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Abstract

Introduction: This study helps to define the implications of breast cancer anti-estrogen resistance 3 (BCAR3) in
breast cancer and extends the current understanding of its molecular mechanism of action. BCAR3 has been shown
to promote cell proliferation, migration and attachment to extracellular matrix components. However, in a cohort of
metastatic breast cancer patients who received tamoxifen treatment, high BCAR3 mRNA levels were associated with
favorable progression-free survival outcome. These results suggest that, besides its established roles, BCAR3 may have
additional mechanisms of action that regulate breast cancer aggressive phenotype. In this study, we investigated
whether BCAR3 is a novel antagonist of the canonical transforming growth factor β (TGFβ) pathway, which induces
potent migration and invasion responses in breast cancer cells.

Methods: We surveyed functional genomics databases for correlations between BCAR3 expression and disease
outcomes of breast cancer patients. We also studied how BCAR3 could regulate the TGFβ/Smad signaling axis using
Western blot analysis, coimmunoprecipitation and luciferase assays. In addition, we examined whether BCAR3 could
modulate TGFβ-induced cell migration and invasion by using an automated imaging system and a confocal microscopy
imaging–based matrix degradation assay, respectively.

Results: Relatively low levels of BCAR3 expression in primary breast tumors correlate with poor distant metastasis-free
survival and relapse-free survival outcomes. We also found a strong correlation between the loss of heterozygosity at
BCAR3 gene alleles and lymph node invasion in human breast cancer, further suggesting a role for BCAR3 in preventing
disease progression. In addition, we found BCAR3 to inhibit Smad activation, Smad-mediated gene transcription,
Smad-dependent cell migration and matrix digestion in breast cancer cells. Furthermore, we found BCAR3 to be
downregulated by TGFβ through proteasome degradation, thus defining a novel positive feedback loop mechanism
downstream of the TGFβ/Smad signaling pathway.

Conclusion: BCAR3 is considered to be associated with aggressive breast cancer phenotypes. However, our results
indicate that BCAR3 acts as a putative suppressor of breast cancer progression by inhibiting the prometastatic
TGFβ/Smad signaling pathway in invasive breast tumors. These data provide new insights into BCAR3’s molecular
mechanism of action and highlight BCAR3 as a novel TGFβ/Smad antagonist in breast cancer.
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Introduction
Breast tumorigenesis and progression are controlled by
multiple hormone/growth factor/cytokine signaling path-
ways, which are ideal therapeutic targets. Targeted therap-
ies against breast cancer, such as those aimed at estrogen
receptor α (ERα) or the Her2 receptor tyrosine kinase,
have shown some levels of success [1,2]. However, clinical
observations also indicate that tumors that initially re-
spond to targeted therapies often relapse and acquire re-
sistance to the treatments [3,4]. Several genes, collectively
named breast cancer anti-estrogen resistance (BCAR)
genes, have been found to induce estrogen-independent
cell growth in estrogen-dependent breast cancer cells [5].
Two members, BCAR1/p130Cas and BCAR3, have been
found to form a complex by directly interacting with each
other [6,7]. Individual overexpression of these genes
allows estrogen-dependent breast cancer cells to prolifer-
ate under the presence of tamoxifen [5,8]. Ectopic overex-
pression of BCAR3 in breast cancer cells activates Src and
FAK kinases, leading to p130Cas tyrosine phosphorylation
and increased cell attachment to fibronectin and cell mo-
tility [7,9]. Therefore, BCAR3 is currently considered to
play a role in mediating aggressive breast cancer pheno-
types. However, the authors of a previous report suggested
that BCAR3 expression is correlated with favorable out-
come in progression-free survival (PFS) in a cohort of ER-
positive (ER+) breast cancer patients who had received
tamoxifen treatment [10]. As such, BCAR3 has controver-
sial implications in breast cancer.
During breast cancer progression, alongside the devel-

opment of hormone-independent growth mechanisms,
cancer cells have been shown to alter their biological re-
sponse to transforming growth factor β (TGFβ) [11].
TGFβ family growth factors, through induction of cell
cycle arrest and apoptosis, inhibit cell proliferation in
the mammary epithelium and in well-differentiated, early-
stage breast tumors [12-15]. These functions are lost and
replaced by tumor-promoting and prometastatic responses
in poorly differentiated, advanced-stage breast tumors
[16-19]. In cancer cells representing such tumors, TGFβ
transcriptionally reprograms cells to induce epithelial-to-
mesenchymal transition and cell migration and invasion
[19,20]. In addition, in the stroma, TGFβ promotes local
and systematic immune suppression, thereby allowing
transformed cells to escape immune surveillance, further
promoting tumor metastasis [19,21,22]. Most of these
biological functions of TGFβ are attributed to a canonical
signaling pathway mediated by the Smad transcription fac-
tors [23]. The binding of TGFβ to its receptors (type I and
type II serine/threonine kinases) leads to the recruitment
and phosphorylation of Smad2/3 and the association of
Smad2/3 with Smad4. The activated Smads then collect-
ively translocate into the nucleus, where they bind to regu-
latory elements on the promoter regions of their target
genes to regulate gene transcription [24]. The canonical
TGFβ/Smad signaling axis is central to TGFβ-mediated
breast cancer cell migration and tumor metastasis. Alter-
ation of the function of key components of the TGFβ/
Smad signaling by using RNA interference or decoy ligand
traps approaches impairs the formation of breast cancer
metastasis in experimental models [16,25,26]. As tran-
scription factors, Smad proteins are not ideal drug targets.
Therefore, understanding how intracellular mechanisms
regulate Smad signaling provides insights into the biology
of metastatic breast cancer and into novel means of treat-
ment and prognosis.
In this study, we define a novel regulatory pathway dir-

ectly linking the TGFβ/Smad signaling axis to BCAR3.
Our data highlight BCAR3 as a potent inhibitor of the
TGFβ/Smad signaling pathway. We found BCAR3 to
promote an interaction between Smad2/3 and p130Cas,
leading to inhibition of Smad activation, Smad-mediated
gene transcription and Smad-dependent cell migration
and invasion in breast cancer cells. We also found BCAR3
protein levels in breast cancer cells to be controlled by
TGFβ, as TGFβ treatment decreases BCAR3 expression in
a Smad-dependent and proteasome-dependent manner.
Our findings define a novel positive regulatory feedback
loop through which TGFβ signaling further induces its
effects by blocking expression of the Smad inhibitor
BCAR3. Additionally, we report a true prognostic value
of BCAR3 in human breast cancer. We found that loss
of BCAR3 expression in primary breast tumors corre-
lates with poor outcomes. Taken together, our study
indicates that BCAR3 is a novel antagonist of TGFβ
proinvasive functions in breast cancer cells, and loss of
BCAR3 function correlates with poor outcomes in breast
cancer patients.

Methods
Gene expression analysis
Using Gene Expression-Based Outcome for Breast Cancer
Online (GOBO), patient outcomes (disease-free survival
(DFS), relapse-free survival (RFS) and distant metastasis-
free survival (DMFS)) were quarried for 10 years of data.
Compiled cohorts of patients were divided as described
below, based on reading from an Affymetrix BCAR3
probe (Affymetrix, Santa Clara, CA, USA) in microarrays
(204032_at). In the analysis of endocrine agent-treated pa-
tients, logrank readings from the probe targeting BCAR3
were extracted from a National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO)
dataset GDS807 and plotted into a dot plot.

Cell culture
MCF-7, MDA-MB-231, BT-549 and SK-BR-3 cells were
obtained from the American Type Culture Collection
(Manassas, VA, USA) and maintained in Dulbecco’s
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modified Eagle’s medium (DMEM; HyClone Laboratories,
Logan, UT, USA) supplemented with 10% fetal bovine
serum (FBS). Inducible BCAR3 MCF-7 cells were
maintained in DMEM supplemented with 10% FBS,
100 μg/ml G418 and 1 μg/ml puromycin. SUM-149PT
and SUM-159PT cells were obtained from Dr. Stephen
Ethier (Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, SC,
USA) and were maintained in F-12 nutrient mixture
(HyClone Laboratories) supplemented with 5% FBS,
5 μg/ml insulin and 1 μg/ml hydrocortisone. SCP2 cells
were obtained from Dr. Joan Massagué (Memorial Sloan
Kettering Cancer Center, New York, NY, USA). Table 1
summarizes some basic properties of these cells, with part
of the information adopted from a previous study [27].

Constructs and transfection
BCAR3 small interfering RNAs (siRNAs) (#1: SASI_Hs01_
00236261; #2: SASI_Hs02_00335873), p130Cas siRNA
(SASI_Hs02_00345830) and scrambled control siRNA
(universal negative control #2) were manufactured by
Sigma-Aldrich (St Louis, MO, USA). For mock transfec-
tion, cells were transfected in the same manner, but with-
out siRNA. Instead, an equal volume of distilled water
was added to the transfection mixture in lieu of siRNA.
Dr. Laurence Quilliam (Department of Biochemistry
and Molecular Biology, Indiana University School of
Medicine, Indianapolis, IN, USA) kindly provided the
FLAG-tagged mouse AND-34 expression vector. Trans-
fections were carried out using Lipofectamine 2000 re-
agent (Life Technologies, Carlsbad, CA, USA) according
to the manufacturer’s instructions.
Table 1 Properties of breast cancer cell lines used in this stud

Cell lines Subtype ER PR Her2

MCF-7 Luminal + +

MDA-MB-231 Basal B − −

SCP2 Basal B − −

BT-549 Basal B − −

SUM-149PT Basal B − −

SUM-159PT Basal B − −

SK-BR-3 Luminal − − Overexpress

MCF-7 Luminal + +

MDA-MB-231 Basal B − −

SCP2 Basal B − −

BT-549 Basal B − −

SUM-149PT Basal B − −

SUM-159PT Basal B − −

SK-BR-3 Luminal − − Overexpress
aER, Estrogen receptor; Her2, Human epidermal growth factor receptor 2; PR, Proge
Coimmunoprecipitation
Cells were lysed with radioimmunoprecipitation assay
(RIPA) buffer containing 1% Triton X-100, protease in-
hibitors and phosphatase inhibitors. Total protein lysates
were quantified, and lysates containing 1 mg of total pro-
tein were subjected to coimmunoprecipitation using a
rabbit polyclonal antibody raised against Smad2/3 (FL425;
Santa Cruz Biotechnology, Santa Cruz, CA, USA) over-
night at 4°C. Lysates were then incubated with protein A
Sepharose beads for 2 hours at 4°C. Beads were then
washed three times with RIPA buffer, mixed with 2× SDS
loading buffer, boiled for 5 minutes and subjected to SDS-
PAGE.

SDS-PAGE and Western blot analysis
Cells were lysed with RIPA buffer containing 1% Triton
X-100, protease inhibitors and phosphatase inhibitors.
Total protein lysates were quantified, and lysates contain-
ing 50 μg of total protein were separated by SDS-PAGE
and then transferred onto nitrocellulose membranes and
subjected to Western blot analysis as previously described
[28]. Densitometry of Western blots was quantified using
Quantity One 1-D analysis software (Bio-Rad Laboratories,
Hercules, CA, USA).
To obtain nuclear extracts, cells were lysed with

phosphate-buffered saline (PBS) containing 1% Nonidet
P-40. The nucleus were washed in the lysis buffer mul-
tiple times and lysed with loading dye containing SDS, as
described in a protocol developed by others [29].
The primary antibodies used for Western blot analysis

were rabbit polyclonal Smad2/3 antibody (sc-8332; Santa
Cruz Biotechnology), rabbit phospho-Smad3 antibody
ya

p53 TGFβ effects Other properties

+/− Wild type Growth inhibition

+/+ Mutated Migration, invasion

Not tested Migration, invasion Metastasize to bone

+/+ Mutated Migration, invasion

+ As per mRNA Growth inhibition

+ As per mRNA Invasion

Mutated

+/− Wild type Growth inhibition

+/+ Mutated Migration, invasion

Not tested Migration, invasion Metastasize to bone

+/+ Mutated Migration, invasion

+ As per mRNA Growth inhibition

+ As per mRNA Invasion

Mutated

sterone receptor; TGFβ, Transforming growth factor β.
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(9520; Cell Signaling Technology, Danvers, MA, USA),
goat polyclonal BCAR3 antibody (sc-47811; Santa Cruz
Biotechnology), rabbit polyclonal p130Cas antibody
(sc-860; Santa Cruz Biotechnology), rabbit polyclonal
USF-2 antibody (sc-862; Santa Cruz Biotechnology) and
mouse monoclonal β-tubulin antibody (sc-5274; Santa
Cruz Biotechnology). All corresponding secondary anti-
bodies were purchased from Santa Cruz Biotechnology.

Luciferase assay
Cells seeded into six-well plates were cotransfected as
described above with 1 μg of (CAGA)12-lux luciferase
reporter, 1 μg of β-galactosidase reporter and either
siRNA (50 pM final concentration) or cDNA construct
(3 μg/well). Cells were then treated with or without 200
pM TGFβ for 24 hours and used for luciferase assays as
described previously [28].

RNA extraction, reverse transcription and real-time PCR
Total RNAs were extracted with TRIzol reagent (Life
Technologies) according to the manufacturer’s in-
structions. RNA samples were reverse-transcribed using
Moloney murine leukemia virus (Life Technologies) and
subjected to real-time PCR for connective tissue growth
factor (CTGF), transmembrane prostate androgen in-
duced RNA (TMEPAI) and Smad7, with ribosomal 18S
RNA used as an internal control. In experiments per-
formed to study the regulation of BCAR3 by TGFβ,
CTGF was used as a positive control and glyceralde-
hyde 3-phosphate dehydrogenase was used as an in-
ternal control. Table 2 shows the primer sequences
used.
PCRs were carried out using SsoFast EvaGreen super-

mix (Bio-Rad Laboratories) according to the manufac-
turer’s instructions. Briefly, reactions were activated at
95°C for 30 seconds and then underwent 40 cycles of
Table 2 Primer sequences

Primer Sequence 5′-3′

CTGF-U GGTTACCAATGACAACGCCT

CTGF-L TGGAGATTTTGGGAGTACGG

TMEPAI-U CAAGCCTCCTGGTCTTTCTG

TMEPAI-L GACCGTGCAGACAGCTTGTA

Smad7-U TGCTCCCATCCTGTGTGTTAAG

Smad7-L TCAGCCTAGGATGGTACCTTGG

18S-U ATACATGCCGACGGGCACTG

18S-L TTCGAATGGGTCGTCGCCGC

BCAR3-U ATCTTCCAGCCCATCAACAG

BCAR3-L TTTCTGAGGAGGTTTCCCCT

GAPDH-U GCCTCAAGATCATCAGCAATGCCT

GAPDH-L TGTGGTCATGAGTCCTTCCACGAT
amplification. Each cycle comprised 5-second denaturation
at 95°C and 30-second annealing/extension at 60°C.

Cell viability assay
Inducible MCF-7 cells were plated into 96-well plates
(5,000 cells/well) and cultured in complete DMEM with
or without doxycycline for 96 hours. Cells were then
serum-starved with or without doxycycline. Under each
condition, paired wells of cells were treated with or without
200 pM TGFβ for 72 hours. Cells were then incubated
with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT; thiazolyl blue tetrazolium bromide) for
4 hours and gently washed with PBS. Dimethyl sulfoxide
(200 μl/well) was added to suspend converted formazan,
subjected to absorption reading at 570 nm.

Confocal microscopy
Cells transfected with FLAG-tagged AND-34 were seeded
onto coverslips, treated as described in the figure legends,
fixed with 3.7% paraformaldehyde in PBS for 15 minutes,
and then permeabilized with 0.1% Triton X-100 in PBS for
3 minutes. After blocking for 1 hour at room temperature
in 2% bovine serum albumin in PBS, cells were costained
with a mouse anti-FLAG antibody (1:500 dilution, M2;
Sigma-Aldrich) and a rabbit anti-phospho-Smad3 anti-
body (1:500 dilution, 9520; Cell Signaling Technology) or
Alexa Fluor 568–labeled phalloidin (Life Technologies).
Cells were then stained with Alexa Fluor 488–labeled
goat-anti-mouse secondary antibody (1:500 dilution;
Life Technologies) and Alexa Fluor 568–labeled goat
anti-rabbit secondary antibody (1:500 dilution; Life
Technologies), except when phalloidin was used. Follow-
ing 4′,6-diamidino-2-phenylindole counterstaining and
mounting, images were taken using a × 63 oil-immersion
lens objective with an LSM780 confocal microscope (Carl
Zeiss, Oberkochen, Germany). Images were taken in a
multitrack scanning mode at 1024 × 1024 resolution. Ex-
citation wavelengths were set at 490 nm (argon laser) and
570 nm (helium-neon laser) to detect emission wave-
lengths at around 520 nm (for Alexa Fluor 488) and
about 600 nm (for Alexa Fluor 568), respectively. Im-
ages were converted to 16-bit TIFF RGB format using
ImageJ software (National Institutes of Health, Bethesda,
MD, USA). Quantification of phospho-Smad levels was
performed using ImageJ software (five images per
condition). Quantification of stress fiber length was per-
formed using ImageJ software by measuring the distance
between the visible ends of fibers (five random fibers per
cell, five cells per condition).

Migration assays
Scratch-based migration assays were carried out with an
IncuCyte automated imaging system (Essen BioScience,
Ann Arbor, MI, USA) according to the manufacturer’s
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protocol. Briefly, SCP2 cells transfected with siRNA were
seeded onto ImageLock 96-well plates (Essen BioScience)
1 day after transfection at a density of 50,000 cells/well.
Cells were then starved overnight. Monolayers of cells
were scratched using a scratching apparatus that pro-
duced strongly identical scratches in each well. Cells
were then treated with 100 pM TGFβ. The IncuCyte
system was programmed to obtain real-time phase-
contrast images of the wounds at 12 time points. In the
BCAR3 siRNA experiments, images were taken every
4 hours for 48 hours. In the double-knockdown experi-
ments, images were taken every 3 hours for 36 hours.
Cell migration was quantified and expressed as relative
wound density, which indicates the ratio of sharpness
of the wounded area and of the adjacent nonwounded area.
The siRNA experiments in which we used MDA-MB-231
cells were performed in a similar manner. Monolayers of
cells in 12-well plates were wounded with a P200 tip and
subjected to imaging in the IncuCyte system. The TSctatch
software was used to analyze the percentage of the field of
view occupied by cells.

Gelatin digestion assay
Coverslips were first treated with poly-D-lysine and glu-
taraldehyde, then coated with 0.1% pig gelatin solution
containing Alexa Fluor 488–conjugated gelatin for 3 hours.
The slides were quenched with 0.1% sodium borohydride
solution prior to being seeded with 100,000 cells. Six hours
after seeding, the cells were starved and treated with
or without 200 pM TGFβ for 36 hours. The fixing,
staining and imaging procedures are described above in
the “Confocal microscopy” section.

Statistical analysis
Unless otherwise mentioned, statistical analysis was done
using an unpaired one-tailed Student’s t-test.

Results
BCAR3 expression correlates with favorable breast cancer
disease outcome
BCAR3 is considered to be associated with aggressive
disease phenotypes, as it promotes estrogen-independent
cell proliferation, cell migration and contacts between
cells and the extracellular matrix [5,7,9,30,31]. However,
the results of a clinical study suggest that BCAR3 ex-
pression is a single factor that can predict favorable PFS
of patients who receive tamoxifen treatment [10]. To in-
vestigate BCAR3’s clinical implications, we used GOBO
[32] to generate Kaplan-Meier survival curves of breast
cancer patients derived from published microarray data-
sets in the NCBI GEO database. We examined DFS (no
relapse or distant metastasis) of two distinct cohorts
of patients: a compiled cohort who underwent various
treatments and a true prognostic cohort who received
no systematic therapy. As shown in Figure 1a, in the
compiled cohort, we found that those patients with low
BCAR3 expression (gray) had significantly worse prog-
noses than patients with high BCAR3 levels (red), indi-
cating that BCAR3 expression favors DFS for patients
who received the various treatments. We also found a
similar trend in the nontreated patient cohort (Figure 1b).
This not only demonstrates a true prognostic value for
BCAR3 but also implicates that loss of BCAR3 expression
may be involved in breast cancer progression. We further
analyzed and correlated BCAR3 expression levels with ei-
ther distant metastasis or disease relapses. Consistently,
we found BCAR3 expression to positively correlate with
higher rates of DMFS in both an overall cohort and a non-
treated cohort of patients (Figure 1c and 1d, respectively).
Furthermore, BCAR3 expression also correlated with
higher rates of RFS in the overall cohort (Figure 1e). In the
nontreated cohort, when patients were separated by me-
dian expression level, no significant link was observed be-
tween BCAR3 and RFS (data not shown). However, when
patients were separated into five groups based on the nor-
malized readings of the probe corresponding to BCAR3 in
the microarray experiments, we found that the group that
expressed the lowest level of BCAR3 had significant worse
prognosis, whereas the risk in the four other groups were
comparable (Figure 1f). This suggests that a severe loss of
BCAR3 expression correlates with markedly increased
chance of tumor relapse. Notably, we also found similar
correlations between low BCAR3 expression and poor
prognosis of DMFS and RFS with the Breast Cancer
Kaplan-Meier Plotter [33], which utilizes different but par-
tially overlapping gene profiling datasets compared to
those used in GOBO.
As ER+ and ER− breast tumors are distinct entities,

we also stratified the analysis for ER+ and ER− tumors.
We consistently observed similar correlations between low
BCAR3 expression and poor outcomes in the ER+ cohort,
and we did not observe statistically significant correlations
in the ER− cohort (Additional file 1: Figure S1).
We further investigated whether established disease

characteristics can be traced backward to BCAR3 ex-
pression levels in primary breast tumors. We analyzed
both disease relapse and lymph node positivity, as they
represent two critical indicators of the aggressiveness of
the disease. To do so, we grouped patients based on
established outcomes and surveyed for differences in
BCAR3 expression between groups. In a cohort of pa-
tients with ER+ breast tumors treated with endocrine
therapy for 5 years (NCBI GEO dataset GDS807) [34],
those who developed disease relapse had lower levels of
BCAR3 expression levels in their primary tumors as de-
termined by log-transformed raw readings of the micro-
array dataset, which are expressed as relative fluorescence
signaling intensities (Figure 1g). In particular, of the 32



a b

c d

e f

dis
ea

se
-fr

ee

rel
ap

se
d

-3

-2

-1

0

1

2

3

lo
g 

ra
nk

 e
xp

re
ss

io
n 

le
ve

l 

*
g h

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N0 (71) N1 (68) N2 (6)

deletion

loss

no change

gain

amplification

18.31%

23.53%
50%

7.35%

0
10
20
30
40
50
60
70
80
90

100

p= 0.00011

[−3.9544,0.0766) :n= 428
[ 0.0766,2.6563] :n= 486

0 2 4 6 8 10
Time (Years)

ov
er

al
l R

FS
 (

%
)

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

p= 0.04211

[−3.954,−0.645) :n= 82
[−0.645,−0.123) :n= 77
[−0.123, 0.266) :n= 95
[ 0.266, 0.720) :n= 81
[ 0.720, 2.181] :n= 82

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

p= 0.00079

[−3.9544,0.0766) :n= 682
[ 0.0766,2.6563] :n= 697

p= 0.02583

[−3.9544,0.0828) :n= 410
[ 0.0828,2.1814] :n= 4110

10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

p= 2e−05

[−3.9544,0.0766) :n= 885
[ 0.0766,2.6563] :n= 9040

10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

p= 0.02682

[−3.9544,0.0828) :n= 456
[ 0.0828,2.1814] :n= 4590

10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10
Time (Years)

ov
er

al
l D

FS
 (

%
)

Time (Years)

no
n-

tr
ea

te
d 

D
FS

 (
%

)

Time (Years)

ov
er

al
l D

M
FS

(%
)

Time (Years)

no
n-

tr
ea

te
d 

D
M

FS
(%

)

Time (Years)

no
n-

tr
ea

te
d 

R
FS

 (
%

)

Figure 1 (See legend on next page.)
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Figure 1 Low BCAR3 expression predicts poor prognosis in human breast cancer. (a) and (b) Kaplan-Meier survival curves generated by
the GOBO gene expression–based outcome tool showing the status of disease-free survival (DFS) of a compiled cohort of breast cancer patients
who underwent various treatment plans (a) and a compiled cohort of patients who received no systematic treatment (b). Patients were separated
by the median signal intensity from an Affymetrix probe targeting BCAR3 (204032_at) in microarray analysis. Survival data of the high-expression
group are shown by the red curve, and those of the low-expression group are shown by the gray curve. (c) and (d) Kaplan-Meier survival curves
showing the status of distant metastasis-free survival (DMFS) of a compiled cohort of breast cancer patients who underwent various treatments
(c) and a compiled cohort of patients who received no systematic treatment (d). Patients were separated by median signal intensity of
204032_at. (e) and (f) Kaplan-Meier survival curves showing status of relapse-free survival (RFS) of a compiled cohort of breast cancer patients
who underwent various treatment plans (e) and a compiled cohort of patients who received no systematic treatment (f). Patients were separated
by median signal intensity (e) or into five groups (f). (g) Dot plot of reading of the probe targeting BCAR3 extracted from the National Center for
Biotechnology Information Gene Expression Omnibus dataset GDS807, which includes microarray readings of gene expression in microdissected
primary tumors from patients who subsequently received tamoxifen treatment for 5 years. (h) Percentage loss of heterozygosity at BCAR3 alleles
in breast tumors with increasing N stage.
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patients with relatively high levels of BCAR3, 10 (31.25%)
developed disease relapse. Of the 30 patients with rela-
tively low levels of BCAR3, 19 (63.33%) developed disease
relapse. These results, together with Kaplan-Meier ana-
lysis, highlight a high degree of overlap between patients
with relatively low BCAR3 levels and patients with disease
relapse in ER+ tumors. Additionally, using the ROCK
breast cancer functional genomics database [35] from a
CGH dataset designed to identify copy number abnormal-
ities in breast cancer [36], we established a clear correl-
ation between advanced tumor N stage/lymph node status
and loss of heterozygosity at BCAR3 alleles in breast
cancer patients. Indeed, combined loss and deletion
of BCAR3 alleles increased from 18% in N0 tumors
(no lymph node invasion), to 31% in N1 tumors (tumor
cells in regional lymph nodes) and to 50% in N2 tumors
(tumor cells in regional and distant lymph nodes).
Altogether, these results indicate that loss of BCAR3 ex-
pression correlates with an invasive tumor phenotype
with increased lymph node involvement. Our data also
suggest that BCAR3 may play a favorable role in prevent-
ing disease progression in breast cancer patients.

BCAR3 antagonizes TGFβ-induced Smad phosphorylation
and accumulation of phospho-Smad3 in the nucleus
We then sought to investigate the molecular mecha-
nisms by which BCAR3 exerts this potentially protective
role. Interestingly, a BCAR3-interacting protein, p130Cas,
was previously shown to directly interact with Smad2/3,
thereby blocking Smad C-terminal serine phosphorylation
and activation, resulting in an inhibition of TGFβ signaling
[37,38]. As the TGFβ/Smad signaling pathway plays a
prominent role in breast cancer progression and tumor
metastasis, we investigated whether BCAR3 could regulate
TGFβ/Smad signal transduction. We initially examined
the relative protein expression levels of BCAR3 and
p130Cas in a panel of breast cancer cell lines repre-
senting different molecular subtypes and phenotypes
of breast tumors. We found that, similarly to previously
reported findings [39], BCAR3 expression levels were rela-
tively high in estrogen-independent breast cancer cells
(Figure 2a and Additional file 2: Figure S2). Additionally,
BCAR3 expression generally correlated with breast cancer
subtype. Luminal-like MCF-7 and SK-BR-3 cells ex-
press relatively low levels of BCAR3, whereas basal-
like MDA-MB-231, SCP2, BT-549 and SUM-149PT cells
expressed relatively high levels of BCAR3 (Figure 2a).
However, SUM-159PT cells, which are ER- and estrogen-
independent in culture and as xenografts, also expressed
a relatively low level of BCAR3 (Figure 2a). This may
likely be due to the anaplastic nature of the origin of
these cells [40]. In addition, BCAR3 immunoblotting re-
vealed two bands of close molecular weights. Both bands
appeared to be BCAR3-specific, as shown by the BCAR3
siRNA knockdown (Figure 2b). The presence of two
bands indicates that BCAR3 likely undergoes post-
translational modification. Furthermore, p130Cas is fairly
abundant in all cells tested, and its expression did not
seem to correlate with either ER status or cancer subtype
(Figure 2a). These results suggest that, though p130Cas
expression may be a universal event in most types of
breast cancer cells and tumors, high BCAR3 expression
is likely specific in cells of a basal-like breast cancer
phenotype.
These results also allowed us to choose ideal cell line

models for loss-of-function and gain-of-function ap-
proaches to investigate whether BCAR3 is involved in
regulating the TGFβ/Smad signaling axis. For loss-of-
function assays, we transfected siRNAs targeting BCAR3
into MDA-MB-231 cells or into its single-cell progeny
SCP2. SCP2 cells are a subprogeny of MDA-MB-231
cells that specifically metastasize to the bone [26,41].
These cell lines expressed relatively high levels of endogen-
ous BCAR3. For gain-of-function assays, we expressed ec-
topic BCAR3 in either MCF-7 cells or SUM-159-PT cells.
These cell lines expressed relatively low levels of en-
dogenous BCAR3. MCF-7 and SUM-159 cells appeared
to have relatively stronger phospho-Smad3 levels than
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Figure 2 BCAR3 antagonizes Smad activation. (a) Total cell lysates from breast cancer cells were subjected to Western blot analysis for
expression of BCAR3 and p130Cas. ER-, Estrogen receptor–negative; ER+, Estrogen receptor–positive. (b) MDA-MB-231 cells were transfected with
a pool of two BCAR3 small interfering RNAs (siRNAs; 25 pM each), starved overnight and stimulated with 200 pM transforming growth factor β
(TGFβ) 48 hours poststarvation for the indicated time periods. Levels of phospho-Smad3, total Smad2/3, BCAR3, p130Cas and phospho-p38 were
examined by Western blotting. (c) Quantification of the relative signal density of phospho-Smad3 shown in b, normalized by signal density of
Smad3. The results shown are from representative experiments (n = 3). *P < 0.05 by unpaired Student’s t-test. (d) Inducible MCF-7 cells were
cultured with or without 1 μg/ml doxycycline (Dox), starved overnight and stimulated with 100 pM TGFβ 96 hours posttreatment for the indicted
time periods. Levels of phospho-Smad3 and BCAR3 were examined by Western blot analysis (n = 2). (e) Quantification of relative signal density of
phospho-Smad3 shown in d, normalized by signal density of Smad3. Results show a representative experiment (n = 2). (f) Levels of phospho-Smad3 in
the nuclear extracts from the same pool of cells shown in (c) were examined by Western blot analysis (n = 2). (g) SUM-159-PT cells were seeded onto
glass coverslips, transfected with FLAG-tagged AND-34 (mouse homologue of BCAR3) and starved overnight. Cells were then treated with or without
200 pM TGFβ for 1 hour and subjected to immunofluorescence microscopy and 4′,6-diamidino-2-phenylindole (DAPI) counterstaining. In the merged
images, phospho-Smad3 is shown in red, FLAG-AND-34 is shown in green and cell nuclei are shown in blue (DAPI). Yellow arrows in the middle panels
point at cells that express ectopic BCAR3. (h) Phospho-Smad3 signals in transfected and nontransfected cells were quantified from ten cells on at
least five original LSM780 confocal microscopic images. Error bars show standard errors of the mean. An asterisk indicates a statistical difference
between the two groups compared, as determined by unpaired Student’s t-test (*P < 0.05).
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MDA-MB-231 cells and SCP2 cells, as determined by
Western blot analysis (Additional file 2: Figure S2).
In MDA-MB-231 cells, TGFβ induced Smad3 phos-

phorylation in time-dependent manner. Interestingly,
this effect was potentiated and prolonged when BCAR3
gene expression was silenced using a pool of two siRNAs
targeting BCAR3 (Figure 2b and 2c). Similar results were
observed in SCP breast cancer cells (Additional file 3:
Figure S3). In addition, we did not observe remarkable
effects of BCAR3 siRNA on p130Cas protein levels or
TGFβ-induced p38 phosphorylation (Figure 2b). These
results suggest that endogenous BCAR3 inhibits Smad
signaling.
To further address this inhibitory role, we examined

the effect of ectopic BCAR3 on Smad signaling in MCF7
cells. MCF-7 cells express a low endogenous BCAR3
level, as determined by Western blot analysis, and they
represent an ideal model for overexpression studies.
We used an inducible, stable MCF-7 cell line that over-
expresses BCAR3 under the control of a TeT-off pro-
moter under normal culture conditions (generated by
Dr. Amy Bouton, Microbiology, Immunology, and Cancer
Biology, University of Virginia School of Medicine,
Charlottesville, VA, USA) [7]. As shown in Figure 2d,
removing doxycycline greatly induced BCAR3 expression
in these cells (middle panel). TGFβ-induced Smad phos-
phorylation, observed in the absence of BCAR3, was
remarkably blocked when BCAR3 was overexpressed
(Figure 2d and 2e). As activated Smad translocated into
the cell nucleus, we analyzed both nuclear total Smad2/3
and phospho-Smad3 levels of MCF7 cells, treated or
not with doxycycline. Removing doxycycline in the
culture medium resulted in decreases in accumulation
of phospho-Smad3 in the cell nucleus in response to
TGFβ (Figure 2f ). Together, these results demonstrate
that BCAR3 expression inhibits TGFβ-induced Smad
phosphorylation.
The MCF-7 cells that we used are derived from a
stable, inducible clone of cells. To rule out the possibility
of clone-specific effects, we took another approach to
examine the role of ectopic BCAR3 on Smad activation.
We transiently transfected FLAG-tagged AND-34 (the
mouse homologue of BCAR3) into SUM-159PT, which
is another breast cancer cell line that expresses low
levels of endogenous BCAR3. Because of low transfec-
tion efficiency, we studied the effects of ectopic BCAR3
on Smad signaling by confocal microscopy imaging ra-
ther than by Western blotting. This also allowed us
to observe both cells overexpressing BCAR3 and nono-
verexpressing cells in the same field. Interestingly,
cells expressing FLAG-tagged AND-34/BCAR3 displayed
weaker overall phospho-Smad3 signals, compared to non-
transfected cells in the same field, under both resting and
TGFβ-stimulated conditions (Figure 2g, yellow arrows).
We further quantified Smad3 phosphorylation levels of
ten cells on at least five original confocal images for each
experimental condition. In cells transiently transfected
with BCAR3, signaling of TGFβ-induced phospho-Smad3
decreased to about 40% of that in nontransfected cells
(Figure 2h). Taken together, our results demonstrate that
BCAR3 antagonizes TGFβ-induced Smad activation in
several breast cancer cell lines.

BCAR3 inhibits TGFβ-mediated Smad transcriptional
activity and target gene expression
We next investigated whether modulating BCAR3 levels
could alter Smad-mediated transcriptional activity using
a Smad-responsive reporter construct, (CAGA)12-lux,
which contains 12 repeats of minimal Smad binding site
upstream of the firefly luciferase open reading frame. As
shown in Figure 3a, TGFβ strongly induced luciferase
activity in SCP2 cells transfected with the (CAGA)12-lux
construct. However, knocking down endogenous BCAR3
using a pool of two specific siRNAs against BCAR3
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Figure 3 BCAR3 antagonizes function of canonical transforming growth factor β signaling. (a) SCP2 cells were cotransfected with a
(CAGA)12-lux luciferase reporter construct, constitutive β-galactosidase construct and 50 pM scrambled small interfering RNA (siRNA) control or a
pool of siRNAs targeting BCAR3 (25 pM each). Cells were starved overnight, stimulated with or without 100 pM transforming growth factor β
(TGFβ) and subjected to luciferase assays. Luciferase activities were normalized by β-galactosidase activity and are represented as relative luciferase
units (RLUs). Error bars show standard errors of the mean of three independent experiments. An asterisk indicates a statistically significant difference
as determined by unpaired Student’s t-test (*P < 0.05). The inset under the figure shows basal luciferase activities. (b) SUM-159-PT cells were
cotransfected with (CAGA)12-lux luciferase reporter construct, constitutive β-galactosidase construct and FLAG-tagged AND-34. Luciferase assays
were performed as described in (a). The inset under the figure shows basal luciferase activities. (c) Inducible MCF-7 cells were cultured with or
without doxycycline (Dox) for 72 hours, starved overnight and stimulated with 100 pM TGFβ for 24 hours. mRNA levels of three Smad-dependent genes
(connective tissue growth factor (CTGF), transmembrane prostate androgen induced RNA (TMEPAI) and Smad7) were examined by real-time PCR. Bars
show fold changes of induction by TGFβ. Error bars show SEM of three independent experiments. An asterisk indicates a statistically significant difference
as determined by unpaired Student’s t-test (*P< 0.05). (d) Inducible MCF-7 cells were cultured with or without Dox for 72 hours, starved overnight and
stimulated with 100 pM TGFβ for 72 hours. Cell viability was examined by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT; thiazolyl blue tetrazolium bromide) assay. Error bars show SEM of three independent experiments. An asterisk indicates statistically significant
difference (*P < 0.05).
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resulted in significant increases in both basal and TGFβ-
induced luciferase activity (Figure 3a). Consistently, tran-
sient transfection of AND-34 (mouse homologue of
BCAR3) into SUM-159-PT cells resulted in significant
decreases in both basal and TGFβ-induced luciferase
activity (Figure 3b). We further tested, by real-time PCR,
whether BCAR3 could alter the expression of bona
fide TGFβ target genes. CTGF [42], TMEPAI [43] and
Smad7 [44] were previously reported to be upregulated
by TGFβ in a Smad-dependent manner. Ectopic BCAR3
expression in MCF-7 cells almost completely blocked
TGFβ’s ability to induce CTGF and Smad7 and also re-
markably impaired TGFβ’s ability to induce TMEPAI
expression (Figure 3c). The difference in effectiveness
may be due to involvement of Smad-independent mech-
anisms downstream of TGFβ. Taken together, these re-
sults indicate BCAR3 antagonizes Smad transcriptional
activity.
MCF-7 cells are luminal-like, estrogen-responsive and

relatively well-differentiated. These cells retain a partial
cytostatic response to TGFβ. We therefore investigated
whether ectopic BCAR3 could antagonize TGFβ’s growth-
inhibitory effects in these cells. Stable MCF-7 cells cultured
with doxycycline expressed low levels of BCAR3. TGFβ
treatment resulted in 25% reduction in cell viability as de-
termined by an MTT cell viability assay. This is consistent
with the results of similar experiments carried out by
others [45,46]. Stable BCAR3 expression, on the other
hand, reversed TGFβ’s effect, resulting in less than 10% re-
duction in cell viability (Figure 3d).
Growth curves were created for cells cultured with or

without doxycycline and treated with or without 200 pM
TGFβ. TGFβ led to about a 20% decrease in cell conflu-
ence at 84 hours under both conditions. TGFβ stop
decreases in cell confluence in cells cultured without
doxycycline (BCAR3 overexpression), but continue to
decrease cell confluence in cells cultured with doxycyc-
line (data not shown).
BCAR3 antagonizes TGFβ promigratory and proinvasive
responses
A hallmark effect of TGFβ in breast cancer cells, par-
ticularly in basal-like and triple-negative cells, is single-
cell migration [17,26,28,47]. Lines of evidence suggest
that TGFβ reprograms transcriptional profiles in breast
cancer cells to induce epithelial-to-mesenchymal transi-
tion, formation of filopodia and switching from collect-
ive cell migration to single-cell migration and ultimately
to facilitate intravasation [26,47-49]. These effects, al-
though not necessarily concomitant, highlight the promi-
gratory role of TGFβ. As such, we investigated whether
modulating BCAR3 levels in basal-like breast cancer cells
could affect TGFβ-induced cell migration. For this pur-
pose, we silenced endogenous BCAR3 gene in SCP2 cells
using two specific siRNAs, and examined TGFβ-induced
cell migration using the IncuCyte time-lapse video im-
aging migration assay as previously described [26]. This
method couples a wound-healing assay with quantitative
imaging and presents cell migration by relative wound
density, which is the real-time ratio between cell dens-
ities within the initial wound area to cell density of the
adjacent nonwounded area. As such, this method pre-
cludes a net change in cell number over time due to cell
proliferation.
TGFβ treatment induced time-dependent migration of

SCP2 cells (Figure 4a and 4b). The effect was detectable
as early as 12 hours following stimulation of the cells
and increased further over time to reach a plateau at
48 hours. Cell density in the wounded area was about
52% of that of the adjacent area. TGFβ treatment re-
sulted in about a 10% increase in relative cell density, in-
dicative of more cells in the wounded area. Individual
siRNAs against BCAR3 decreased cell migration, marked
by only about a 42% increase in relative wound density
after 48 hours (Figure 4b). This is consistent with previ-
ous findings that ectopic BCAR3 expression increases
cell migration [9]. Interestingly, cells transfected with
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Figure 4 Knocking down BCAR3 promotes transforming growth factor β–induced cell migration. (a) SCP2 cells were transfected, scratched
and treated as described in the Methods section and subjected to real-time migration assays. The images are computer-generated pictures showing
positions of cell boundaries at the beginning of the assay (time 0) and at the end of the assay (48 hours). The black regions represent occupancy of
cells after initial scratching, the white regions represent empty space not filled by cells (the scratch) and the gray regions represent initial scratch areas
filled by cells at the end of the assay (migration). The images are representative of three independent experiments. Because of space limitations,
the images for small interfering RNA (siRNA) #2 are not shown. (b) Migration profiles over time were compared for mock-transfected cells and
cells transfected with two different BCAR3 siRNAs. Error bars show standard error of the mean of six biological replicates in one experiment.
(c) and (d) MDA-MB-231 cells were transfected, scratched using a P200 tip and stimulated with or without 200 pM transforming growth factor
β (TGFβ). Cells were subjected to real-time cell migration assays using the IncuCyte automated imaging system. Images obtained at 0, 24 and
36 hours were analyzed using TScratch to automatically recognize wound area and calculate the percentage of the fields of view occupied by
cells. The results show cell migration expressed as increases in area percentage at 24 hours and 36 hours (c) and fold induction by TGFβ at
36 hours (d), respectively. The percentages of the fields of view were quantified from ten image sets of a representative experiment (n = 3).
Error bars show standard error of the mean. An asterisk indicates statistical significance (*P < 0.05) as determined by unpaired Student’s t-test.
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the siRNAs displayed an increased response to TGFβ,
marked by about a 15% increase in relative cell density
(Figure 4b). The two siRNA constructs seemed to have
similar effects.
We further transfected a pool of the two BCAR3 siR-

NAs into MDA-MB-231 cells and studied cell migration,
measured by percentage of the image area occupied by
cells. We selected the images that were comparable in
initial wound areas (40% to 43% of the image occupied
by wounding) and measured increases in areas occupied
by cells at 24 and 36 hours. Similar to the above-
mentioned results, we observed that MDA-MB-231
transfected with BCAR3 siRNA migrated slower. At
36 hours, cells transfected with scrambled siRNA mi-
grated into 13% of the total area, whereas cells trans-
fected with BCAR3 siRNA migrated into about 10% of
the total area (Figure 4c). However, TGFβ induced more
cell migration in cells transfected with BCAR3 siRNA
than in cells transfected with scrambled siRNA, as deter-
mined by directly measuring the areas (9% vs. 3.5% at
36 hours; Figure 4c) or by fold change (1.9-fold vs. 1.35-
fold at 36 hours; Figure 4d). As such, these data indicate
that endogenous BCAR3 is an antagonistic molecule of
TGFβ-induced cell migration.
We further overexpressed FLAG-tagged AND34 in

SUM-159 cells and examined whether it antagonized
TGFβ’s promigratory effects by confocal microscopy.
Single-cell migration requires organization of actin into
treadmilling filaments oriented toward lamellipodia [50].
In the absence of FLAG-tagged AND-34 overexpression,
24 hours of TGFβ treatment induced a network of
elongated actin stress fibers aligned toward filopodia-
like structures, indicative a promigratory phenotype
(Figure 5a, white arrow). In cells transfected with FLAG-
tagged AND34, fluorescence signaling corresponding to
the FLAG tag locates predominantly in the cytoplasm and
also overlaps with flagellum-like structures on cell mem-
branes. Transfected cells, although they still contained
actin filaments, failed to display dominant filopodia-like
structures. Rather, they contained relatively short, branched
fibers that oriented in all directions, even when they were
stimulated with TGFβ (Figure 5a, yellow arrow). We
observed these phenotypes with virtually all transfected
cells. The length of stress fibers was quantified in the
presence or absence of overexpressed FLAG-tagged
BCAR3. The results indicate that BCAR3 overexpression
leads to shorter stress fibers and interferes with the TGFβ
effect on fiber elongation (Figure 5b). Taken together,
these data demonstrate that BCAR3 could antagonize
TGFβ’s promigratory function, likely by interfering with
TGFβ-mediated actin filament rearrangement and filo-
podia formation.
Digestion of extracellular matrix is both a major event

during cell invasion and an indication of aggressive
properties of cancer cells. TGFβ acts as a potent proin-
vasive factor in breast cancer cells. It has been reported
that, in a matrix degradation assay, TGFβ increased di-
gestion of gelatin matrix by MDA-MB-231 cells [51].
As such, we used this well-established assay to examine
whether ectopic BCAR3 expression could antagonize
TGFβ’s effects on matrix degradation by MDA-MB-231
cells. As shown in Figure 6a, mock-transfected cells
(row 1) cells transfected with scrambled siRNA (row 5)
displayed matrix digestion ability under nonstimulated
conditions. Indeed, when plated on coverslips coated
with Alexa Fluor 488–tagged gelatin, these cells pro-
duced small, scattered areas of digestion underneath their
bodies, observed as dark spots under a confocal micro-
scope (Figure 6a, row 1, yellow arrow). Mock-transfected
and control siRNA-transfected MDA-MB-231 cells, when
treated with TGFβ, displayed a clear increase in the total
area of digested matrix (Figure 6a, rows 2 and 6, and
Figure 6b). Many of these digested areas were elon-
gated, indicative of cell movement during matrix digestion.
Noticeably, instead of scattering underneath the cell body,
elongated digestion spots tended to aggregate at the cell
protrusions, overlapping with the lamellipodia-like struc-
tures formed by bundled actin filaments (Figure 6a, row 2,
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white arrow). These data suggest that, in addition to
increasing the digestion of gelatin matrix, TGFβ also af-
fects the localization of the invadopodia in MDA-MB-231
cells and remodels their structure from a scattered pattern
to an aggregated pattern. Interestingly, transfection of
MDA-MB-231 cells with a pool of two BCAR3 siRNAs
significantly potentiated TGFβ’s effects on matrix diges-
tion, as illustrated by the large areas of digested gelatin
(Figure 6a, row 4, white arrows). Particularly, multiple
elongated spots formed in these areas, which are roughly
parallel to each other. These spots also appeared to be lon-
ger than those formed in control cells. We verified the
efficiency of the siRNA knockdown from the same pool of
cells (Figure 6c). Taken together, these results indicate
that BCAR3 gene silencing, by means of RNA interfer-
ence, potentiates TGFβ-induced invadopodia activity and
matrix digestion, suggesting that endogenous BCAR3 in-
hibits TGFβ-induced invadopodia remodeling and matrix
digestion.

BCAR3 requires p130Cas to antagonize Smad signaling
Previous studies indicated that the p130Cas physically
interacts with Smad2/3 and antagonize Smad activa-
tion [37,38]. As p130Cas also interacts with BCAR3,
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this prompted us to investigate whether p130Cas is in-
volved in BCAR3-mediated inhibition of TGFβ/Smad
signaling. We precipitated Smad2/3 using a rabbit poly-
clonal antibody (FL-425, Santa Cruz Biotechnology)
from total cell lysates of SCP2 cells, and found p130Cas to
be constitutively associated with Smad2/3 (Figure 7a).
However, knocking down endogenous BCAR3 expres-
sion impaired this association, suggesting that en-
dogenous BCAR3 promotes the interaction between
p130Cas and Smad2/3 (Figure 7a). Membranes were
reprobed with the anti-BCAR3 antibody, but no asso-
ciation could be detected between Smads and BCAR3
(data not shown).
We next investigated whether BCAR3 also required

p130Cas to modulate TGFβ-induced cell migration.
Transfection of SCP2 cells with siRNAs targeting either
BCAR3 or p130Cas both decreased basal cell migration
and increased TGFβ-induced cell migration (Figure 4b
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and Figure 7b, respectively). However, upon silencing of
p130Cas, BCAR3 siRNA lost the ability to further po-
tentiate TGFβ-induced cell migration (Figure 7c). Indeed,
TGFβ stimulation resulted in about a 40% increase in cell
migration in mock-transfected cells at 36 hours poststim-
ulation. Transfection of cells with BCAR3 siRNA, or
p130Cas siRNA, or both, resulted in about 70% increases.
Cotransfection of the two siRNAs did not have a more
than additive effect (Figure 7d), suggesting that BCAR3
likely requires the presence of p130Cas to antagonize
TGFβ function. Altogether, these data suggest that
BCAR3 modulates an interaction between p130Cas
and Smad2/3, thereby blocking TGFβ/Smad-mediated cell
migration.
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Figure 8 Transforming growth factor β downregulates BCAR3 in a Smad-dependent manner. (a) Basal-like breast cancer cells were starved
and treated with 200 pM transforming growth factor β (TGFβ) for 24 hours. Levels of BCAR3 protein expression were examined by Western blot
analysis. (b) MDA-MB-231 cells were transfected with Smad2 small interfering RNA (siRNA) or Smad3 siRNA for 48 hours, then starved and treated
with 200 pM TGFβ for 24 hours. Levels of BCAR3 protein expression were examined by Western blot analysis. (c) The signal intensity of BCAR3
was quantified and normalized to that of β-tubulin. The results show normalized signal intensity calculated from three independent experiments,
and error bars show standard error of the mean. An asterisk indicates statistical significance (P < 0.05) as determined by unpaired Student’s t-test. (d)
and (e) MDA-MB-231 (d) or BT-549 (e) cells were treated with or without 100 pM TGFβ for 24 hours. Total RNA was extracted, reverse-transcribed and
subjected to real-time PCR to examine expression of connective tissue growth factor (CTGF) and BCAR3. The results show average fold changes
calculated from three independent experiments, and error bars show standard error of the mean. An asterisk indicates statistical significance
(*P < 0.05) as determined by unpaired Student’s t-test. (f) MDA-MB-231 cells were starved and treated with 10 μM MG-132 or DMSO as vehicle
control for 1 hour, then stimulated with or without 200 pM TGFβ for 24 hours, as indicated. BCAR3 protein levels were examined by Western
blot analysis (left panel). Relative BCAR3 protein levels, compared to β-tubulin, were quantified by densitometry for two separate experiments.
DMSO, Dimethyl sulfoxide. (g) Model of BCAR3 in mediating a positive feedback loop downstream of the TGFβ/Smad signaling axis.
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BCAR3 mediates a positive feedback of TGFβ signaling in
breast cancer cells
Extensive studies of the molecular functions of BCAR3
have been conducted; however, there has been no report
published to date on how BCAR3 gene expression is
regulated. As cellular signaling pathways are often mod-
ulated by feedback regulatory loop mechanisms to
ensure defined signaling intensity and duration, we in-
vestigated whether TGFβ signaling itself could modulate
BCAR3 gene expression. For this purpose, we stimulated
a panel of basal-like breast cancer cell lines with TGFβ
for 24 hours and examined the protein levels of BCAR3.
As shown in Figure 8a, TGFβ treatment resulted in a re-
markable decrease in BCAR3 protein levels in all cell
lines tested, highlighting BCAR3 as a novel target for
TGFβ signaling. Furthermore, our results indicate that
TGFβ-mediated suppression of BCAR3 gene expression
depends on the canonical Smad signaling, as knocking
down Smad3, but not Smad2, in MDA-MB-231 cells
partially blocked TGFβ’s effect in decreasing BCAR3
protein expression (Figure 8b). Quantification of the
data was performed in three separate experiments, and
statistical analysis was done using unpaired Student’s
t-tests (Figure 8c). We also observed similar results in
BT-549 cells (data not shown). The ability of TGFβ to
decrease BCAR3 protein levels is likely not through
transcriptional regulation. We did not observe statisti-
cally significant decreases in BCAR3 mRNA levels fol-
lowing TGFβ treatment in MDA-MB-231 cells and
BT-549 cells (Figure 8d and 8e, respectively). TGFβ’s
effect of decreasing BCAR3 protein levels may involve
the proteasome pathway, as treating MDA-MB-231
cells with MG-132 (for 1 hour), a proteasome inhibi-
tor, abolished this effect (Figure 8f ). Taken together,
these results suggest a positive feedback loop mechan-
ism by which TGFβ/Smad signaling represses expres-
sion of its own inhibitory molecule, BCAR3, further
leading to enhanced TGFβ/Smad signaling in breast
cancer cells (Figure 8g).
Discussion
In this study, we defined a novel role for BCAR3 in which
it antagonizes the canonical TGFβ signaling by promoting
an interaction between p130Cas and the Smad transcrip-
tion factors. The inhibitory effect of BCAR3 on TGFβ/
Smad signaling was observed in all breast cancer cell lines
tested, regardless of their molecular phenotype and bio-
logical response to TGFβ. Although TGFβ efficiently in-
duces growth arrest in normal mammary epithelial cells
and cells of early breast carcinoma, these cytostatic re-
sponses are lost in more advanced, invasive breast tumors
and replaced by TGFβ-induced tumor-promoting and pro-
metastatic responses [19,52]. In invasive, basal-like breast
cancer cells, such as MDA-MB-231, SCP2 and SUM-159-
PT, BCAR3 antagonizes several of TGFβ’s proinvasive
effects, such as cell migration, formation of filopodia-like
structures and digestion of gelatin matrix. However, in the
luminal-like, ER+ MCF7 cells, BCAR3 overexpression an-
tagonized TGFβ’s ability to decrease cell viability. These
findings imply that the novel function of BCAR3 of Smad
signaling inhibition is likely a conserved mechanism
among the different molecular subtypes of breast cancer.
It is important to mention that BCAR3’s roles in ag-

gressive behavior of breast cancer cells are twofold. On
one the hand, BCAR3 activates several small GTPases
that play key roles in cell migration, including Rac1 and
CDC42 [31,39]. In fact, the results of a previous study
[53] and our present results both demonstrate that
knocking down BCAR3 in basal-like breast cancer cells
impairs cell migration. On the other hand, our results
show that BCAR3 antagonizes TGFβ-mediated cell migra-
tion and invasion. These results do not necessarily contradict
each other, as one demonstrates BCAR3’s role in regulat-
ing cell migration itself and the other demonstrates
BCAR3’s involvement in regulating TGFβ signaling and
TGFβ’s biological effects. Follow-up studies need to be
done to address the effects of BCAR3 on cell migration,
invasion and metastasis in a physiological context, such
as a xenograft experimental metastasis model.
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In addition, we found that TGFβ decreased BCAR3 pro-
tein expression in multiple breast cancer cell lines. This ef-
fect appeared to be Smad3-dependent and proteasome-
dependent. These data are the first to reveal a molecular
mechanism that regulates BCAR3 expression. More im-
portantly, our data define a positive feedback mechanism
downstream of TGFβ/Smad signaling. It is known that a
few negative feedback loops exist that fine-tune TGFβ sig-
naling, such as those mediated by Smad7 [44] and GRK2
[54]. Both of these targets have been shown to be upregu-
lated by TGFβ, further leading to termination of Smad sig-
naling [44,54,55]. To our knowledge, BCAR3 serves as the
first example of a positive feedback loop of TGFβ/Smad
signaling, whereby TGFβ signaling itself can decrease the
expression levels of its inhibitor BCAR3, further leading to
enhanced TGFβ/Smad signaling. Such a mechanism may
be important for maintaining a steady response to TGFβ.
It has been established that active Smad signaling con-

tributes to breast cancer local invasion and distant me-
tastasis. Having defined BCAR3 as a novel TGFβ/Smad
inhibitory molecule, this may account for the relatively
low BCAR3 expression levels observed in primary breast
tumors associated with worse prognosis and higher
levels of disease progression. Indeed, low BCAR3 levels
in tumor cells may lead to potent responses to TGFβ.
The results of our clinical data survey and analysis de-
fine BCAR3 as a single factor whose expression level is
predictive of clinical outcomes in breast cancer patients.
Moreover, we also found that patients with lymph node
metastasis tend to carry loss of heterozygosity at BCAR3
alleles, indicating that BCAR3 likely plays a role in pre-
venting disease progression.

Conclusions
Taken together, the results of our study identify a novel
positive feedback loop mechanism downstream of the
canonical TGFβ/Smad signaling axis, mediated by a
breast cancer anti-estrogen resistance gene, BCAR3. We
report a novel role of BCAR3 to antagonize Smad signal-
ing, efficiently leading to inhibition of the TGFβ’s bio-
logical functions in breast cancer cells. Our results also
highlight potential prognostic value of BCAR3 in human
breast cancer, as we found low BCAR3 expression levels
in primary breast tumors to be correlated with poor out-
comes, regardless of treatment plans. Our study provides
new insights into BCAR3’s mechanism of action and sug-
gests a need to reevaluate the implications of BCAR3’s role
in breast cancer pathology.

Additional files

Additional file 1: Figure S1. Low BCAR3 expression predicts poor
prognosis in ER+ breast cancer. (a) and (b) Kaplan-Meier survival curved
generated by GOBO gene expression-based outcome tool, showing
status of disease-free survival (DFS) of ER+ breast cancer patients (a) and
ER− patients (b). Patients were separated by median of signal intensity from
an Affymetrix probe targeting BCAR3 (204032_at) in microarray analysis.
Survival data of the high-expression group are shown by the red curve,
and those of the low-expression group are shown by the gray curve.
(c) and (d) Kaplan-Meier survival curves showing status of distant
metastasis-free survival (DMFS) of ER+ patients (c) and ER− patients (d).
Patients were separated by median of signal intensity from 204032_at.
(e) and (f) Kaplan-Meier survival curves showing status of relapse-free
survival (RFS) of ER+ patients (e) and ER− patients (f).

Additional file 2: Figure S2. Protein levels of phospho-Smad3 and
Smad2/3 in selected breast cancer cells. Levels of phospho-Smad3,
Smad2/3, BCAR3 and p130Cas in total cell lysates of MCF-7, SUM-159PT,
SCP2 and MDA-MB-231 cells were determined by Western blot analysis.

Additional file 3: Figure S3. Knocking down BCAR3 enhances
TGFβ-induced Smad3 phosphorylation in SCP2 cells. SCP2 cells were
transfected with BCAR3 siRNA ((#1: SASI_Hs01_00236261), starved
overnight and stimulated with 200 pM TGFβ 48 hours poststarvation for
the indicated time periods. Levels of phospho-Smad3 and BCAR3 were
examined by Western blot analysis.
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