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Abstract

Introduction: Mammographic density (MD) is a strong heritable and intermediate phenotype for breast cancer, but
much of its genetic variation remains unexplained. We performed a large-scale genetic association study including
8,419 women of European ancestry to identify MD loci.

Methods: Participants of three Swedish studies were genotyped on a custom Illumina iSelect genotyping array and
percent and absolute mammographic density were ascertained using semiautomated and fully automated methods
from film and digital mammograms. Linear regression analysis was used to test for SNP-MD associations, adjusting for
age, body mass index, menopausal status and six principal components. Meta-analyses were performed by combining
P values taking sample size, study-specific inflation factor and direction of effect into account.

Results: Genome-wide significant associations were observed for two previously identified loci: ZNF365 (rs10995194,
P = 2.3 × 10−8 for percent MD and P = 8.7 × 10−9 for absolute MD) and AREG (rs10034692, P = 6.7 × 10−9 for absolute
MD). In addition, we found evidence of association for two variants at 6q25.1, both of which are known breast cancer
susceptibility loci: rs9485370 in the TAB2 gene (P = 4.8 × 10−9 for percent MD and P = 2.5 × 10−8 for absolute MD)
and rs60705924 in the CCDC170/ESR1 region (P = 2.2 × 10−8 for absolute MD). Both regions have been implicated in
estrogen receptor signaling with TAB2 being a potential regulator of tamoxifen response.

Conclusions: We identified two novel MD loci at 6q25.1. These findings underscore the importance of 6q25.1 as a
susceptibility region and provide more insight into the mechanisms through which MD influences breast cancer risk.
Introduction
Mammographic density (MD) reflects the amount of
radiographically dense tissue on an X-ray of the breast
(mammogram) and is an intermediate phenotype for
breast cancer [1]. MD is highly heritable (h2 = 0.60 – 0.65)
[2–5] and genetic loci associated with MD can provide
insight into the biological mechanisms leading to breast
cancer, which may serve as targets for treatment and
preventive strategies [6]. Despite the high heritability,
a large proportion of the genetic variation of MD remains
unexplained [7–9]. The Marker of Density (MODE)
consortium recently identified nine loci (AREG, ESR1,
ZNF365, LSP1/TNNT3, IGF1,TMEM184B, SGSM3/MKL1,
PRDM6, 8p11.23) associated with area-based MD [7, 8]
as obtained with the semiautomated thresholding method
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Cumulus [10]. Although Cumulus is still regarded as
the ‘gold standard’ for screen-film mammography, fully
automated methods may help in the identification of
additional variants as these methods are less prone to
random measurement error. We performed a large-scale
genetic association study combining semiautomated and
fully automated density measures to identify novel MD loci.

Methods
Study participants
For the present study, we included participants of
European ancestry from three Swedish studies: KARolinska
MAmmography project for risk prediction of breast cancer
(KARMA), Linné-bröst 1 (LIBRO-1) and the Singapore
and Sweden Breast Cancer Study (SASBAC). KARMA is a
prospective screening-based study initiated in January 2011
and includes 70,877 women who attended mammography
screening or clinical mammography at four hospitals in
Sweden. In 2010, a random sample of 5,531 cancer-free
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women was genotyped of whom 4,025 had raw digital
mammograms stored. LIBRO-1 is a breast cancer cohort
including 5,715 malignant cases diagnosed between 2001
and 2008 in the Stockholm/Gotland area. The majority of
the cohort (N = 5,125) was genotyped and prediagnostic
film mammograms were successfully retrieved for 2,805
women. A further 1,589 women were drawn from the
SASBAC study, which is a population-based case–control
study including postmenopausal breast cancer cases
in Sweden aged 50 to 74 years at time of enrollment
(1 October 1993 to 31 March 1995) and age-matched
controls. Ethical approval of KARMA, LIBRO-1 and
SASBAC was given by the ethical review board at
Karolinska Institutet (Stockholm, Sweden) and written
informed consent was obtained from all participants.

Assessment of mammographic density
Mammographic density was obtained from the mediolateral
oblique (MLO) view in all three studies using different
measurement tools. In KARMA, MD was estimated from
raw digital mammograms using a volumetric method
(Volpara) [11]. Volpara shows good agreement with
breast magnetic resonance imaging (MRI) data [11]
and its measures (percent and absolute dense volume)
have been validated as being predictive of breast cancer
risk [12, 13]. In SASBAC and LIBRO-1, MD was estimated
using an area-based method from film mammograms with
respectively Cumulus [10] and an automated algorithm
based on the image processing software ImageJ that
mimics Cumulus [14, 15]. ImageJ shows good agreement
with Cumulus (the ‘gold standard’ for film mammography)
with high levels of correlation for both percent and
absolute dense area [13, 16, 17].
Since volumetric measures incorporate information on

breast thickness, the underlying distribution of area-
based and volumetric measures are slightly different,
with the latter being more right-skewed with a smaller
range of possible values (Figure S1 in Additional file 1).

Genotyping and imputation
All women were genotyped using the custom Ilumina
iSelect genotyping array of the Collaborative Oncological
Gene-environment Study (iCOGS) which comprises
211,155 single nucleotide polymorphisms (SNPs) pri-
marily selected for replication of loci putatively associ-
ated with breast cancer and other cancers [18]. Details
of the iCOGS array design, sample handling and post-
genotyping quality control (QC) processes are described
in depth elsewhere [18]. In brief, samples were excluded
from analysis for any of the following reasons: low or
high heterozygosity, individuals not concordant with
previous genotyping, discordant duplicate pairs and
first-degree relatives. Standard SNP QC was performed
in Plink (version 1.07) [19] and SNPs with minor allele
frequency (MAF) <0.01 or deviation from Hardy–Wein-
berg equilibrium (HWE) at P <1 x 10−6 in controls or P
<1 x 10−12 in cases were excluded, leaving 170,798 SNPs
for the combined analyses. To increase resolution and
coverage for regional association testing, nongenotyped
SNPs were imputed using the 1000 Genomes Project
March 12 release as a reference [20]. Data were imputed
in a two-stage procedure, using SHAPEIT to derive
phased genotypes and IMPUTE version 2 (IMPUTEv2)
to perform the imputation on the phased data [21]. The
imputation was performed using 5 Mb nonoverlap-
ping windows across the whole genome. Postimputa-
tion quality control was based on the IMPUTE info
score and SNPs with a score ≤0.80 or MAF <0.01
were excluded.

Statistical analyses
SNP association analysis was performed separately
within each study. Genotyped SNPs were analysed in
Plink (version 1.07) [19] using linear regression and
assuming an additive genetic model. We analyzed three
MD phenotypes: percent density (percent MD), absolute
dense tissue (absolute MD) and the absolute nondense
tissue. Since volumetric mammographic measures follow
a different distribution than area-based measures, different
types of transformation were used to approximate the nor-
mal distribution (log-transformation for volumetric mea-
sures and square-root transformation for area-based
measures) (Figure S1 in Additional file 1).
Differences in study design and measurement tech-

nique did not allow us to perform meta-analyses based
on study-specific effect estimates (beta coefficients).
Instead, we performed meta-analyses combining study-
specific P values in METAL (25 March 2011 release) [22]
taking sample size, study-specific inflation factor and
direction of effect into account.
Regional association plots were generated using Locus-

Zoom with the 400 kb region centered on the index
SNP [23]. Imputed SNPs within the region were ana-
lyzed with SNPTEST (version 2.5.2) [24, 25] based
on the score test, which uses allele dosages instead
of genotype calls.
Population stratification was assessed using principal

component (PC) analysis in EIGENSTRAT (version 3.0)
[26, 27]. All analyses were adjusted for age (years),
body mass index (BMI) (kg/m2), menopausal status
(postmenopausal vs premenopausal) and six study-specific
PC scores to account for population substructure.

Functional annotation and breast cancer association
analysis of identified variants
Functional annotation of associated variants and their
proxies (r2 ≥0.8 in 1000 Genomes CEU population) was
performed using the HaploReg v2 software [28]. We
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studied putative functional variants using data from the
Encyclopedia of DNA Elements (ENCODE) project [29],
in particular the chromatin state segmentation [30] for
the human mammary epithelial cells (HMEC) cell line.
We checked for associations between associated variants

and breast cancer risk by doing a lookup in the Breast
Cancer Association Consortium (BCAC) including a total
of 55,540 breast cancer cases and 51,168 controls with
iCOGS genotyping data. We also verified associations
with MD loci that were previously identified by the
genome-wide association study (GWAS) coordinated
by MODE [8]. These analyses were performed in KARMA
and LIBRO-1 participants only, as SASBAC is part of the
MODE consortium.

Results
Table 1 summarizes the characteristics of the study
participants in each individual study. Most partici-
pants were postmenopausal: 76.1 % in LIBRO-1 and
100 % in SASBAC, with a mean age of 58.4 years
and 62.4 years respectively. Participants of KARMA
were slightly younger (mean age = 53.6 years), with
a larger contribution of premenopausal women (51.0 %).
No substantial difference in BMI was observed across the
individual studies.
Quantile-quantile (QQ) plots for each MD phenotype

are shown in Figure S2 in Additional file 2.
All plots displayed no global departure from the expected

null distribution of P values and the genetic inflation factor
(λ) was 1.005, 1.015 and 1.024 for KARMA, LIBRO-1 and
SASBAC respectively, indicating that residual confounding
by population stratification is negligible.
Figure S3 (Additional file 3) shows the Manhattan

plots displaying the log10-transformed P values for each
genotyped SNP per MD phenotype. In total, we identified
two loci for percent MD (TAB2, ZNF365) and four loci
for absolute MD (AREG, TAB2, CCDC170/ESR1, ZNF365)
(Table 2; Fig. 1). Two of the loci (ZNF565, AREG) were
recently identified by MODE [7, 8], but the loci mapping
to 6q25.1 (TAB2 and CCDC170/ESR1) have not been
reported previously as being associated with MD at a
genome-wide significance level. No significant associations
Table 1 Descriptive characteristics of the studies included

Study Number Mammogram Measure Age
(years)

BMI
(kg/m2)

Mean (SD) Mean (SD

KARMA 4025 Raw digital Volpara 53.6 (9.4) 25.3 (4.2

SASBAC 1589 Digitized screen-film Cumulus 62.4 (6.4) 25.6 (3.8

LIBRO-1 2805 Digitized screen-film ImageJ 58.4 (8.8) 25.3 (4.0

All mammograms were from the mediolateral oblique (MLO) view
BMI body mass index, SD standard deviation, IQR interquartile range
aPercent density (percent MD) in %; absolute dense tissue (absolute MD) in cm3 (KA
(KARMA) and cm2 (SASBAC and LIBRO-1)
were observed for the absolute nondense tissue (Figure S3
in Additional file 3).
The strongest association at 6q25.1 was found for

rs9485370 in the TGF-beta-activated kinase 1/MAP3K7-
binding (TAB2) gene, where each additional copy of the
minor allele was associated with a decrease in percent MD
(P = 4.8 × 10−9) and absolute MD (P = 6.7 × 10−9) (Table 2,
Fig. 1). Rs9485370 is located in a putative enhancer
element in HMEC cell lines and is linked to a number of
SNPs which have been predicted to influence transcription
factor binding (Figure S4 in Additional file 4).
The minor allele frequency (MAF) of rs9485370 varies

widely across populations with the effect allele (T) being
more common in Asians than Europeans. Rs9485370 is not
an established breast cancer SNP in women of European
ancestry, but an SNP in complete linkage disequilibrium
(LD) (rs9485372; r2 = 1, D’ = 1) has previously been associ-
ated with breast cancer risk in East Asian women [31, 32].
Rs9485370 did not reach genome-wide significance in
BCAC, but there was evidence of a stronger association
in Asian (odds ratio (OR) = 0.89, P = 7.4 × 10−6) than in
European women (OR = 0.96, P = 1.4 × 10−3) and the
direction of association was consistent with the effect of
MD on breast cancer risk (Table S1 in Additional file 5).
All associated SNPs in the 400 kb window were in
LD with s9485370 and there was no evidence of additional
independent signals in this locus (Fig. 1).
The second hit at 6q25.1 was rs60705924, located

14 kb downstream of CCDC170 and 22 kb upstream of
ESR1. Each minor allele at rs60705924 was associated
with an increase in absolute MD (P = 2.2 × 10−8)
(Table 2, Fig. 1) but the association was weaker and non-
significant for percent MD (P = 1.2 × 10−4). Rs60705924
is strongly correlated with breast cancer SNP rs2046210
(r2 = 0.89, D’ = 1.00) [18] and its association with
breast cancer (OR in BCAC European sample = 1.08,
P = 1.9 × 10−13) follows the same direction as its associ-
ation with absolute MD (Table S1 in Additional file 5).
Three SNPs in strong LD with rs60705924 (rs7763637,
rs6557160, rs6913578) map to promoter/enhancer histone
marks in HMEC cell lines (Table S4 in Additional file 4).
Rs60705924 is also in proximity to rs12665607, a SNP that
Post-
menopause

Percent
density (%)a

Absolute densea Absolute nondensea

) Percent (N) Median (IQR) Median (IQR) Median (IQR)

) 51.0 (2,054) 8.4 (6.5) 60.4 (36.8) 677 (581)

) 100 (1,589) 11.8 (17.7) 18.1 (26.2) 140 (76)

) 76.1 (2,134) 30.0 (21.6) 30.6 (21.5) 71 (30)

RMA) and cm2 (SASBAC and LIBRO-1); absolute nondense tissue in cm3



Table 2 Single nucleotide polymorphisms associated with percent and absolute mammographic density

KARMA SASBAC LIBRO-1

CHR SNP BP Genes Allelesa MAF beta (se) P MAF beta (se) P MAF beta (se) P P
overall

P
het

Percent density

6 rs9485370 149606801 TAB2 G/T 0.18 −0.05 (0.01) 2.3 × 10−5 0.17 −0.16 (0.08) 0.04 0.17 −0.16 (0.05) 3,9 × 10−4 4.8 × 10−9 0.88

10b rs10995194 64288130 ZNF365 G/C 0.16 −0.05 (0.01) 7.1 × 10−6 0.15 −0.13 (0.08) 0.10 0.15 −0.15 (0.05) 1.9 × 10−3 2.3 × 10−8 0.62

Absolute dense

4b rs10034692 75419787 AREG A/G 0.32 −0.04 (0.01) 9.6 × 10−5 0.31 −0.23 (0.08) 6.1 × 10−3 0.31 −0.14 (0.04) 5.5 × 10−4 6.7 × 10−9 0.96

6 rs9485370 149606801 TAB2 G/T 0.18 −0.04 (0.01) 2.0 × 10−3 0.17 −0.22 (0.10) 0.03 0.17 −0.22 (0.05) 1.0 × 10−5 2.5 × 10−8 0.37

6 rs60705924 151955985 CCDC170-ESR1 A/G 0.31 0.04 (0.01) 1.9 × 10−4 0.31 0.33 (0.08) 3.0 × 10−5 0.31 0.09 (0.04) 0.03 2.2 × 10−8 0.13

10b rs10995194 664288130 ZNF365 G/C 0.16 −0.07 (0.01) 1.1 × 10−6 0.15 −0.21 (0.10) 0.05 0.15 −0.15 (0.05) 5.1 × 10−3 8.7 × 10−9 0.55

Genes refer to genes and nearby genes
MD mammographic density, CHR chromosome, SNP single nucleotide polymorphism, BP base pair position (NCBI Build 37), MAF minor allele frequencies;
P overall = P value meta-analysis; P het = P value chi-square test for heterogeneity
aMajor allele (reference allele)/minor allele (effect allele)
bPreviously identified in the Marker of Density (MODE) consortium: R2 rs10995194 and MODE SNP rs10995190 = 1 (1000 Genomes Project, Pilot 1 (CEU))

Brand
et

al.Breast
Cancer

Research
 (2015) 17:75 

Page
4
of

9



0

2

4

6

8

10

−
lo

g 1
0(

p−
va

lu
e)

rs9485370

0.2

0.4

0.6

0.8

r2

UST

LOC100128176

TAB2

SUMO4

ZC3H12D

PPIL4

GINM1

KATNA1

LATS1

149.4 149.6 149.8 150
Position on chr6 (Mb)

Plotted SNPs

0

2

4

6

8

10

−
lo

g 1
0(

p−
va

lu
e)

rs60705924

0.2

0.4

0.6

0.8

r2

AKAP12

ZBTB2

RMND1

C6orf211

CCDC170 ESR1

151.6 151.8 152 152.2
Position on chr6 (Mb)

Plotted SNPs

0

2

4

6

8

10

−
lo

g 1
0(

p−
va

lu
e)

rs9485370

0.2

0.4

0.6

0.8

r2

UST

LOC100128176

TAB2

SUMO4

ZC3H12D

PPIL4

GINM1

KATNA1

LATS1

149.4 149.6 149.8 150
Position on chr6 (Mb)

Plotted SNPs

A

B

C

Fig. 1 (See legend on next page.)
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(See figure on previous page.)
Fig. 1 Regional plots of SNPs associated with percent and absolute mammographic density. a = regional association plot rs9485370 for percent
density; (b) = regional association plot rs9485370 for absolute dense tissue; (c) = regional association plot rs60705924 for absolute dense tissue.
Plot shows –log10 P values (y-axis) by chromosomal position (x-axis). Top genotyped SNPs (rs9485370 and rs60705924) are shown in purple.
Squares denote genotyped SNPs; circles denote imputed SNPs. Colors indicate the extent of linkage disequilibrium with rs9485370 and
rs60705924. Genetic recombination rates are estimated using 1000 Genomes EUR sample and are shown with the light blue line. Physical
positions are based on NCBI build37 of the human genome. Note: rs9485370 falls within transcript ENST00000536230 of TAB2, which spans
chr6:149539777–149731075. The plot was generated using LocusZoom software. SNP single nucleotide polymorphism
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was recently found to be associated with absolute dense
area in MODE [8] and highly correlated with breast can-
cer SNP rs12662670 (r2 = 0.89; D’ = 1.00). However,
rs60705924 and rs12665607 are only weakly correlated
(r2 = 0.19; D’ = 1.00) and the association with rs60705924
was only slightly attenuated in conditional analysis
(P = 4.8 × 10−6). Regional association analysis revealed no
additional independent SNPs in the 400 kb window of
rs60705924 (Fig. 1).
We also tested for associations with MD loci that were

previously identified in GWAS coordinated by MODE.
We could confirm associations with the majority of loci
found by MODE (Table S2 in Additional file 6), except for
LSP1 (P = 0.25 for percent MD), TMEM184B (P = 0.14
for percent MD and P = 0.30 for absolute dense tissue)
and rs7816345 at chromosome 8 (P = 0.31 for percent
MD), although there was some evidence of an association
between TMEM184B and volumetric MD in KARMA.
Although no SNPs reached genome-wide significance in
our meta-analysis of absolute nondense tissue, we could
replicate the nondense locus (rs7816345) that was recently
identified by MODE (P = 2.4 × 10−4) (Table S2 in
Additional file 6).

Discussion
We performed a meta-analysis of three large-scale
genetic association studies to identify novel MD loci.
Using semiautomated and fully automated measures,
we were able to identify two additional variants at 6q25.1
(TAB2 and CCDC170/ESR1) that were associated with
both volumetric and area-based MD. We also confirmed
associations with several loci (ZNF365 and AREG) that
were previously identified by MODE [8].
Like MODE, we identified more genetic loci for

absolute than for percent MD. Our most significant
hit was rs9485370 mapping to the TAB2 gene. This
SNP has previously been associated with breast cancer
risk in East Asian women [31, 32], but not with mammo-
graphic density at a genome-wide significance level. The
protein encoded by the TAB2 gene is an important
mediator of interleukin-1 (IL-1)-induced activation of the
NFkB and MAPK8/JNK pathway [33] which has been as-
sociated with early tumorigenesis and metastasis [34, 35]
as well as mammary development [36]. The TAB2 protein
also interacts directly with the N-terminal domain of the
estrogen receptor alpha (ESR1) and has been implicated
in proinflammatory induced reactivation of repressed
estrogen receptor (ER) signaling pathways [37, 38].
Because of its role in ER signaling, TAB2 is seen as a
potential target for reversing tamoxifen resistance in
breast cancer cells [38].
The second variant at 6q25.1 (rs60705924) is located

in CCDC170/ESR1 region, a well-established breast can-
cer locus, but its putative functions are not well defined.
Previous GWAS and candidate approaches have identi-
fied multiple genetic variants at CCDC170/ESR1 to be
associated with breast cancer as well as mammographic
density [39]. A breast cancer SNP in strong LD with
rs60705924 and rs2046210 has previously been identified
in candidate approaches of area-based and volumetric
MD [5, 7], but not at genome-wide significance level. SNP
rs2046210 is more strongly associated with ER-positive
than -negative tumors [40, 41] and our data suggest that
at least part of the association with breast cancer is medi-
ated through mammographic density. Recent data further
indicate that recurrent rearrangements between the ESR1
and CCDC170 gene are linked to more aggressive and
endocrine-resistant cancers [42]. Fine-mapping studies of
6q25.1 are needed to provide more insight into the
independent and causal variants in this specific region.
To our knowledge, this is one of the largest studies ana-

lyzing genetic determinants of fully and semiautomated
MD measures. All mammograms in the study were
obtained from the MLO view and all participants were
genotyped on the same genotyping platform, reducing the
likelihood of measurement errors due to between-view
and interassay differences. However, our findings need to
be interpreted in light of the different MD methods used.
First of all, we combined screen-film and digital mammo-
grams in our meta-analysis. Previous studies have shown
that MD measurements from digital mammograms tend to
be lower than from film mammograms [43]. Furthermore,
different measurement tools were used in each individual
study. Both area-based and volumetric methods aim to
quantify the amount of fibroglandular tissue in the breast
from two-dimensional mammograms, but the measure-
ment techniques used are slightly different. Area-based
methods use an intrinsic threshold technique [either semi-
automated (Cumulus) or fully automated (ImageJ)] to
categorize pixels as dense or nondense, whereas Volpara is
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specifically designed to quantify the density in each individ-
ual pixel on a continuous scale while accounting for inter-
individual differences in breast thickness. Several studies
have evaluated the agreement between Cumulus and
ImageJ, all showing high correlation coefficients for percent
dense area (r ranging from 0.88 to 0.92) [13, 16, 17] and
absolute dense area (r ranging from 0.89 to 0.90) [13, 17].
High levels of agreement have also been reported for per-
cent dense area and volume (r ranging from 0.86 to 0.93)
[12, 13], and recent data confirm the good overall correl-
ation between all three measures with similar breast cancer
risk estimates for Cumulus, ImageJ and Volpara percent
MD [13, 44]. The correlation between absolute dense area
and volume is somewhat weaker (r ranging from 0.41 to
0.55) [12, 13]. Heritability estimates also tend to be lower
for the absolute dense volume than for the absolute dense
area [5], indicating that these absolute measures represent
different aspects of MD. Since we cannot rule out the pres-
ence of area- and volumetric-specific MD loci, we could
have missed SNPs that are associated with the absolute
dense volume, but not with its area-based counterpart. This
might also explain the lack of replication for some of the
SNPs previously identified by MODE for area-based MD
[8]. Future GWAS aimed at identifying genetic variants of
both area-based and volumetric MD will provide more
insight into this matter. Although our study might be lim-
ited in terms of power due to the combination of different
MD methods (e.g., mammogram type and measurement
technique), this could not have affected the validity of our
findings. Of note, all SNP-MD associations were in
the same direction with no evidence of between-study
heterogeneity. As such, our study has identified loci that are
associated with MD, regardless of measurement technique
and mammogram type used.
Studies identifying MD loci are important to increase

our understanding of the biological mechanisms leading to
breast cancer in women with high mammographic density.
Such insights come primarily from SNPs that are associated
with both mammographic density and breast cancer risk
[12, 45], including the variants identified in the present
study. This information might also be relevant for identify-
ing new targets for treatment and preventive strategies. Our
results, for instance, highlight the importance of the 6q25.1
region in the etiology of breast cancer among women with
dense breasts. From a clinical perspective, SNPs and down-
stream pathways that are associated with mammographic
density, but not with breast cancer risk, are of limited value,
as these SNP-MD associations are not likely to influence
breast cancer as a disease endpoint.

Conclusions
In conclusion, we identified two novel MD loci at 6q25.1
in a large-scale genotyping effort of semiautomated and
fully automated MD measures, which have previously
been associated with breast cancer risk. These findings
underscore the importance of 6q25.1 as a susceptibility
region and provide more insight into the mechanisms
through which MD influences breast cancer risk. Future
large-scale genetic association studies of area-based and
volumetric MD are needed to increase our understanding
of the genetic basis of mammographic density and its link
with breast cancer.
Additional files

Additional file 1: Figure S1. Distributions of mammographic density
phenotypes, stratified by study. Distributions of mammographic measures
before (A) and after transformation (B). Percent density in %; absolute
dense tissue in cm3 (KARMA) and cm2 (SASBAC and LIBRO-1); absolute
nondense tissue in cm3 (KARMA) and cm2 (SASBAC and LIBRO-1). Volumetric
mammographic measures were log-transformed (KARMA) and area-based
mammographic measures were square-root-transformed (SASBAC and
LIBRO-1) prior to analyses.

Additional file 2: Figure S2. Quantile-quantile (QQ) plots, per
mammographic density phenotype. A = percent density; B = absolute
dense tissue; C = absolute nondense tissue. The observed P values based
the on meta-analysis of KARMA, SASBAC and LIBRO-1 are plotted against
the expected distribution of P values under the null distribution.

Additional file 3: Figure S3. Manhattan plots of the combined
association results, per mammographic density phenotype. A = percent
density; B = absolute dense tissue; C = absolute nondense tissue. The –log10
(P) values are plotted against chromosomal base-pair position. Genome-wide-
significant hits (P <5 × 10−8) are indicated in red.

Additional file 4: Figure S4. Annotation of rs9485370 and rs60705924
by their effect on regulatory motifs according to the HaploREG database.
A = rs9485370; B = rs60705924.

Additional file 5: Table S1. Associations between genome-wide-
significant SNPs and breast cancer risk in the Breast Cancer Association
Consortium (BCAC).

Additional file 6: Table S2. Replication analysis of SNPs identified by
MODE, per mammographic density phenotype.
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Linné-bröst 1; LSP1: lymphocyte- specific protein 1; MAF: minor allele
frequency; MAPK8/JNK: mitogen-activated protein kinase 8/c-Jun N-terminal
kinase; MD: mammographic density; MKL1: MKL/myocardin-like protein 1;
MLO: mediolateral oblique; MODE: the Marker of Density consortium;
NFkB: nuclear factor kappa B; OR: odds ratio; PRDM6: PR domain containing
6; QC: quality control; QQ: quantile-quantile; SASBAC: the Singapore and
Sweden Breast Cancer study; SGSM3: small G protein signaling modulator 3;
SNP: single nucleotide polymorphism; TAB2: TGF-beta-activated kinase
1/MAP3K7-binding protein 2; TMEM184B: transmembrane protein 184b;
TNNT3: troponin T type 3; ZNF365: zinc finger protein 365.
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