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Abstract

Introduction: A large body size is associated with larger breast cancer tumours at diagnosis. Standard regression
models for tumour size at diagnosis are not sufficient for unravelling the mechanisms behind the association.

Methods: Using Swedish case-control data, we identified 1352 postmenopausal women with incident invasive
breast cancer diagnosed between 1993 and 1995. We used a novel continuous tumour growth model, which
models tumour sizes at diagnosis through three submodels: for tumour growth, time to symptomatic detection,
and screening sensitivity. Tumour size at other time points is thought of as a latent variable.

Results: We quantified the relationship between body size with tumour growth and time to symptomatic detection.

High body mass index and large breast size are, respectively, significantly associated with fast tumour growth rate and
delayed time to symptomatic detection (combined P value = 5.0 X 10~ and individual P values = 0.089 and 0.022). We
also quantified the role of mammographic density in screening sensitivity.

Conclusions: The times at which tumours will be symptomatically detected may vary substantially between women
with different breast sizes. The proposed tumour growth model represents a novel and useful approach for quantifying
the effects of breast cancer risk factors on tumour growth and detection.

Introduction

Among postmenopausal women, a high body mass index
(BMI) is known to be associated with an increased risk for
breast cancer [1]. High BMI has also been shown to be as-
sociated with large tumour size [2-4]. These associations
have been reported on the basis of fitting standard regres-
sion models to large data sets. The association between
BMI and tumour size could be due to a large body size
being associated with fast tumour growth or a delayed
symptomatic detection or both.

To evaluate the full impact of body size on tumour
growth/symptomatic detection, it is important to incorpor-
ate mammographic density at the analysis stage. Mammo-
graphic density refers to the tissue composition of a
woman’s breast as seen on a mammogram. Fibro-glandular
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tissue is radiodense and appears white on a mammogram,
whereas fat is radiolucent and appears dark on a mammo-
gram. Body size, as measured by BMI, is negatively cor-
related to percentage mammographic density (PMD)
(the percentage of the breast area appearing ‘dense’ on a
mammogram), which in turn is associated with larger
tumour size because of lower screening sensitivity [5-7].
The hypothesis that BMI is associated with tumour
growth is supported by studies with molecular markers.
In a retrospective cohort study of women enrolled in a
screening programme in western Washington state, it
was reported that obese women had significantly faster-
growing tumours, as measured by Ki-67 [8]. High BMI
is considered to be linked to fast tumour growth through
locally increased estrogen levels [9-11]. However, as we
have already suggested, tumour growth rates may not
represent the only mechanism through which body size
and tumour size at diagnosis are linked. A difficulty to
find tumours symptomatically in large breasts has also
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been hypothesised to contribute to the association be-
tween BMI and tumour size at diagnosis [2—4].

Although standard regression techniques can be used to
evaluate (overall) associations between tumour size and
body size covariates, more sophisticated approaches are
needed to shed light on the mechanisms underlying these
associations. In this article, we quantify the relationships
between body size covariates (BMI and breast size) and
tumour growth/symptomatic detection as well as the role
of mammographic density in screening sensitivity (Fig. 1).
We do this by using epidemiological data and an exten-
sion of a novel statistical modelling approach recently
described by our research group [12]. Since tumours in
pre- and postmenopausal women grow with different
speeds [13], we restrict our analysis to postmenopausal
women. Within our approach, three submodels are speci-
fied: for tumour growth, time to symptomatic detection,
and mammography screening sensitivity. Because infor-
mation on tumour size is available only at the time of de-
tection (at least in our study), we treat it as a latent
variable at other time points. Underlying processes as-
sumed in the submodels, together with information on
each woman’s screening history and detection mode, are
then used to find probabilities of different tumour sizes at
time points of negative screenings and hypothetical times
of symptomatic detection (for screening cases).

The extension of the model that we present in this work
makes it possible to include covariates in all submodels,
enabling us to jointly evaluate how particular factors, such
as body size, affect tumour growth, symptomatic detec-
tion, and screening sensitivity. To the best of our know-
ledge, ours is the first approach to enable this.

Methods

Data

The study population consists of postmenopausal
women born in Sweden with a primary invasive breast
cancer. It originates from the cases in a case-control
study of women who were between 50 and 74 years old
and whose cancer was diagnosed between 1 October
1993 to 31 March 1995 [14]. Through Swedish Regional
Cancer Registries, 3979 women were identified as being
a case and thus invited to the study. From 66 out of the
68 Swedish mammography screening units and radiology
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departments, information regarding dates and reasons
for mammographies (screening or referral) performed
within 3 months to 5 years before diagnosis (excluding
the occasions closest in time to diagnosis to avoid regis-
tering diagnostic examinations) was collected [15]. Also,
mammographic images (mediolateral-oblique view) were
gathered, and these have been digitised for most of the
participating women. From the images, PMD and total
breast area (TBA) in pixels were estimated during 2007
and 2008 [6] by a trained user of the computer programme
Cumulus. Both tumours and dense tissues are bright on
mammograms and therefore the PMD and TBA estima-
tions were made on the most recent mammograms of the
contralateral breast before diagnosis in order to avoid over-
estimating PMD.

Information about tumour size and other tumour char-
acteristics, as well as neoadjuvant treatment and reason
for diagnostic mammography, was retrieved from surgical
and oncological patient records throughout Sweden.
Through self-reported questionnaires, we collected infor-
mation about breast cancer risk factors, such as height
and weight.

Of the 3979 women identified as cases, 84 % (3345)
chose to participate. However, 320 participants were ex-
cluded because of a noninvasive breast cancer diagnosis,
a previous or other cancer diagnosis, or the lack of writ-
ten consent or because their diagnosis was made before
or after the study period. Furthermore, 177 premeno-
pausal women were excluded, as were 168 women with
unknown age at menopause. Screening history was miss-
ing on 626 cases, so these women were also excluded, as
were 50 cases with unknown detection mode (i.e., being
found through screening or symptomatically). Also, 24
women had no information on tumour size, and 611
women were lacking available mammograms and there-
fore were also excluded here. Six cases had no informa-
tion on BMI, calculated from height and weight, and 11
women received neoadjuvant treatment before the
pathologic measurement of the tumour size and there-
fore were excluded. From the original case-control study,
1352 women are included in the analyses here; 937 were
screening cases and 415 were symptomatic cases. Of the
symptomatic cases, 292 women (70 %) had a tumour di-
agnosed within 2 years of a negative screening. Prior to
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Fig. 1 Relationships between body size and mammographic density and breast cancer tumour size at diagnosis
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the exclusion of women without screening history or avail-
able mammograms, data for 2680 women were available
for analysis. The age and tumour size (diameter) distribu-
tions—25th, 50th, 75th percentiles of (58, 64, 69) for age
(years) and (10, 15, 22) for tumour size (millimetres)—in
this group are similar to those in the group of women in-
cluded in the analysis presented in this article: (58, 63, 68)
for age (years) and (10, 15, 20) for tumour size (milli-
metres). Ethical approval for the study was obtained from
the Regional Ethics Review Board in Uppsala at Uppsala
University (reference number 155/93), and ethical ap-
provals of extensions of the study were obtained from the
Regional Ethics Review Board in Stockholm at Karolinska
Institutet (reference numbers 98-226 and 99-338). All
participants provided written informed consent.

Statistical analysis

We first carried out an explanatory data analysis, tabu-
lating relationships between the key variables tumour
size, BMI, and TBA. Subsequent analyses were based on
our tumour growth model, which we describe below.

Our main approach is based on modelling the size of a
woman’s tumour (at detection), conditioning, explicitly,
on her screening history (dates of previous mammography
screens), and how her tumour was detected (screening/
symptomatic detection). We also allow tumour size (at de-
tection) to be dependent on body size and PMD. This is
done by specifying and using three submodels (described
below) for tumour growth, time to symptomatic detection,
and screening sensitivity (as functions of body size covari-
ates and PMD). Although calculations are complex, only
eight parameters are estimated. The unknown parameters
are estimated by optimising a likelihood function. The
model described in this article is based on a non-trivial ex-
tension of the approach of Abrahamsson and Humphreys
[12] (which did not allow covariates for tumour growth
and time to symptomatic detection) so that submodels
can be functions of covariates, such as body size and
PMD. Details and formulas of the model and its exten-
sions are given in the statistical methods Appendix.

We decided to use BMI as a body size covariate in
the submodel for tumour growth since it is believed to
have a close link to estrogen levels and therefore to
tumour growth rate. For the submodel of symptomatic
detection, TBA was used as a proxy for breast size,
which has a closer relation to detection, through pal-
pation, than BMI. Although we use different covariates
for body size in these two submodels, they have a
strong positive correlation (Spearman’s rank correl-
ation coefficient of 0.65), which will diminish their in-
dividual associations with tumour size. This has been
shown for standard regression models in a study of
clinical stage with BMI and breast size as covariates
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[16]. In the submodel for screening sensitivity, PMD
was used as proxy for mammographic density.

Submodels

The first submodel is for tumour growth. Tumours are as-
sumed to be spherical and to grow exponentially with a
constant volume doubling time. To allow for tumours to
grow at different rates, the growth rate is modelled as a
function of BMI (centered on the mean value in the study)
through the parameter a,. There are two other parame-
ters, a; and 0%, which are used to specify the general form
of the tumour growth function (see the Appendix). The
tumour growth model, which has been chosen partly be-
cause of mathematical tractability, has also been used by
Bartoszynski et al. [17] and Plevritis et al. [18]. Neither of
those articles allowed growth rates to vary according to an
observed factor/covariate. The second submodel is for
time to symptomatic detection. We assume that time to
symptomatic detection depends on the size of the tumour
through a hazard function, as is also done in Bartoszynski
et al. [17] and Plevritis et al. [18]. Unlike in previous work,
we allow time to symptomatic detection to depend on
breast size, as measured by the standardised TBA (cen-
tered on its mean value and divided by its standard devi-
ation) calculated from mammograms. Two parameters, #;
and 7, are included in the submodel for time to symp-
tomatic detection. Inference on #, provides information
on the relationship between the size of a woman’s breast
and time to symptomatic detection (caused by difficulties
in palpation). The parameter #; is for the general form of
the hazard function. The third submodel is for the screen-
ing sensitivity. Larger tumours are easier to find through
screening than small ones, and tumours can also be
masked in breasts with high mammographic density. We
therefore assume mammography screening sensitivity
(which is the probability that, from a mammographic
image, a radiologist will detect a tumour) to be a function
of tumour size and mammographic density. Its functional
form is adopted from Weedon-Fekjeer et al. [19]. Three
parameters—p3;, 85, and fz3—are required to be estimated.
3> links tumour size (diameter in millimetres) to screening
sensitivity, and 33 links PMD to screening sensitivity.

Parameter estimation

The values of the parameters ay, ay, 0%, #1, /2, 1, o and
f3 are estimated by maximising a likelihood function,
which is carried out by using the modified quasi-Newton
optimisation procedure called L-BFGS-B in the optim
function in the statistical programme R [20]. Calculation
of the likelihood takes some time because it is based on
summing different quantities over a number of possible
categories of tumour sizes (at symptomatic detection)
and time lags. To speed up parameter estimation, we di-
vided BMI (and TBA) values into 10 small categories,
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labelling each category with its midpoint. In this way, parts
of the likelihood functions could be evaluated for several
women at once. As in our earlier study [12], a maximum
number of three earlier negative screenings was used in the
calculations to ease computations. Tumour size in
diameter, at the time point of detection, was categorised
into the following intervals (in millimetres): [0,1.5),
[1.5,2.5), [2.57.5), [7.5125), [12.517.5),.., [67.572.5),
[72.5,85), [85,95), [95,105),..., [145, 155]. This is important
since some pathologists tend to round off tumour size
values to the nearest 5 or 10 mm, especially for large
tumours.

To obtain estimates of variability for the point estimates,
we used the profile likelihood function to calculate 95 %
confidence intervals. Likelihood ratio tests were carried out
to assess whether BMI, TBA, and PMD were associated
with growth, symptomatic detection, and screening sensi-
tivity, respectively. A non-parametric bootstrap approach
[12] and the percentile method for 100 bootstrap replica-
tions was used to plot 95 % confidence regions for the
screening sensitivity estimates.

Results

Key characteristics of the data are presented in Table 1.
Prior to applying our tumour growth model to the data, we
calculated the median sizes of tumours within groups de-
fined by BMI and TBA, for screening and symptomatically
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diagnosed cases, separately (Table 2). Aside from symptom-
atically detected tumours being consistently (much) larger
than screening detected tumours, the most marked differ-
ences in tumour sizes (3.5 to 4 mm) were, for symptomatic-
ally detected tumours, between TBA groups, suggesting
that TBA plays a role in delaying time to symptomatic
detection. High BMI values were associated with slightly
larger, or roughly equal-sized, tumours (0 to 2 mm differ-
ences) within groups defined by detection mode and TBA.
Given the results of this preliminary analysis, it seemed
sensible to proceed with fitting our tumour growth model
in order to quantify the relationships between TBA and
time to symptomatic detection and between BMI and
tumour growth rate.

Parameter estimates (point estimates and 95 % confi-
dence intervals from the profile likelihood) for the
tumour growth model described in the Methods section
are displayed in Table 3. We fitted a number of nested
models in order to carry out likelihood ratio tests for
key parameters (Table 4). The P value associated with
adding both BMI and TBA to the model was small
(5.0 x 107°). The P value from testing the (individual) as-
sociation between BMI and tumour growth was 0.089
(likelihood ratio test), whereas the P value for TBA and
time to symptomatic detection was 0.022. The main pur-
pose of our tumour growth model analysis is to learn
about the direct role of BMI/TBA in tumour growth/

Table 1 Descriptive comparison of screening and symptomatically detected cancers

Detection mode

Screening Symptomatic with a negative Symptomatic without a negative
screen in the last 2 years screen in the last 2 years
Number of cases 937 292 123
Tumour size, mm 12.00 19.00 20.00
(median and quartiles) (9.00, 18.00) (13.75, 25.00) (13.50, 28.00)
Age at diagnosis 63 62 65
(median and quartiles) (58, 68) (56.75, 67) 61,71)
Body mass index 25.65 2478 2445
(median and quartiles) (23.23, 28.26) (2231, 27.65) (22.71,27.19)
Percentage mammographic density 13.51 15.71 14.77
(median and quartiles) (6.33, 23.72) (7.90, 29.44) (9.04, 28.83)
Standardised total breast area 0.05 -032 -0.15
(median and quartiles) (-0.67,0.74) (=1.04, 0.40) (-0.73,0.74)
Cases with no previous negative screening 17 0 13
Cases with 1 previous negative screening 200 22 57
Cases with 2 previous negative screenings 596 149 49
Cases with 3 previous negative screenings 124 121 4
Time since last negative screening, years® 201 1.19 267
(median and quartiles) (1.79, 2.13) (0.90, 1.57) (2.24, 3.56)

?For cases with at least one previous negative screening
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Table 2 Tumour diameters for symptomatically and screen-detected cancers

Symptomatically diagnosed cases:

Standardised total breast area <0
Body mass index <25

17.00 (12.00, 23.00)

n=191

Tumour size
n=>58
Screening diagnosed cases:

Standardised total breast area <0
Body mass index <25

12.00 (10.00, 18.00)

n=308

Tumour size

n=145

Body mass index >25
18.50 (12.00, 24.75)

Body mass index >25
12.00 (8.00, 17.00)

Standardised total breast area >0
Body mass index <25

21.00 (15.00, 25.75)

n=34

Body mass index >25
22.00 (15.00, 30.00)
n=132

Standardised total breast area >0
Body mass index <25

11.00 (8.00, 19.00)

n=105

Body mass index >25
13.00 (9.00, 19.50)
n=379

Tumour diameters in millimetres (median and quartiles) grouped by body mass index and standardised total breast area

time to symptomatic detection. In Fig. 2, we plot esti-
mated tumour growth based on our sample of 1352
women with breast cancer. Estimated tumour growth
curves are plotted (left of Fig. 2) for women with BMIs
of 20 and 35. As in Weedon-Fekjeer et al. [19], time is
plotted on the x-axis and time point O represents the
time at which the tumour had a diameter of 15 mm. Tu-
mours in lean women are estimated to have a slower
growth than tumours in heavy women. The estimated
variation in growth rates is represented in the plot to the
right in Fig. 2.

Figure 3 represents the probability that a tumour, in
the absence of screening, will have been symptomatically
detected at a particular time point (which we refer to as
symptomatic sensitivity) as a function of tumour size
and size of the breast. Time is measured from the point

Table 3 Parameter estimates of tumour growth, time to
symptomatic detection, and screening sensitivity

Model for tumour growth:

Parameter Point estimate  Confidence interval
(profile likelihood)

Intercept, a; —0.65 (=099, —0.28)

Body mass index coefficient, @, ~ —0.02 (=0.05, 0.00)

Coefficient of variation, 0 040 (0.31,0.52)

Model for screening sensitivity:

Parameter Point estimate  Confidence interval
(profile likelihood)
Intercept, B, —4.68 (=5.10, —4.30)
Tumour size coefficient, 8, 0.57 (049, 0.66)
Percentage mammographic -2.39 (-=3.81,-1.01)

density coefficient, B3

Model for time to symptomatic detection:

Parameter Point estimate  Confidence interval
(profile likelihood)

Intercept, N -8.26 (—8.82, —7.88)

Total breast area coefficient, n, -0.17 (=0.32, —0.04)

Parameter estimates are presented with 95 % confidence intervals

when the tumour diameter was 0.5 mm. Symptomatic
detection is estimated to take longer in larger breasts.
For example, in a woman with a BMI of 20, we estimate
that by the time a tumour has reached a diameter of
20 mm, in a woman with small breasts (two standard de-
viations below the mean value), the tumour will have
been symptomatically detected with a probability of
0.55, whereas for a woman with large breasts (two stand-
ard deviations above the mean value) the corresponding
probability is 0.33. The same probabilities in a woman
with a BMI of 35 are, respectively, 0.43 and 0.24. In
Fig. 4, estimates for screening sensitivity as a function of
tumour size are plotted for women with 0 % and 60 %
PMD. As expected, screening sensitivity is higher for
women with less dense breasts.

To assess model fit, we graphically compared observed
and fitted tumour size group proportions, the latter be-
ing calculated by summing fitted, individual probabil-
ities. We did this within groups of women defined
according to body size and detection mode so that we
could also visualise differences between fitted tumour
size distributions according to these factors (Fig. 5). The
“larger” body size group was defined as having a BMI of
more than 25 and a standardised TBA of more than 0 (511
women; Table 2), whereas the “smaller” body size group
was defined as having a BMI of not more than 25 and stan-
dardised TBA of not more than 0 (499 women; Table 2).
The model fits reasonably close to the observed tumour
size distribution and is able to capture that the women with
larger body sizes have, on average, larger tumours.

Discussion

In this study, we have quantified the relationship between
body size covariates (BMI and TBA, respectively) with
tumour growth and time to symptomatic detection, as well
as the role of PMD in screening sensitivity, using a novel
continuous tumour growth model. Owing to the extension
of the model that we present, this is the first time that
breast cancer risk factors have been included in all parts of
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Table 4 P values from likelihood ratio tests

Null hypothesis Corresponding covariate (submodel) P value Log-likelihood
a,=0,n,=0 BMI (tumour growth) and TBA (time to symptomatic detection) 50x107° —2597.790
a,=0 BMI (tumour growth) 0.089 —2589.324
n,=0 TBA (time to symptomatic detection) 0.022 —2590.493
B3=0 PMD (screening sensitivity) 63x 1074 —2593.724

P values together with log-likelihood function values for covariates in models for tumour growth, time to symptomatic detection, and screening sensitivity. The

log-likelihood function value for the full model is —2587.879

BMI body mass index, TBA total breast area, PMD percentage mammographic density

a statistical growth model which jointly studies tumour
growth, screening sensitivity, and time to symptomatic de-
tection. Only a few earlier studies have included risk factors
in statistical tumour growth models. In a study with a
multi-state model setting, Chiu et al. [21] estimated screen-
ing sensitivity, taking mammographic density into account.
Our research group [12] has earlier estimated screening
sensitivity as a function of PMD in a continuous tumour
growth model without modelling systematic differences in
tumour growth rates. Tumour growth and screening sensi-
tivities were studied in two different age groups (50-59
and 60-69 years old) by a Norwegian group [19]. The
authors found that younger women had faster-growing tu-
mours. In a cohort study of Taiwanese women with simu-
lated risk factors, Wu et al. [22] used a three-state Markov
model setting (free of breast cancer, preclinical screen-
detectable phase and clinical phase) and included risk fac-
tors, testing whether they were initiators or promoters (e.g.,
involved in tumour progression) of breast cancer. However,
their simulated risk factors do not fully resemble real data
and the test procedure takes into account only whether risk
factors are more common in screening or clinical cancers.

Before carrying out our analysis, we checked/evaluated
our modelling procedure by carrying out a simulation
study. Simulations were performed in order to ensure that
our computer programme was able to retrieve “true” par-
ameter values. The simulations were carried out by using
an approach similar to the one described by us before
[12], but this time we included a single covariate in the
submodels for tumour growth or time to symptomatic de-
tection (the same covariate in the two submodels) or both.
We did this to check model identifiability. We found that,
as long as the covariate was included in both submodels
(tumour growth and the time to symptomatic detection),
estimation was valid. When the model was misspecified,
parameter estimates were misleading; for example, when
we generated data from a model where the covariate influ-
ences only tumour growth and then fitted a model where
the covariate was excluded from the model for tumour
growth but was still included in the model for time to
symptomatic detection, the model estimated that the co-
variate was associated with time to symptomatic detection.
This happens because late symptomatic detection and fast
tumour growth are both associated with larger tumours at
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Fig. 3 Estimated symptomatic sensitivities for women with small and large breasts. The estimates are based on the tumour growth function for
the estimated median inverse tumour growth rate of a woman with BMI 20 (left) and BMI 35 (right). Time is counted, in years, from the point at
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diagnosis. Although parameter identifiability is not a prob-
lem per se, this simulation underscores the importance of
specifying a realistic model. In our case, we postulated that
BMI was the most relevant covariate to use for tumour
growth but that TBA was most relevant for time to symp-
tomatic detection. Difficulties caused by related variables
playing roles in both tumour growth and detection are not
unique to our approach; this issue is essentially the same as
that mentioned in the Methods section and discussed in a
study using standard regression [16]. The advantage of our
approach, over standard regression, is that it can provide
insight and direct estimates of the role of factors (such as

BMI, TBA, and PMD) in tumour growth, symptomatic de-
tection, and screening sensitivity. Realistic models, how-
ever, need to be specified.

The estimates in this study regarding the overall tumour
growth and the overall symptomatic sensitivity (the overall
probability that a tumour has been symptomatically de-
tected through palpation, by a specific time point, in the
absence of screening) were similar to the results in our earl-
ier study [12]. There are no previous studies estimating the
dependence of tumour growth on BMI and the dependence
of symptomatic sensitivity on TBA to which we can com-
pare our results. Our estimate of screening sensitivity, as a
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Fig. 4 Estimated sensitivity functions with 95 % confidence intervals
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function of tumour size and PMD, also resembles our earl-
ier estimate [12].

In this work, we assume an exponential growth model
with a gamma distribution for the inverse tumour growth
rate. This made it possible to make the extension of includ-
ing covariates in the submodels. Analytically tractable solu-
tions would not be possible within a likelihood framework
if other models, such as logistic growth, were used. How-
ever, in Fig. 5, we see that, although among symptomatically
detected cancers there may be a tendency for our model to
slightly overestimate the number of moderately large tu-
mours, overall the model provides a good fit to the data.

From Fig. 3, it can be seen that symptomatic sensitiv-
ity approaches 1 when tumours are around 40 mm.
Although 40 mm might seem large, tumours are de-
tected symptomatically at such sizes in the absence of
screening [18].

With BMI and TBA included in our tumour growth
model, our point estimate of the effect of PMD on
screening sensitivity was -2.39 (P value = 6.3 x 107%
Tables 3 and 4) corresponding to a per-standard devi-
ation odds ratio of 0.71. We note that when BMI and
TBA were not included, we obtained a point estimate of
-1.96 (P value = 4.0 x 107°) and a per-standard deviation
odds ratio of 0.75. These estimates differ presumably
because of the negative correlation between PMD and
the other variables and underscore the importance of
specifying each submodel as well as possible.

Although it is clear that including both BMI and TBA
significantly improves the fit of our tumour growth model
compared with a model with neither of these factors, we
were not able to show that, when TBA is included in the
model for symptomatic detection, BMI is significantly
associated with tumour growth (P value = 0.09). The effects
of body size on tumour growth and time to symptomatic
detection work in the same direction, increasing the size of
the tumour, and BMI and TBA are strongly correlated vari-
ables. It is quite possible that with a somewhat larger sam-
ple size we would have sufficient power to show that body
size is significantly associated, separately, with both tumour
growth and time to symptomatic detection. However, the
estimated direction of the effect for BMI on tumour growth
is as we would expect, and other studies have already found
significant associations between BMI and Ki-67 among
women older than 40 years [8].

We obtained somewhat stronger evidence that, when
including BMI in the model for tumour growth, breast
size affects symptomatic detection (P value=0.02).
Since our study is the first to test such an association,
it is not possible to make a direct comparison with
other studies. However, there is some indirect support
for our result in other studies. Using a multivariate lo-
gistic regression analysis, Boyd et al. [23] found that
high BMI was more common in screening cases than in
interval cases, when taking the variable mammographic
density into account. This is in line with BMI (through
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its positive association with breast size) delaying symp-
tomatic detection. However, low mammographic dens-
ity has the same effect of increasing the probability of
being screen-detected. In the data set used in this art-
icle, tumour size was more strongly associated with
TBA than with BMI (Table 2).

Women with high BMI have higher estrogen levels than
lean women and this might increase the growth of a
tumour. However, women receiving hormone replacement
therapy (HRT) also have high estrogen levels because of
this exogenous source of estrogens. Therefore, it has been
suggested that any relationship between tumour progres-
sion and BMI could be weaker among women receiving
HRT [24]. A more appropriate tumour growth model may
be one with a main effect for HRT use and an interaction
effect between HRT use and BML

In future studies, we aim to extend the model to include
more breast cancer risk factors/covariates. For example,
some measure of HRT could be included in the tumour
growth model. It has also been discussed whether mammo-
graphic density affects tumour growth, although, to date,
little evidence has been presented for this association [25].
It may also be of value to quantify the role of age in tumour
growth (although age at diagnosis was found not to be as-
sociated with tumour size, among postmenopausal women,
in a basic regression analysis). However, the estimation pro-
cedure is computationally expensive and (as reported in
our earlier study [12]) computational time, especially for
variance estimates, increases when adding extra covariates.

One of the main reasons for developing the types of
models described here is to understand more about the re-
lationships between risk factors and the biology of breast
cancer. As Vilaprinyo et al. [26] point out, such information
will be needed to make screening more efficient. Although
breast cancer mammography screening programmes are
widely used and often age-based, the efficiency of screening
programmes is still debated, and it has been argued that
individualised screening programmes are needed to reduce
overdiagnosis and overtreatment [27]. Based on simulation
studies, researchers are testing different individualised
screening strategies [26]. Although Vilaprinyo et al. are op-
timistic about their results, they also indicate that, in order
to make screening more efficient, more information about
how to identify women who would benefit most from
screening is needed. The optimal screening frequency will
depend on the cancer growth rate, with screening being
most suitable for slow-growing precancerous tumours [28].
The sensitivity of a screening procedure and factors affect-
ing it are also important for deciding which type of screen-
ing a woman should receive [29]. Within the debate on
personalised screening, factors which could delay symptom-
atic detection have not been discussed to the same extent.
However, they may be important. We have shown that
breast size significantly delays symptomatic detection.
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This knowledge can potentially be used when planning
individualised screening.

Conclusions

Sophisticated tumour growth modelling is needed to un-
ravel the mechanisms behind the association between a
large body size and larger breast cancer tumours at diagno-
sis. We develop a novel continuous tumour growth model
with submodels for tumour growth, time to symptomatic
detection, and screening sensitivity and further describe ap-
proaches for including covariates in these submodels. Using
our growth model, we found that a large breast size is asso-
ciated with a delayed symptomatic detection in postmeno-
pausal women.

Appendix - statistical methods

We begin this section by describing the three submodels
which we postulate and which in turn are used to calcu-
late the probability for a detected tumour to be of a spe-
cific size (at time of diagnosis), conditional on screening
history and whether the tumour was detected through
screening or symptomatically.

Model for tumour growth

In the first submodel, for tumour growth, tumours are
assumed to be spherical and to grow exponentially with
a constant volume doubling time. The volume (in cubic
millimetres) for a tumour, at time ¢, is specified as

V(t) = Veee''", (1)

where ¢ is the time in years after tumour onset, V. is
the volume of one cell, and r is the inverse growth rate.
To allow for tumours to grow at different rates, the in-
verse growth rate, r, is modelled as a random variable, R,
which is assumed to follow a gamma distribution, with
shape parameter 7; and rate parameter 7,. The density
function for R is

TZTI
I(z1)

and E(R) = 11/1,. This model, which has been chosen partly
because of mathematical tractability, has also been used by
Bartoszynski et al. [17] and Plevritis et al. [18]. Neither of
those articles allowed growth rates to vary according to an
observed factor/covariate. In Abrahamsson and Humphreys
[12], we estimated 7; and 7,. Here, we adapt the model in
order to incorporate BMI as a covariate. We model de-
pendence of growth rates on BMI by using a log-linear
scale of the mean. We use a mean reparametrisation such
that E(R) = ry/7 = and V(R) = /=0, /42, where ¢ is the
constant coefficient of variation, and specify

rile™™ r > 0, (2)

fr(r) =

log(u) = a1 + axb, (3)
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where b=BMI (centered on the mean value in the
study). The parameter a, summarises the association be-
tween BMI and tumour growth. With this extension of
the model, any covariate can be added to the tumour
growth model in future studies.

Model for symptomatic detection

We assume that time to symptomatic detection, 7,
counted from the time that the tumour consisted of one
cell, depends on the size of the tumour through the fol-
lowing hazard function

P(T e € [t,t + dt)|Taee > t) = AV (¢)dt + o(dt). (4)

This model is also used by Bartoszynski et al. [17] and
Plevritis et al. [18]. We make the important extension to
the model, to allow time to symptomatic detection to
depend on breast size (or any other covariate in future
studies), by writing

log(A) = 1, + 1,5, (5)

where s represents breast size as measured by the stan-
dardised TBA (centered on the mean value and divided
by the standard deviation in the study) calculated from a
mammogram. Inference on #, provides information on
the relationship between the size of a woman’s breast
and time to symptomatic detection (caused by difficul-
ties in palpation).

Model for screening sensitivity

Larger tumours are easier to find through screening than
small ones, and tumours can also be masked in breasts
with high mammographic density. We therefore assume
mammography screening sensitivity to be a function of
tumour size and mammographic density. Its functional
form (logistic) is adopted from Weedon-Fekjeer et al. [19]
and is written as

_ exp(/)’l + B,d "‘/3)3””)
S(d,m) = 1+ exp (B, + Bod + Bym)’

(6)

where S(d, m) represents the probability that, from a mam-
mographic image, a radiologist will detect a tumour of size
d in a breast with PMD m (0 < m < 1). The size of a tumour,
d, is measured in terms of its diameter (in millimetres).

Likelihood function

We model the size of a woman’s tumour conditioning
explicitly on her screening history and how her tumour
was detected. We treat the diameter of the tumours as
coming from separate multinomial distributions, con-
sisting of a number of tumour size intervals. The
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tumour size distributions are continuous in nature, and
the multinomial distributions are used as approxima-
tions. We evaluate and maximise the likelihood

Lol6) = [T TT 7, ?)
j i

where p;; is the (conditional) probability for a tumour in
woman j to be detected in size interval i In (7), o;;
equals 1 if woman j has a tumour detected in size inter-
val i, and O otherwise, and o is a matrix consisting of all
values o;;. Furthermore, 6 is a vector of eight parameters
whose values we estimate by maximising the likelihood
function, (7).

The probability for a woman’s tumour to be detected in
a specific size interval (p;;) is specified to be dependent on
body size covariates and PMD as well as the dates of her
previous negative screenings and the detection mode of
her tumour. We calculate the value of p;; after first postu-
lating the three submodels (as functions of body size co-
variates and PMD).

For screening cases, p;; can be shown to be

In the absence of screening,

Tumour is .
p.%S(i, m)zzp of size iat the tuffnour will be detected
b T screenin at size g, by symptoms,
s f months later
(8)
P(The tumour is symptomatically detected of sizeg)x
©)
Tumour is not Tumour is of size i at latest
ZP detected at earlier | screening and of size s at X
s screenings the screening before that
(10)

Tumour is of size s at the
second latest screening

Tumour is of size i at latest screening) ,
(11)

where rows (10) and (11) are omitted for women with no
negative screening. See Abrahamsson and Humphreys [12]
for the derivation of this formula. On row (8), S(i, m) is
evaluated by using function (6) and the midpoint of the size
interval i. The conditional probability in the summation
over f and g on row (8) is evaluated by back-calculation
(tracking the tumour backwards in time from its hypothet-
ical symptomatic detection as if the woman had never
attended screening) by using the conditional cumulative
density function for the growth rate conditioning on the
size at symptomatic detection (using equation (10) in Abra-
hamsson and Humphreys [12]). The probability on row (9)
is evaluated by using the cumulative density function for
the growth rate (equation (4) in [12]). The screening sensi-
tivity function (6) is used to calculate the probability on
row (10) for the earlier negative screenings. Finally, the
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probability on row (11) is evaluated in a similar way to row
(8) [12].
For symptomatic cases, p;; can be shown to be

pi;*P(The tumour is symptomatically detected at size i)X
(12)

Tumour is of size i at symptomatic
detection and of size s at X
last screening

Tumour is not
ZP detected at earlier
B screenings

(13)

P( Tumour is of size s at

Tumour is of size i at
last screening ’

symptomatic detection
(14)

where rows (13) and (14) are omitted for women with no
screening history. In the above formula, rows (12), (13),
and (14) are, respectively, similar to (9), (10), and (8).
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