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Abstract

Introduction: Breast cancer researchers use cell lines to model myriad phenomena ranging from DNA repair to
cancer stem cell phenotypes. Though appropriate, and even requisite, for many studies, the suitability of cell lines
as tumour models has come into question owing to possibilities of tissue culture artefacts and clonal selection.
These issues are compounded by the inability of cancer cells grown in isolation to fully model the in situ tumour
environment, which also contains a plethora of non-tumour cell types. It is thus important to understand similarities
and differences between cancer cell lines and the tumours that they represent so that the optimal tumour models
can be chosen to answer specific research questions.

Methods: In the present study, we compared the RNA-sequencing transcriptomes of a collection of breast cancer
cell lines to transcriptomes obtained from hundreds of tumours using The Cancer Genome Atlas. Tumour purity
was accounted for by analysis of stromal and immune scores using the ESTIMATE algorithm so that differences
likely resulting from non-tumour cells could be accounted for.

Results: We found the transcriptional characteristics of breast cancer cell lines to mirror those of the tumours. We
identified basal and luminal cell lines that are most transcriptionally similar to their respective breast tumours. Our
comparison of expression profiles revealed pronounced differences between breast cancer cell lines and tumours,
which could largely be attributed to the absence of stromal and immune components in cell culture. A focus on
the Wnt pathway revealed the transcriptional downregulation or absence of several secreted Wnt antagonists in
culture. Gene set enrichment analysis suggests that cancer cell lines have enhanced proliferation and glycolysis
independent of stromal and immune contributions compared with breast cancer cells in situ.

Conclusions: This study demonstrates that many of the differences between breast cancer cell lines and tumours
are due to the absence of stromal and immune components in vitro. Hence, extra precautions should be taken
when modelling extracellular proteins in vitro. The specific differences discovered emphasize the importance of
choosing an appropriate model for each research question.
Introduction
Since the establishment of the HeLa cell line in 1951,
cell lines have been an integral part of cancer research,
and their use has tremendously advanced understanding
of molecular cancer biology [1]. However, the suitability
of these models has come into question, as many
in vitro phenomena are challenging to replicate in vivo.
Interpreting the potential clinical significance of discoveries
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made using cell lines requires an understanding of the ex-
tent to which these cell lines represent in vivo tumours.
Since the first breast cancer cell line, BT-20, was estab-

lished in 1958 [2], various other immortalized primary
tumour cell lines have been established at exceptionally
poor efficiencies [3, 4]. This low efficiency has often
been attributed to slow growth rates of tumour cells in
culture as compared with associated stromal cells, such
as fibroblasts [5]. To overcome this issue, most estab-
lished breast cancer lines have been derived from pleural
effusions, which provide an abundance of dissociated,
aggressive tumour cells with very few contaminating cell
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types. The pattern of growth of these tumour cells is
characterized by a slow initial proliferation, followed by
exponential expansion of a few cells, suggestive of clonal
selection for cells that are particularly proliferative and
amenable to culture [6–8].
Another caveat of cell culture is the loss of the in vivo

microenvironment (changes summarized in [9]). During
the derivation process, tumour cells are removed from a
very complex, partially hypoxic three-dimensional micro-
environment; maintained in nutrient media supplemented
with a surplus of growth factors, including glucose; and
passaged indefinitely at relatively high atmospheric oxygen
levels. In such a drastically altered microenvironment, it
would not be surprising if cell lines differed substantially
from the tumours they were established to represent.
Genomic and transcriptional differences between can-

cer cell lines and tumour samples have been investigated
in several studies [10–13]. For example, in gliomas, it
was shown that expression profiles of tumour cell pri-
mary cultures were much closer to profiles obtained
from clinically resected tumours than to profiles of im-
mortalized cancer cell lines [14]. In breast cancer, clus-
tering based on expression profiles has elucidated the
many clinically relevant subtypes in cell lines and tu-
mours (summarized in [15]) [16–20]. However, modern
RNA-sequencing (RNA-seq) data have not yet been used
to directly compare the expression profiles of breast can-
cer cell lines with breast tumours. As well, in vitro sig-
natures are the combined effect of adaptation to cell
culture and selection for specific cellular subtypes. Dis-
secting out the influence of either of these two phe-
nomena has remained a substantial obstacle in any cell
line–tumour transcriptional comparison.
Recent transcriptional profiling of a collection of breast

cancer cell lines [21] and hundreds of tumours from The
Cancer Genome Atlas (TCGA) [19] has enabled a direct
mRNA comparison of cell lines and tumours. In this
study, we focus on RNA-seq transcriptional profiles mined
from TCGA and the Gene Expression Omnibus (GEO)
series [GEO:GSE48213] and investigate the strengths and
weaknesses of cell lines as in vitro breast cancer models.
In addition, we seek to identify the breast cancer cell lines
that are most transcriptionally representative of their re-
spective tumour subtype. Importantly, we are able to cor-
relate most of the highly differentially expressed genes to
tumour stromal or immune signatures, highlighting the
importance of considering the entire niche in cancer mod-
elling. Finally, we summarize relevant breast cancer cell
line genomic alterations. In our study, we used RNA-seq
data to broaden the dynamic range of transcript detec-
tion and extend earlier efforts by including more cell
lines and by considering and quantifying stromal and im-
mune cell contributions to help elucidate the origin of
detected differences.
Methods
Datasets
Level 3 TCGA RNAseqV2 gene expression data were ob-
tained from the TCGA Data Portal [22] in August 2014.
RNA-seq expression data were retrieved in September
2014 for 50 luminal and basal breast cancer cell lines
profiled in the GEO database [GEO:GSE48213] [21].
Oestrogen receptor (ER) status and subtype data were
available in the original publication for cell lines and
were accessed via the UCSC Cancer Genomics Browser
(RNASeqV2 defined [23]) for tumours in September
2014. Breast cancer cell line copy number information
and mutation data for 1651 genes were retrieved from the
cBio Cancer Genomics Portal [24] for the Cancer Cell
Line Encyclopaedia (CCLE) in March 2015.

Data preparation
Relative abundance (in transcripts per million [TPM])
was calculated for 975 breast tumours by multiplying
the scaled estimate data by 106, and for 50 breast cell
lines by converting fragments per kilobase of exons per
million mapped reads to TPM. To avoid infinite values
in log calculations, a value of 1 was added to all TPM
values before log2 transformation. Values for the genes
that were available in both datasets (16,282 coding genes
in total) were combined for further analysis.

Gene expression profiling analysis
The top 5000 genes by variance across the combined
dataset were chosen for principal component analysis as
well as for hierarchical clustering using 1 − c (where c is
Pearson’s correlation coefficient) as the distance and
Ward’s agglomeration method (ward.D2). The 5000 most
variable genes were also used to compute the Pearson’s
correlation coefficient of all the cell line–tumour pairs in a
subtype-specific manner. The cell lines were ranked based
on their average correlation with all tumours of their re-
spective subtype. Significant differences in relative tran-
script abundances between cell lines and tumours were
calculated with Welch’s t test, and p values were corrected
for multiple testing using the Benjamini-Hochberg method.
Enrichment for functionally related genes between
the two datasets was tested using Generally Applicable
Gene-set Enrichment (GAGE v2.12.3; Bioconductor: [25])
with Kyoto Encyclopedia of Genes and Genomes [26] gene
sets with fewer than 200 items.

Tumour purity
Stromal and immune scores were defined for tumours by
ESTIMATE scores (Estimation of STromal and Immune
cells in MAlignant Tumour tissues using Expression data)
using RNASeqV2 data as previously described [27], and
accessed in October 2014 via the bioinformatics portal
at the Department of Bioinformatics and Computational
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Biology, University of Texas MD Anderson Cancer Center
[28]. Pearson’s correlation coefficient was used to calculate
the association of specific genes with stromal and immune
signatures. To decrease hits of transcripts more likely due
to tumour purity issues, transcripts that correlated with
stromal or immune scores (|r|>0.2) were filtered from the
list of differentially expressed genes, and a new ranked list
was generated. Stromal and immune correlations were
Fig. 1 Transcriptional comparison of 50 breast cancer cell lines with 1025 b
overall transcriptional similarity. a, b Scatterplots of mean expression values
(horizontal) and tumours (vertical) for oestrogen receptor–positive (ER+) (a
two datasets are largely comparable with more outliers that are high in tum
regression; blue shading indicates 95 % prediction interval for regression. c
analysis, and the first two principal components (PC1 and PC2, respectively
from tumours on an axis largely explained by ER status. Colours of the poin
line (green) and ER− cell line (black). d PC1 of the breast cancer tumours is
cells in MAlignant Tumours using Expression data) paradigm stromal score
calculated for each gene set by averaging the stromal and
immune Pearson’s correlation coefficients of the essential
genes (as determined using the GAGE package).

Cell line genomic analysis
The CCLE [29] investigators examined the mutational
status of 1651 genes by hybrid capture sequencing and
genome-wide copy number analysis. In our genomics
reast cancer tumour samples in The Cancer Genome Atlas suggests
(log2[transcripts per million + 1]) of 16,282 coding genes in cell lines

) and oestrogen receptor–negative (ER−) (b) samples reveal that the
ours and low in cell lines than vice versa. Blue lines indicate linear

The 5000 most variable genes were used for principal component
) explaining 28 % of the variance are displayed. Cell lines cluster apart
ts indicate sample types: ER+ tumour (blue), ER− tumour (red), ER+ cell
highly correlated with ESTIMATE (Estimation of STromal and Immune
s (r = 0.74)
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summary, we considered all breast cancer cell lines that
were available in both the CCLE and at GEO accession
number [GEO:GSE48213]. The fraction of the genome al-
tered represents the fraction of the genome that has a log2
copy number value above 0.2 or below −0.2. Selected mu-
tational events were considered if they were found to be
significantly altered from or in associated healthy tissue in
the original TCGA study [19]. Copy number status was in-
vestigated for significantly mutated genes in the TCGA
study that also displayed frequent copy number amplifica-
tions or deletions.

PubMed citation analysis
The number of PubMed abstracts that mentioned 1 of
the 50 breast cancer cell lines was determined as an esti-
mator of frequency of use in laboratories. Hits were de-
termined using the PubMed search function [30] on 18
March 2015. Several punctuation alternatives were used
for the cell line names. For the cell lines LY2 and MX1,
searches were conducted with the term ‘cells’ to
Fig. 2 The top 1 % differentially expressed genes in the combined express
expressed genes (adjusted p value by t test) in cell lines compared with tu
in tumour samples. All genes were investigated in tumours for potential co
in MAlignant Tumours using Expression data) paradigm stromal and immu
were found to have a Pearson’s correlation coefficient >0.5 (data not show
plot) and stromal correlations (scatterplot) are displayed for representative
show gene expression values (log2[transcripts per million {TPM} + 1)) stratified
ranges, and points represent individual sample values. Scatterplots (c, e, g) sh
algorithm) of tumours. Pearson’s correlation coefficient is displayed in the upp
eliminate the inclusion of abstracts that mentioned the
LY2 and MX1 genes.

Statistical analysis
We conducted all analyses and visualizations in the
RStudio programming environment (v0.98.501; [31]). The
R/Bioconductor packages ggplot2, plyr, gplots, ggdendro
and GAGE were used as appropriate.

Results
Comparison of cell lines and tumour expression profiles
To evaluate the transcriptional fidelity of breast cancer
cell lines to tumours, we compared the mean expression
values of 16,282 coding genes in oestrogen receptor–
positive (ER+) and oestrogen receptor–negative (ER−) cell
lines to ER+ and ER− tumours. The mean expression
values of cell lines and tumours were similar, though the
mean expression values of ER− cell lines and tumours are
more highly correlated (r = 0.90) than ER+ cell lines and
tumours (r = 0.88) (Fig. 1a, ER+; Fig. 1b, ER−). However,
ion dataset. a Heatmap representation of the top 1 % of differentially
mours. In all cases, the direction of difference favoured high expression
rrelation with the ESTIMATE (Estimation of STromal and Immune cells
ne scores. Of the top 163 differentially expressed genes, 134 genes
n) with either stromal or immune score. Differential expression (box
genes (b, c) POSTN, (d, e) MMP11 and (f, g) HGF. Box plots (b, d, f)
by sample source (cell line or tumour). Boxes represent interquartile
ow gene expression values (log2(TPM+1)) versus stromal score (ESTIMATE
er left corner



Vincent et al. Breast Cancer Research  (2015) 17:114 Page 5 of 12
closer inspection revealed a point of interest: Almost all
outliers were genes with high expression in tumours and
low expression in cell lines.
We further explored the relationship of cell lines and

tumours by conducting principal component analysis
(Fig. 1c) and found four clusters clearly divided based on
sample group (cell line or tumour; principal component
1 [PC1]) and ER status (principal component 2 [PC2]).
One of the main differences between cell lines and
tumours is the absence of certain cellular compo-
nents (e.g., stromal and immune cells). Given that
many of the outliers in Fig. 1a, b were genes that
had higher expression in tumours than in cell lines,
and PC1 in Fig. 1c was largely responsible for the
distance between tumours and cell lines, we corre-
lated PC1 with stromal and immune scores in tu-
mours as determined by using the ESTIMATE
paradigm [27]. We found that stromal scores strongly
positively correlated (r = 0.74) with PC1 (Fig. 1d).
Thus, the loss of the stromal component likely has
significant repercussions in vitro.
In the principal component analysis, we observed that

ER− cell lines clustered closer to their respective tumours
than ER+ cell lines, indicating again that ER− cell lines may
be more representative of their tumour counterparts than
ER+ cell lines. Expression-based, unsupervised
Fig. 3 Of the Wnt pathway components, Wnt antagonists (and WNT2) are
strong correlation with stromal signatures. Differential expression (box plots) a
(a) Wnt antagonists: DDK2, SFRP2 and SFRP4; (b) Wnt agonists: WNT2, WNT7B a
interquartile ranges, and points represent individual sample values. Scatterplo
1]) versus stromal scores (ESTIMATE algorithm [Estimation of STromal and Imm
Pearson’s correlation coefficient is displayed in the upper left corner
hierarchal clustering also revealed this trend. Al-
though cell lines cluster apart from all tumours, they
cluster closer to the largely ER−/basal subtype division of
tumours than to the largely ER+/luminal subtype div-
ision (Additional file 1: Figure S1).

Top differentially expressed genes are genes correlated
with stromal and immune scores
We found that the top 1 % of genes differentially expressed
in cell culture were all genes that had lower or undetect-
able expression in culture compared with tumours (Fig. 2).
To determine the contribution of stromal and immune
cellular compartments to this observation, we correlated
the expression of all genes with stromal and immune
scores in tumours. We found that 134 of the top 163
differentially expressed genes were highly correlated
with stromal or immune scores in tumours (r > 0.5).
Representative correlations are shown in Fig. 2c, e, g
and Additional file 2.
Recently, Winslow et al. investigated different breast

cancer cellular compartments using laser capture
microdissection [32]. When we examined the genes
that they found to be upregulated in breast cancer
stromal cells compared with malignant cells, we found
that 99 % of them were significantly downregulated in
breast cancer cell lines and that their average
downregulated in cell culture compared with tumours and exhibit a
nd stromal correlations (scatterplots) are displayed for representative
nd WNT9A; and (c) Wnt receptors: FZD3, FZD5 and FZD6. Boxes represent
ts (c, e and g) show gene expression values (log2[transcripts per million +
une cells in MAlignant Tumours using Expression data]) of tumours.
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correlation with the stromal score was 0.65 (data not
shown). Taken together, this supports the theory that
the downregulation of many genes in cell culture is
likely a consequence of losing stromal and immune
cellular compartments.
Wnt antagonists are underrepresented in cell culture
Because previous studies have suggested that Wnt path-
way components are provided by stromal cells in certain
situations [33, 34], we investigated the expression of
various Wnt pathway members in the datasets. We
determined that numerous putative Wnt antagonist
transcripts were underrepresented in cell culture and
highly correlated with stromal scores (Fig. 3a). However,
apart from WNT2, all other Wnt agonists (Fig. 3b)
and receptors (Fig. 3c) did not display this pattern.
This provides evidence that the stromal compartment
of tumours provides a unique and non-redundant role
in tumours that cannot be modelled accurately using
cancer cell monoculture.
Fig. 4 The top 1 % of differentially expressed genes after filtering out gene
differentially expressed genes was refined for correlation with stromal and
more likely to genuinely reflect changes induced by cell culture. Heatmap
(|r| < 0.2; adjusted p value by t test) in cell lines compared with tumours. D
are displayed for representative genes: (b, c) KRT17, (d, e) NDUFB4 and (f, g
per million {TPM}+1]) stratified by sample source (cell line or tumour). Boxe
values. c, e, g Scatterplots show gene expression values (log2[TPM+1]) vers
Immune cells in MAlignant Tumours using Expression data]) of tumours. Pe
Top differentially expressed genes not correlated with
stromal and immune scores
It is expected that cell line in vitro signatures are a com-
bined result of selection for the malignant subtype of cells
and in vitro adaptation. Though the expression level
changes connected to stromal and immune contributions
seem to be the most pronounced, we were interested in
investigating subtler distinctions that are more likely a re-
sult of in vitro adaptations. In an attempt to overcome the
contributions from stromal and immune cell lineages, we
identified a new top 1 % of differentially expressed genes
after removing the genes whose expression correlated
with stromal or immune scores (|r| > 0.2) (Fig. 4 and
Additional file 3). This list is more likely to reflect changes
in cancer cells induced by the cell-culturing process.

Gene set enrichment analysis reveals the enrichment of
proliferative gene sets in cell culture
Gene set enrichment analysis revealed 41 upregulated and
35 downregulated gene sets in cell lines compared with
tumours (Fig. 5). Cell lines were enriched for gene sets
s correlated with stromal and immune scores in tumours. a The list of
immune signatures, uncovering novel differentially expressed genes
representation of the filtered top 1 % of differentially expressed genes
ifferential expression (box plot) and stromal correlations (scatterplot)
) AHRR. b, d, f Boxplots show gene expression values (log2([transcripts
s represent interquartile ranges, and points represent individual sample
us stromal scores (ESTIMATE algorithm [Estimation of STromal and
arson’s correlation coefficient is displayed in the upper left corner



Fig. 5 Gene set–specific differences between breast cancer cell lines and tumours. Unpaired Generally Applicable Gene-set Enrichment analysis
reveals 41 upregulated and 35 downregulated pathways in breast cancer cell lines compared with tumours with a cutoff false discovery rate
q value < 0.0001. Heatmap displays generally applicable gene set enrichment test statistics of the 50 cell lines investigated
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associated with proliferation and metabolism, whereas
gene sets associated with extracellular matrix interactions
were underrepresented, akin to a pattern that was previ-
ously observed when tumours and cell lines were com-
pared [35]. Stromal and immune correlations were
calculated for each pathway’s essential genes and averaged
for the entire pathway to provide a measure of the contri-
bution of stromal and immune components to resultant
gene set perturbation (Table 1). We determined that
downregulated gene sets were quite strongly correlated
with stromal and immune scores. Specifically, genes that
allow tumour cells to interact with extracellular compo-
nents, such as syndecan 2 and CD36, were lower in cell
lines than in tumours. However, upregulated gene sets
were not as strongly correlated with stromal and immune
scores, indicating that their perturbation is likely a result
of the differences in the tumour cells themselves.
Ranking of cell lines by transcriptional similarity to their
tumour counterparts
To assess the transcriptional suitability of individual cell
lines as tumour models, we calculated the correlation
coefficients of the top 5000 most variable genes in all
subtype-specific cell line–tumour pairs and ranked the
cell lines based on their average correlation coefficient
(Table 2, Fig. 6). Although this evaluation is not fully
comprehensive of all potential genomic and epigenomic
differences, it does provide a reasonable guide for choos-
ing cell lines that are most transcriptionally representa-
tive of their respective tumour subtype. Ranking the
breast cancer cell lines based on correlation leads to a
spread of the cell lines from most representative (Table 2,
top) to least representative (Table 2, bottom). Keeping
with the trend previously observed, the highest ranked
basal cell line (HCC70; r = 0.58) was more strongly



Table 1 Top five upregulated and downregulated KEGG gene sets by gene set enrichment analysis

KEGG gene set Mean t statistic Set size Mean correlation
to stromal score

Mean correlation
to immune score

Mean correlation
to tumour purity

Upregulated sets

hsa03030 DNA replication 3.13 35 −0.27 −0.05 −0.18

hsa04110 Cell cycle 2.85 113 −0.10 0.06 −0.01

hsa03013 RNA transport 2.34 130 −0.13 0.00 −0.07

hsa03008 Ribosome biogenesis in eukaryotes 2.30 61 −0.16 0.02 −0.08

hsa03040 Spliceosome 2.06 103 −0.09 −0.04 −0.07

Downregulated sets

hsa04512 ECM–receptor interaction −3.66 81 0.49 0.11 0.33

hsa04514 Cell adhesion molecules −3.57 120 0.33 0.30 0.36

hsa04610 Complement and coagulation cascades −3.57 67 0.49 0.34 0.46

hsa04380 Osteoclast differentiation −3.41 117 0.44 0.49 0.53

hsa04145 Phagosome −3.35 126 0.37 0.38 0.43

Abbreviations: KEGG Kyoto Encyclopedia of Genes and Genomes
GAGE mean t statistic and gene set size are reported for the top five up- and downregulated pathways as determined by gene set enrichment analysis. Stromal
and immune correlations were calculated for each set’s essential genes and averaged for the entire pathway to provide an estimate of stromal and immune
contribution to gene set perturbation
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correlated with respective tumours than the highest
ranked luminal cell lines (BT483; r = 0.52). It is also re-
assuring to note that two of the most extensively pub-
lished luminal cell lines, T47D and MCF7, are ranked
fourth and fifth, respectively, of the 27 luminal lines that
were evaluated. However, the top ranked luminal and
basal cell lines (luminal: BT483, ZR7530 and 600MPE;
basal: HCC70, MX1 and HCC3153) are infrequently
used as breast cancer models and account for only 0.4 %
of publications on this cell line panel.
We went further and investigated mutation status and

copy number alterations of breast cancer cell lines pro-
filed by the CCLE. With our transcriptional correlation
ranking, we created a summary of all of these events
(Fig. 6), hoping that it could help inform breast cancer
cell line choice. The frequency of these somatic muta-
tional events in cell lines mirrors the frequency found in
tumours, with a few notable differences: TP53, PTEN,
NF1 and PTPRD were mutated at significantly higher
frequencies in cell lines as compared with tumours (p <
0.05 by binomial test) (Additional file 4).

Discussion
This study is the first transcriptional comparison of can-
cer cell lines and tumours to methodologically account
for the contributions of tumour stromal and immune
cellular components. We demonstrate, for the first time
to our knowledge, using RNA-seq data, that breast can-
cer cell lines generally represent breast tumours, with
notable exceptions. First, many extracellular proteins
thought to be lost in breast cancers may actually be sup-
plied in situ by the stroma. Second, many genes associated
with proliferation and metabolism are highly expressed in
culture. Hence, whereas certain aspects of breast cancer
biology can be studied using breast cancer cell lines alone,
others (in particular those involving factors in the extra-
cellular space) should include additional relevant cell
types.
This study revealed that, in general, basal/ER− cell

lines were more representative of their respective tu-
mours than luminal/ER+ cell lines. In addition, 60 % of
cell lines in this study were ER−, as compared with only
23 % of the primary tumours (p < 0.0001 by two-tailed
Fisher’s exact test), an overrepresentation of the ER− sta-
tus in cell lines, which has been observed previously [1].
The reason for this discrepancy remains unknown. How-
ever, it may be due to the fact that most cell lines were
obtained from metastatic tumours and pleural effusions
and thus represent the most aggressive variants that
could be adapted to culture (a trend previously reported
in renal cancer [36]). We would expect this phenomenon
to be especially pronounced for the ER+/luminal subtype,
which is characteristically a less aggressive subtype of
breast cancer. Additionally, as cells are grown in culture,
the epithelial phenotype is lost in favour of more mesen-
chymal traits, a type of in vitro epithelial–mesenchymal
transition which would result in greater transcriptional
distance between the more epithelial ER+/luminal cell
lines and the respective tumours [1].
Despite the transcriptional differences between cell

lines and tumours, we were nonetheless interested in
determining the most transcriptionally representative
breast cancer cell lines. In our analysis, we found that
the correlation coefficients of individual breast cancer
cell lines versus tumours varied from 0.41 to 0.58. This
was remarkably similar to the range of 0.43–0.60 that



Table 2 Ranking of 50 breast cancer cell lines based on average
Pearson’s correlation coefficient of their expression profiles with
those of their respective subtype breast cancer tumour samples
from The Cancer Genome Atlas

Cell lines Mean correlation of
expression profile
to tumours

PubMed
citations, n

Luminal cell lines

BT483 0.5204 19

ZR7530 0.5165 69

600MPE 0.5137 20

T47D 0.5028 3420

MCF7 0.5016 25312

ZR751 0.4974 914

CAMA1 0.4892 47

BT474 0.4852 891

EFM192A 0.4837 2

HCC1428 0.4773 8

SUM225CWN 0.4772 11

HCC1419 0.4733 3

UACC812 0.4730 34

HCC202 0.4680 2

MDAMB361 0.4677 165

ZR75B 0.4629 17

EFM192B 0.4612 0

EFM192C 0.4593 0

MDAMB175VII 0.4568 21

MDAMB134V1 0.4566 8

LY2 0.4554 84

HCC2218 0.4505 4

SUM52PE 0.4480 19

SKBR3 0.4456 1763

MDAMB453 0.4447 391

UACC893 0.4320 16

AU565 0.4143 56

Basal cell lines

HCC70 0.5756 34

MX1 0.5745 23

HCC3153 0.5634 4

HCC1143 0.5502 14

HCC1937 0.5491 145

HCC1569 0.5429 8

HCC1395 0.5276 7

MB157 0.5260 60

SUM149PT 0.5196 13

HCC38 0.5167 27

HCC1954 0.5165 50

Table 2 Ranking of 50 breast cancer cell lines based on average
Pearson’s correlation coefficient of their expression profiles with
those of their respective subtype breast cancer tumour samples
from The Cancer Genome Atlas (Continued)

SUM229PE 0.5165 6

HCC1599 0.5109 7

HCC1806 0.5042 41

21NT 0.4986 10

21PT 0.4912 28

MDAMB231 0.4871 8386

21MT2 0.4833 8

HS578T 0.4760 442

21MT1 0.4742 10

BT549 0.4700 259

JIMT1 0.4528 71

SUM1315 0.4184 26

The 5000 most variable genes were used to compute the Pearson’s correlation
of all the cell line–tumour and cell line–cell line pairs in a subtype-specific
manner. The cell lines were ranked based on their average correlation with all
tumours of their respective subtype. Claudin-low cell lines were compared
with basal tumours, as the claudin-low subtype is not well represented in vivo
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was observed in an analysis of ovarian cell lines and tu-
mours [11]. Interestingly, the top correlation of any indi-
vidual cell line could be exceeded by a fictional cell line
composed of the averages of all cell line gene expression
values (luminal, 0.52 for BT483 vs. 0.62; basal, 0.58 for
HCC70 vs. 0.60) (data not shown). This points to the
importance of including multiple cell lines in any ana-
lysis to ensure that any observed phenomenon is not a
product of a single outlier.
A fundamental limitation of cell culture models is that

the environment created by culture conditions is mark-
edly different from the breast cancer microenvironment
[9]. The loss of stromal and immune cells in culture is
one major drawback of monoculture models. Emerging
evidence supports the notion that tumour stromal cells
play exceptionally important roles in tumour initiation,
progression and metastasis [37–39]. In fact, studies have
shown that depletion of fibroblast activation protein–
expressing stromal cells leads to suppression of primary
tumour growth and metastasis [40]. Our research indi-
cates that loss of the stromal and immune components
is the principal transcriptional difference between cell
lines and tumours. It also suggests that the stroma has
a unique and significant role that often is not accounted
for in in vitro studies. For example, several studies have
looked at the expression levels and functional roles of
various Wnt antagonists (e.g., secreted frizzled-related
proteins [SFRPs]) in cell culture, and researchers have
drawn conclusions about their absence and mechanisms
of action in this context [41–44]. However, given that
we found the expression levels of various SFRPs to be



Fig. 6 Genomic summary of breast cancer cells lines. Both average properties (left) and selected genetic events (right) specific to breast cancer
can be used to distinguish when to use certain breast cancer cell lines. Average properties include the breast cancer subtype (luminal, basal or
claudin-low), the citation frequency in the literature as an estimate of frequency of use, the average transcriptional correlation with tumours of
the same subtype as determined in this study, the number of non-synonymous mutations in 1651 genes sequenced by hybrid capture, and the
altered fraction of the genome. The selected genetic events include 8 possible germline mutations (ATM, BRCA1/2, BRIP1, CHEK2, NBN, PTEN and
TP53), 17 possible somatic mutations (PTEN, TP53, PIK3CA, MAP3K1, MLL3, CDH1, MAP2K14, RUNX1, PIK3R1, AKT1, CBFB, CDKN1B, RB1, NF1, PTPN22,
PTPRD and CCND3) and 8 possible copy number alterations (PIK3CA, ERBB2, TP53, MAP2K4, MLL3, CDKN2A, PTEN and RB1) determined to be
significant in the original breast cancer study for The Cancer Genome Atlas and available on Cancer Cell Line Encyclopaedia platforms
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high in tumours and strongly correlated with stromal
scores, we should recognize that looking at these pro-
teins in tumour cell monoculture may not be appropri-
ate. In fact, given their roles as matricellular proteins, it
would not be surprising if their effects in vivo are quite
different than those observed in vitro.
In broader investigations using gene set enrichment

analysis, we observed an enrichment in cell line prolifer-
ative and metabolic gene sets, similar to those reported
in other studies [45–47]. The upregulation of these gene
sets could be due to two phenomena: (1) malignant
cellular adaptation/selection or (2) genes more highly
expressed in the malignant cells are upregulated in cell
lines as a result of the enrichment of this cell subtype in
culture. If the latter is true, we would expect a negative
correlation with stromal/tumour purity score. For one of
the gene sets, DNA replication, we observed such a nega-
tive correlation with stromal score (r = −0.27). Thus, the
expansion of malignant cells in cell culture likely plays a
role in the upregulation of this gene set. However, none of
the other upregulated proliferative/metabolic gene sets
display this correlation. This suggests, on the one hand,
that either the derivation process or the continuous cul-
turing of cell lines selects for a highly proliferative subset
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of cells. On the other hand, many of the underrepresented
gene sets were matrix- or immune-related and tightly cor-
related with stromal or immune scores, once again indi-
cating that loss of the stromal and immune compartments
has pronounced consequences in transcriptional programs
observed in cell culture.

Conclusions
Important efforts are being made to systematically com-
pare tumours and cell lines using DNA mutation, copy
number and gene expression data from a diverse spectrum
of tumour types [5, 9–11, 13, 35]. In this study, we focused
on breast cancer expression data and sought to identify
major transcriptional differences between cell lines and tu-
mours while accounting for variation resulting from stro-
mal and immune components. We determined that basal
cell lines are transcriptionally better models of their re-
spective tumours than luminal cell lines. We ranked cell
lines based on their transcriptional similarity to tumour
samples and recommend that cell line choices be
informed by this summary. We have also pointed out
situations where cell line monoculture may not be the
best tumour model. Fortunately, there exist many
other tumour models (e.g., patient-derived xenografts,
co-cultures and three-dimensional systems) that may
more appropriately represent these situations. Knowing in
which contexts cell lines have high or low fidelity to
tumours can help direct tumour model choice, optimizing
the clinical relevance of future research efforts.
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