benign, proliferative, proliferative with atypia,
carcinoma in situ, and invasive cancer, we observed a
significant increase in the proportional odds of more in-
vasive disease associated with higher MVD (OR = 1.66,
95 % CI = 1.27 - 2.16) (Table 4). These relationships per-
sisted after further adjustment for MD measures.
To test our primary hypothesis of an interaction between

MVD and MD, Table 5 presents associations between
MVD and breast cancer odds stratified by MD measures.
We observed increased breast cancer odds with increasing
MVD among women classified as low (i.e., below the
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Table 1 Selected characteristics of women referred to an image-guided vacuum-assisted breast biopsy in The BREAST Stamp Project
by breast biopsy diagnosis (n = 218)

Characteristics Non-cases (n = 174) Cases (n = 44) pa

Median age at biopsy (range) 52 (40–65) 52 (40–64) 0.25

n %b n %b

Age at biopsy (years) 0.11

39 to 44 25 14.4 6 13.6

45 to 49 46 26.4 5 11.4

50 to 54 51 29.3 13 29.5

55 to 59 26 14.9 13 29.5

60 to 65 26 14.9 7 15.9

Race 0.99

White 159 91.4 41 93.2

Non-white 15 8.6 3 6.8

Education 0.53

< High school or high school graduate 26 15.1 5 11.4

College/graduate school degree 146 84.9 39 88.6

Cigarette smoking (≥100) 0.24

Never 83 48.5 17 38.6

Ever 88 51.5 27 61.4

BMI (kg/m2) 0.49

< 25 92 52.9 24 54.5

25–<30 45 25.9 8 18.2

≥ 30 37 21.3 12 27.3

Age at menarche 0.79

≤ 12 65 37.8 18 40.9

13 63 36.6 17 38.6

≥ 14 44 25.6 9 20.5

Oral contraceptives 0.02

Never 21 12.2 8 18.2

Former 148 86.1 32 72.7

Current 3 1.7 4 9.1

Parity 0.17

Nulliparous 46 26.4 6 13.6

1 23 13.2 10 22.7

2 68 39.1 20 45.5

≥ 3 37 21.3 8 18.2

Age at first birth (years) 0.62

< 30 91 52.6 25 56.8

Nulliparous or ≥ 30 82 47.4 19 43.2

Menopausal status 0.24

Premenopausal 100 57.5 21 47.7

Postmenopausal 74 42.5 23 52.3

Felix et al. Breast Cancer Research  (2016) 18:88 Page 5 of 12



Table 1 (Continued)

Characteristics Non-cases (n = 174) Cases (n = 44) pa

Age at menopause (years) 0.59

Premenopausal 100 57.5 21 47.7

< 45 12 6.9 4 9.1

45–49 17 9.8 3 6.8

≥ 50 32 18.4 12 27.3

Postmenopausal, age unknown 13 7.5 4 9.1

Menopausal hormone therapy 0.04

Never 121 69.5 23 52.3

Former 35 20.1 18 40.9

Current 10 5.7 2 4.5

Missing/unknown 8 4.6 1 2.3

Family history of breast cancer 0.83

No 131 75.7 34 77.3

Yes 42 24.3 10 22.7

Lump at the time of mammography 0.47

No 159 91.4 43 97.7

Yes 8 4.6 1 2.3

Missing/unknown 7 4.0 0 0.0

Reason for mammography 0.91

Screening 156 89.7 41 93.2

Short-interval follow-up 10 5.7 2 4.5

Evaluation of breast problem 8 4.6 1 2.3

BI-RADS breast density 0.74

I (entirely fat) 20 11.5 3 6.8

II (scattered densities) 78 44.8 20 45.5

III (heterogeneously dense) 51 29.3 17 38.6

IV (extremely dense) 14 8.0 2 4.5

Missing/unknown 11 6.3 2 4.5

Final BI-RADS mammography assessment 0.03

3 (probably benign finding) 3 1.7 1 2.3

4 (suspicious abnormality) 169 97.1 39 88.6

5 (highly suggestive of malignancy) 1 0.6 3 6.8

Biopsy laterality 0.64

Left 82 47.1 24 54.5

Right 89 51.1 20 45.5

Bilateral 3 1.7 0 0.0

Pathologic diagnosisc

Benign 50 28.7 – –

Proliferative 99 56.9 – –

Proliferative with atypia 25 14.4 – –

In situ – – 36 81.8

Invasive carcinoma – – 8 18.2

Lesion size 0.24

< 1 cm 93 54.1 19 44.2

≥ 1 cm 79 45.9 24 55.8
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median) percent density, which was consistent across MD
measures. For example, among women with low global or
low lesional percent dense volume, higher MVD was
associated with higher breast cancer odds (OR = 2.35,
95 % CI = 1.33–4.14) and (OR = 3.03, 95 % CI = 1.61–5.70),
respectively. The effect estimates in the low percent density
stratum significantly differed from the effects observed in
the high (i.e., above the median) percent density stratum
for lesional density (p heterogeneity = 0.03) but not global
density (p heterogeneity = 0.11).
Among women categorized as high (i.e., above the

median) absolute dense volume, higher MVD was signifi-
cantly associated with increased breast cancer odds. For
example, among women with high global absolute dense
volume, higher MVD was associated with a 1.78-fold
increase in breast cancer odds (95 % CI = 1.07–2.98);
however, this was not significantly different than the
odds observed among women in the low global absolute
dense volume category (OR = 1.60, 95 % CI = 0.84–3.05,
p heterogeneity = 0.23). A similar pattern was noted for
lesional absolute dense volume.
Regarding the non-dense volume measures, the as-

sociation between MVD and breast cancer differed
between women with lower versus higher amounts of
non-dense volumes, such that higher breast cancer odds
were observed among women with greater amounts of
non-dense tissues. For example, higher MVD was associ-
ated with a 2.51 (95 % CI = 1.41–4.46) times higher odds
of breast cancer among women in the high absolute
non-dense volume stratum compared with a 1.14 (95 %
CI = 0.67–1.95) times higher breast cancer odds among
women in the low absolute non-dense volume stratum

(p heterogeneity = 0.08). A similar pattern was noted
for lesional non-dense volume.
Lastly, relationships between tumor characteristics and

MVD were evaluated among the 44 cases (Additional file 1:
Table S1). We did not observe significant differences by
grade, histology, or hormone receptor positivity; however,
this exploratory analysis was based on small numbers.

Discussion
Our results demonstrate that women with diagnostic
vacuum-assisted breast biopsies and a pathology finding
of in situ or invasive breast cancer are more likely than
women with benign lesions to have higher tissue MVD.
MVD was not associated with MD, although the rela-
tionship of higher MVD and in situ/invasive breast can-
cer was higher among women with increased total
breast adipose content. These findings are consistent
with data suggesting that women whose MRIs show
higher BPE are more likely to have a prevalent breast
cancer, and support further research on parenchymal
patterns in breast imaging as markers of breast cancer
risk.
MRI-assessed BPE is directly related to vascular supply

and vessel permeability [4], which enables the detection
of breast cancer secondary to increased blood flow and
leaking of contrast from abnormally permeable cancer-
associated vessels. Our findings are consistent with two
retrospective breast MRI studies, in which higher levels
of MRI-assessed BPE were associated with breast cancer
independent of MRI-assessed fibroglandular tissue (i.e.,
density). In the study by King and colleagues [5], among
1275 women who underwent breast MRI screening, 39

Table 1 (Continued)

Characteristics Non-cases (n = 174) Cases (n = 44) pa

Volumetric mammographic density measures Median Range Median Range

Global

% density (volume) 36.0 0.6–99.3 35.2 10.0–97.3 0.59

Dense volume (cm3) 178.6 6.7–497.8 177.0 80.3–683.5 0.70

Non-dense volume (cm3) 324.7 1.6–1977.0 433.0 2.2–1291.5 0.31

Lesional

% density (volume) 42.4 0.0–100.0 44.5 6.1–100.0 0.86

Dense volume (cm3) 1.4 0.0–26.8 1.7 0.2–16.9 0.08

Non-dense volume (cm3) 1.4 0.0–26.3 2.8 0.0–37.1 0.03

MVDd 2.2 0.6–5.0 2.5 1.0–5.0 0.13

Variables with P values < 0.05 are presented in bold font
BREAST Breast Radiology Evaluation and Study of Tissues, BMI body mass index, BI-RADS Breast Imaging Reporting and Data System, MVD microvessel density
aChi-square test was used for categorical variables; where 25 % of cells had counts less than 5 we used Fisher’s exact test. Wilcoxon rank sum test was used for
continuous variables
bWhen more than 3 % of data were missing for a covariate, missing values were included as a separate category. Otherwise, missing data were excluded from
column percentages and chi-square or Fisher’s exact test
cBenign: normal lobules or ducts defined as sclerotic/atrophied; non-proliferative fibrocystic change; discrete entities. Proliferative: ductal hyperplasia; sclerosing
adenosis. Proliferative with atypia: atypical ductal or lobular hyperplasia
dThe average of MVD within a woman was computed and standardized by one standard deviation
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women had a prevalent breast cancer. Increased BPE
was strongly associated with elevated breast cancer odds
after adjustment for fibroglandular tissue [5]. In the sec-
ond MRI study to evaluate BPE level and breast cancer
odds, 23 women with a breast cancer diagnosed a median
of 2 years after the index MRI and 23 age- and BRCA1/2
mutation status-matched women who did not develop
breast cancer were included. Compared with minimal
BPE, breast cancer risk was nine times higher (95 %
CI = 1.1–71.0) among those with mild, moderate, or

marked BPE [6]. This latter study suggests that MRI-
assessed BPE can be used to predict future breast cancer
risk, broadening the clinical utility of this marker.
When we launched the BREAST Stamp Project in 2007,

there was not sufficient scientific evidence to recommend
supplemental MRI screening for women with dense
breasts [12]. In our study, only two of 218 women (0.9 %)
were recommended to have a supplemental MRI. As a re-
sult, we are unable to assess the relationship between
MRI-assessed BPE and MVD in this study population.

Table 2 Age- and body mass index (BMI)-adjusted linear regression results for the association between participant characteristics
and microvessel density (MVD), overall and by case status

All women Non-cases Cases
N = 218 n = 174 n = 44

Characteristics βa p βa p βa p P heterogeneityb

Age (years) 0.009 0.01 0.46 0.63

45 to 49 -0.03 -0.03 0.01

50 to 54 -0.07 -0.07 -0.07

55 to 59 -0.08 -0.11 -0.03

60 to 65 -0.10 -0.09 -0.12

BMI (kg/m2) 0.09 0.02 0.87 0.24

25– < 30 -0.009 -0.01 0.02

≥ 30 -0.05 -0.07 0.03

Age at menarche (years) 0.53 0.77 0.49 0.68

13 0.02 0.01 0.05

≥ 14 0.02 0.01 0.07

Oral contraceptive use 0.81 0.68 0.62 0.44

Ever -0.01 -0.01 0.03

Parity 0.52 0.89 0.04 0.02

1 -0.01 -0.02 0.03

2 -0.01 -0.01 -0.01

≥ 3 0.02 -0.01 0.16

Age at first birth (years) 0.33 0.29 0.98 0.83

Nulliparous or ≥ 30 0.02 0.02 0.00

Menopausal status 0.14 0.43 0.25 0.99

Postmenopausal -0.04 -0.02 -0.09

Age at menopause (years) 0.08 0.11 0.68 0.92

< 45 -0.10 -0.09 -0.02

45–49 -0.003 0.02 -0.11

≥ 50 -0.06 -0.05 0.08

Menopausal hormone therapy 0.73 0.66 0.52 0.75

Ever 0.01 -0.01 0.03

Family history of breast cancer 0.76 0.87 0.76 0.92

Yes -0.01 -0.003 -0.02

Non-cases: non-proliferative benign breast disease, proliferative (ductal hyperplasia; sclerosing adenosis), proliferative with atypia (atypical ductal or lobular hyperplasia).
Cases: ductal or lobular carcinoma in situ and invasive cancer.
aBased on linear regression with the Box-Cox-transformed average MVD (within a woman) as the outcomeand adjusted for age at biopsy (39–44, 45–49, 50–54,
55–59, 60–65 years) and BMI (<25, 25– < 30, 30+ kg/m2)
bP heterogeneity based on a Wald test in the regression model corresponding to an interaction term between case status and the corresponding variable
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Although we did not capture MRI as part of the study
protocol, increasingly, MRI is being considered as a sup-
plemental screening tool among women with dense
breasts [13], and our work may therefore be important for
future studies relating breast tissue vascularity to radio-
logic measures of breast density.
In a cohort of approximately 2000 women who under-

went a biopsy for a benign breast lesion, 24 women subse-
quently developed breast cancer (median time to diagnosis
was not provided) [14]. For each case, one control subject
who did not develop breast cancer in follow-up was ran-
domly selected and matched by age at biopsy, year of bi-
opsy, and follow-up time. Tissue from the initial biopsy
lesion was assessed for MVD, and the authors reported a

seven times higher breast cancer risk (95 % CI = 0.9–52.2)
for women in the highest category of MVD compared with
the lowest [14]. Other studies have evaluated MVD levels
across a spectrum of breast histology in convenience sam-
ples, including benign tissue from patients undergoing re-
duction surgery, hyperplasia, in situ, and invasive breast
cancers [15–18]. These studies have demonstrated a gradi-
ent of higher MVD with increasing lesion severity, which
was also evident in our multivariable polytomous logistic
regression analyses that separately considered the non-
benign diagnoses.
We initially hypothesized that the combination of high

MD and high MVD would be significantly associated
with breast cancer compared with other combinations of
these two features (e.g., high MD/low MVD). The under-
lying rationale for this hypothesis was two-fold: first,
while higher mammographic breast density is strongly
associated with breast cancer risk, many women with
dense breasts do not subsequently develop breast cancer.
Therefore, other biological mechanisms must work in
concert with elevated density to increase breast cancer
risk. Second, higher levels of BPE, a measure of vascular
supply, are positively associated with breast cancer inde-
pendent of fibroglandular content [5, 6]. We posited that
dense breast tissue characterized by high vascularity
would be metabolically “active” with a higher potential
for malignant transformation compared with dense,
avascular breast tissue. We indeed observed a higher
odds of breast cancer associated with higher MVD
within strata of high absolute density measures; however,
these associations were not statistically different than
the effects observed within strata of low absolute density
measures.
We observed that the MVD-breast cancer association

was stronger among women with greater amounts of non-

Table 3 Age- and body mass index (BMI)-adjusted linear regression results for the association between microvessel density (MVD)
and mammographic density (MD) measures, overall and by case status

All women Non-cases Cases
N = 218 n = 174 n = 44

MD measure βa p βa p βa p P heterogeneityb

Global

% density (volume) 0.0004 0.35 0.0003 0.49 0.0005 0.70 0.67

Dense volume (cm3) -0.0001 0.11 -0.0003 0.008 -0.00004 0.84 0.43

Non-dense volume (cm3) -0.00007 0.04 -0.00008 0.01 0.00001 0.89 0.31

Lesional

% dense volume (cm3) 0.0005 0.16 0.0006 0.16 0.0001 0.93 0.83

Dense volume (cm3) 0.004 0.08 0.002 0.37 0.01 0.15 0.22

Non-dense volume (cm3) 0.004 0.03 0.0003 0.90 0.006 0.04 0.09

Beta coefficients with P values < 0.05 are presented in bold font. Non-cases: non-proliferative benign breast disease, proliferative (ductal hyperplasia; sclerosing
adenosis), proliferative with atypia (atypical ductal or lobular hyperplasia). Cases: ductal or lobular carcinoma in situ and invasive cancer
aBased on linear regression with the Box-Cox-transformed, standardized average MVD (within a woman) as the outcome and adjusted for age at biopsy
(39–44, 45–49, 50–54, 55–59, 60–65 years) and BMI (<25, 25– < 30, 30+ kg/m2)
bP heterogeneity based on a Wald test in the regression model corresponding to an interaction term between case status and the corresponding MD measure

Table 4 Logistic regression estimates for the association
between microvessel density (MVD) and breast biopsy diagnosis

Breast biopsy diagnosis N OR (95 % CI)a P

Non-case 174 1.00 0.005

Case 44 1.69 (1.17–2.44)

Non-case 174 1.00 0.002

In situ carcinoma 36 1.36 (0.91–2.04)

Invasive 8 4.86 (1.91–12.38)

Benign 50 1.00 0.002

Proliferative 99 1.56 (1.04–2.33)

Proliferative with atypia 25 1.47 (0.84–2.58)

In situ carcinoma 36 1.89 (1.13–3.15)

Invasive 8 6.81 (2.52–18.42)

Ordinal odds ratio 1.66 (1.27–2.16) 0.002

The average of MVD within a woman was computed and standardized by one
standard deviation. Non-cases: non-proliferative benign breast disease, proliferative
(ductal hyperplasia; sclerosing adenosis), proliferative with atypia (atypical ductal or
lobular hyperplasia). Cases: ductal or lobular carcinoma in situ and invasive cancer
aAdjusted for age at biopsy (39–44, 45–49, 50–54, 55–59, 60–65 years) and BMI
(<25, 25– < 30, 30+ kg/m2)
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dense tissue, as revealed in the analyses stratified by percent
density and absolute non-dense volume. Regardless of the
density measure (global or lesional), these analyses consist-
ently demonstrated a significant positive OR for the rela-
tionship between MVD and breast cancer odds within
strata of low percent density and within strata of high abso-
lute non-dense volume. Reasons for this association are un-
clear. Non-dense breast tissue is primarily composed of
adipose tissue, which is radiolucent and appears dark on a
mammogram. In a recent meta-analysis of area density
measure studies, absolute non-dense area was inversely as-
sociated with breast cancer risk among pre- and postmeno-
pausal women, with slight attenuation after adjustment for
absolute dense area, particularly among premenopausal
women [19]. Conversely, some have suggested that higher
amounts of breast adipose tissue are related to increased
breast cancer risk [20, 21]. Adipose tissue secretes a num-
ber of factors including adipokines, pro-inflammatory mol-
ecules, chemokines, hormones, and growth factors [22] –
when dysregulated, these factors have been shown to con-
tribute to the development and progression of breast can-
cers [23–25]. We hypothesize that in a microenvironment
characterized by dysregulated pathways, in this case
angiogenesis, adipose tissue may facilitate the carcino-
genic process. Although additional studies are needed,
our results would suggest that MVD is a potentially im-
portant biomarker in identifying a high-risk segment of
women that are traditionally perceived as having lower
breast cancer risk based on their MD.
We did not detect clear relationships between MVD

and the quantitative assessments of volumetric MD
(global or lesional) in the overall study population or
stratified by menopausal status. In accordance with

our findings, several MRI reports also failed to ob-
serve an association between BPE and MD [26–28].
Our menopausal status-stratified analyses conflict with
a previous study of 28 women with paired breast MRIs –
one available while the woman was pre-menopausal and
one following menopause – that demonstrated a decline
in BPE after menopause among 61 % (17/28) of women
[11]. The lack of association between MVD and MD mea-
sures in our study, coupled with the observation that the
MVD-breast cancer association was not substantially at-
tenuated when MD was included in the models, suggests
that MVD and MD affect breast cancer through inde-
pendent biological mechanisms. Further, apart from
lesional non-dense volume, we did not observe significant
differences in MD measures by pathologic diagnosis,
which has been previously reported in this study popula-
tion [7]. Although percent MD is a strong and established
risk factor for breast cancer development, higher MD may
not necessarily predict breast cancer risk among women
referred for biopsy [29].
We are unaware of any study relating breast cancer risk

factors to histologic markers of angiogenesis among women
with benign breast disease. Our analysis revealed few asso-
ciations: MVD was inversely associated with age and BMI
among women without breast cancer. Interestingly, BPE
appears to be hormonally regulated: premenopausal women
have been reported to have higher BPE levels compared
with postmenopausal women [11] whereas use of tamoxi-
fen [30] or aromatase inhibitors [31] has been associated
with declines in BPE levels in the contralateral unaffected
breast. Although we did not observe a statistically signifi-
cant association between MVD and menopausal status, the
age range of our study population was limited, which may

Table 5 Logistic regression estimates for the association between microvessel density (MVD) and breast biopsy diagnosis stratified
by mammographic density (MD) measures

Density measure Below median of mammographic density
measure

Above median of mammographic density
measure

Cases Non-cases OR (95 % CI)a Cases Non-cases OR (95 % CI)a P heterogeneityb

Volume Effect of microvessel density (MVD)c on breast cancer risk

Global

% density (volume) 23 87 2.35 (1.33–4.14) 21 87 1.23 (0.73–2.07) 0.11

Dense volume (cm3) 22 87 1.60 (0.84–3.05) 22 87 1.78 (1.07–2.98) 0.23

Non-dense volume (cm3) 21 87 1.14 (0.67–1.95) 23 87 2.51 (1.41–4.46) 0.08

Lesional

% dense volume (cm3) 21 88 3.03 (1.61–5.70) 23 86 1.10 (0.69–1.79) 0.03

Dense volume (cm3) 19 88 1.25 (0.67–2.32) 25 86 1.90 (1.15–3.13) 0.61

Non-dense volume (cm3) 15 87 0.97 (0.50–1.90) 29 87 2.13 (1.30–3.48) 0.06

Each MD measure was dichotomized at the median based on the distribution among non-cases. ORs with P values < 0.05 are presented in bold font. Non-cases:
non-proliferative benign breast disease, proliferative (ductal hyperplasia; sclerosing adenosis), proliferative with atypia (atypical ductal or lobular hyperplasia).
Cases: ductal or lobular carcinoma in situ and invasive cancer
aAdjusted for age at biopsy (39–44, 45–49, 50–54, 55–59, 60–65 years) and BMI (<25, 25– < 30, 30+ kg/m2)
bP heterogeneity based on a Wald test in the regression model corresponding to an interaction term between the dichotomous MD measure and MVD
cThe average of MVD within a woman was computed and standardized by one standard deviation
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have affected our ability to detect an association. Further-
more, we did not observe significant relationships between
MVD and other tumor characteristics, probably due to low
numbers of cases.
Strengths of our study include the quantitative, reliable

global density measures that have been validated with
respect to breast cancer risk factors [7] and risk [32, 33]
and analysis of biopsies prior to surgical intervention,
which can induce granulation tissue and neovascularity.
Limitations of our study include the potential for mis-
classification of MVD. Although robust methods for
MVD assessment in breast tumors exist [34], methods
for benign breast tissues have not been well validated.
Therefore, we undertook a rigorous and agnostic ap-
proach to score MVD in all tissue sections, masked to
diagnosis. Importantly, we did not observe large differ-
ences in MVD between randomly selected regions on
the whole section slides within a woman/biopsy, nor did
we note differences when the number of high-power
fields reviewed per tissue section was reduced. More-
over, the high intra-rater and inter-rater agreement we
observed suggests our MVD assessment method was re-
producible. Like many studies of MD, our study popula-
tion consists of mostly white and well-educated women,
and the extent to which these results apply to the gen-
eral population is unknown. Further, our study popula-
tion consists of women referred for an image-guided
breast biopsy – identifying biomarkers among women
referred to biopsy is important and future studies in
larger, more diverse populations may be warranted to
determine the utility of this biomarker.
In summary, our histopathologic analysis suggests that

tissue vascularity, as reflected by MVD, is associated
with breast cancer independently of MD, and the effect
may be stronger among women with lower breast dens-
ity. Although women with low MD tend to have lower
breast cancer risk, these women account for a high per-
centage of breast cancers overall. Our results add to prior
findings suggesting that the features of benign paren-
chyma, assessed radiologically or histologically, may be re-
lated to breast cancer. Specifically, prior analyses have
found that women with benign breast disease who have
more associated terminal duct lobular units (TDLUs) ex-
perience increased breast cancer risk [35, 36], independent
of MD [37], although the two are correlated [9, 38]. In fu-
ture studies, it may be possible to integrate MD, MVD
(assessed histologically or radiologically) with histologic
assessment of TDLU involution to assess future breast
cancer risk, particularly following a biopsy diagnosis of be-
nign breast disease.

Conclusions
Microvessel density was positively associated with breast
cancer odds in our study, independent of mammographic

density, an established breast cancer risk factor. Further,
the association between microvessel density and higher
breast cancer odds was stronger among women with
lower mammographic breast density, which account for a
high percentage of breast cancers overall. These results
need to be replicated in larger studies, particularly in
prospective studies with mammograms and breast biopsy
material available years prior to the cancer diagnosis. This
would provide evidence that increased vascularity is re-
lated to cancer development, rather than a finding that
manifests after cancer occurs.

Additional file

Additional file 1: Table S1. Association between microvessel density
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(DOC 54 kb)
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