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Abstract

Introduction: Mammographic density is similar among women at risk of either sporadic or BRCA1/2-related breast
cancer. It has been suggested that digitized mammographic images contain computer-extractable information
within the parenchymal pattern, which may contribute to distinguishing between BRCA1/2 mutation carriers and
non-carriers.

Methods: We compared mammographic texture pattern features in digitized mammograms from women
with deleterious BRCA1/2 mutations (n = 137) versus non-carriers (n = 100). Subjects were stratified into training
(107 carriers, 70 non-carriers) and testing (30 carriers, 30 non-carriers) datasets. Masked to mutation status, texture
features were extracted from a retro-areolar region-of-interest in each subject’s digitized mammogram. Stepwise
linear regression analysis of the training dataset identified variables to be included in a radiographic texture analysis
(RTA) classifier model aimed at distinguishing BRCA1/2 carriers from non-carriers. The selected features were
combined using a Bayesian Artificial Neural Network (BANN) algorithm, which produced a probability score rating
the likelihood of each subject’s belonging to the mutation-positive group. These probability scores were evaluated
in the independent testing dataset to determine whether their distribution differed between BRCA1/2 mutation
carriers and non-carriers. A receiver operating characteristic analysis was performed to estimate the model’s
discriminatory capacity.

Results: In the testing dataset, a one standard deviation (SD) increase in the probability score from the
BANN-trained classifier was associated with a two-fold increase in the odds of predicting BRCA1/2 mutation status:
unadjusted odds ratio (OR) = 2.00, 95% confidence interval (CI): 1.59, 2.51, P = 0.02; age-adjusted OR = 1.93, 95% CI:
1.53, 2.42, P = 0.03. Additional adjustment for percent mammographic density did little to change the OR. The area
under the curve for the BANN-trained classifier to distinguish between BRCA1/2 mutation carriers and non-carriers
was 0.68 for features alone and 0.72 for the features plus percent mammographic density.

Conclusions: Our findings suggest that, unlike percent mammographic density, computer-extracted mammographic
texture pattern features are associated with carrying BRCA1/2 mutations. Although still at an early stage, our novel RTA
classifier has potential for improving mammographic image interpretation by permitting real-time risk stratification
among women undergoing screening mammography.
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Introduction
Epidemiologic studies have consistently demonstrated
that elevated mammographic density is a strong and
independent risk factor for sporadic breast cancer, con-
ferring relative risks of 4- to 5-fold when comparing
women with high versus low mammographic density [1].
Although mammographic density has a strong heritable
component [2-10], it is currently being debated as to
whether mammographic density is associated with heredi-
tary breast cancer risk [11,12]. Up to half of all hereditary
breast cancer cases can be attributed to autosomal domin-
ant mutations in two genes, BRCA1 and BRCA2 [13].
Among women with BRCA1/2 mutations, nearly 50% may
be expected to develop breast cancer by age 50 years [13].
The ability to identify high-risk patients through analysis
of mammographic images could have clinically significant
implications for breast cancer screening and prevention
strategies.
Utilizing a computer-assisted method to characterize

percent mammographic density (PMD), we have previously
reported that mammographic density is not associated with
BRCA1/2 mutation status [14], a finding consistent with
those from prior studies [12,15-18]. In contrast, Huo et al.
and Li et al. used computerized radiographic texture
analysis of a retro-areolar region-of-interest (ROI) to dis-
tinguish between mutation carriers and low-risk women;
mutation carriers had a breast parenchymal texture
pattern that was characterized as being coarse with low
contrast [19,20].
Radiographic texture analysis (RTA) has long been uti-

lized in medical imaging research, but investigators have
taken different approaches when using texture analysis
of mammographic images [19-30]. Broadly, the extracted
mammographic features are described as gray-level magni-
tude-based features, which describe variation of gray-value
intensities and ignore spatial relationships (for example,
percent density), and texture-based features, which charac-
terize the higher-order statistics of the spatial radiographic
patterns.
Multiple investigators have evaluated whether texture-

based features capture a component of risk beyond that
of mammographic density [19,22-26,31,32], but only Huo
et al. and Li et al. have suggested that this method might
accurately classify subjects according to BRCA1/2 muta-
tion status [19,20]. These findings, though promising, were
based on the analysis of 30 BRCA1/2 mutation carriers.
This study represents replication and validation of their
results in a larger, independent dataset.

Methods
Study populations and data collection
The study populations have been described previously
[14]. Briefly, the NCI Clinical Genetics Branch Breast
Imaging Study evaluated breast cancer screening modalities
in women who were at high genetic risk of breast cancer.
From 2001 to 2007, 200 women were enrolled in this study,
including 170 women with proven deleterious BRCA1/2
mutations and 30 proven mutation-negative women from
the same families. Participants were seen at the NIH
Clinical Center (NCI Protocol #01-C-0009; NCT-00012415)
and underwent a physical examination, nipple fluid as-
piration, breast duct lavage, standard clinical four-view
screening mammogram and breast magnetic resonance
imaging (MRI), which were reviewed by the study radiolo-
gist (CKC). See prior reports for additional details related
to study design [33,34]. The NCI Institutional Review Board
(IRB) approved the study, and all participants provided
informed consent.
The NCI/National Naval Medical Center (NNMC) Sus-

ceptibility to Breast Cancer Study was a cross-sectional
study of the association between mammographic density
and genes involved in estrogen metabolism. From 2000 to
2006, 219 women with a documented personal history of
breast cancer and 488 controls were enrolled. Participants
were enrolled from the patient population at the NNMC
and other referring institutions and the NIH Clinical
Center (NNMC Protocol #NNMC.2000.0010; NCI Proto-
col #00-C-0079; NCT-00004565). Mammograms obtained
within the year prior to enrollment were reviewed by two
study radiologists (CKC and CEG). Study participants did
not undergo BRCA1/2 mutation testing. Five-year Gail
assessment [35] and Pedigree assessment tool (PAT) [36]
scores were calculated for all controls. The PAT is a point-
scoring system that uses family cancer history to identify
women who are at high risk of hereditary breast cancer
(that is, >10% risk of being a BRCA1/2 mutation carrier)
[36-38]. A PAT score ≥8.0 has been associated with 100%
sensitivity and 93% specificity for detecting mutation car-
riers, and a PAT score <8.0 has been associated with a
negative predictive value of 100% [36]. For the current
study, control subjects with low scores by both
models were classified as having low risk of breast
cancer; they were highly unlikely to be BRCA1/2 mutation
carriers. The IRBs of the NNMC and NCI approved this
study, and all participants provided written informed
consent.
Participants from both studies completed self-ad-

ministered questionnaires which captured demographic
characteristics, current weight and height, medical and
reproductive history, and personal and familial history of
cancer. Questionnaire items were compared between
studies, and common response categories were combined
in order to create a harmonized analytic database.

Analytic sample
A flow diagram of the criteria utilized to derive the analytic
sample of BRCA1/2 mutation carriers and non-carriers is
depicted in Figure 1.
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Figure 1 Flow diagram depicting the eligibility criteria used to derive the analytic sample of BRCA1/2mutation carriers and non-carriers.
PAT, Pedigree assessment tool.
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The NCI Clinical Genetics Branch’s Breast Imaging Study
After excluding 22 women with prevalent breast cancer
(11 BRCA1 carriers, 11 BRCA2 carriers), one BRCA1
carrier with prevalent ovarian cancer, five women with
missing mammographic density readings (three BRCA1
carriers, one BRCA2 carrier, and one non-carrier whose
mammograms were given to the patients for care in
their home communities prior to being digitized), the
final study population included 143 mutation carrier and
29 non-carrier women (the latter from mutation-positive
families) eligible for analysis. Of these, images from six
mutation carrier and three non-carrier women were
deemed ineligible for analysis of computer-extracted tex-
ture features for various reasons (for example, breast area
too small for ROI placement, image artifacts, et cetera),
resulting in a total of 137 mutation carriers (88 BRCA1-
and 49 BRCA2-positive) and 26 non-carriers in our ana-
lytic sample.

The NCI/NNMC Susceptibility to Breast Cancer Study
For the purposes of this report, the analytic sample was
restricted to controls with available mammographic
density readings, who were determined to be at low-to-
average breast cancer risk. After excluding controls with
missing density readings (n = 226), 262 potentially eligible
women remained. Of these, 153 women had a 5-year Gail
score ≥1.67, three women were missing Gail scores, 15
women had PAT scores ≥8, and one woman had a per-
sonal history of skin cancer, type unspecified; these 172
women were excluded, resulting in 90 non-carriers eligible
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for analysis. Of these, images from 16 women were deemed
ineligible for analysis of computer-extracted texture fea-
tures for the reasons described above and were excluded,
yielding 74 women at low-to-average risk of breast cancer
for our analytic sample. Medians (ranges) for their mater-
nal PAT, paternal PAT and 5-year Gail scores were 0 (0, 7),
0 (0, 5), and 1.2 (0.3, 1.6), respectively. Given the rarity of
BRCA1/2 mutations in the general population, and the
low PAT scores, these 74 women were assumed to be
mutation-negative. For the sake of simplicity, combining
these women with the 26 known mutation-negative sub-
jects from the Breast Imaging Study, we use the term
“non-carriers” in this report to describe these 100 women.

Assessment of mammographic density
Analog mammographic films from both studies were
digitized at 0.095 mm (267 dots per inch) in pixel size
and 8-bit quantization in gray level. The details of the
digitization process have been described previously [14].
Participants from both studies had standardized, quantita-
tive calculations of PMD measured in digitized craniocau-
dal views by the same experienced study mammographer
(CKC), using an interactive computerized thresholding
method developed at the NIH Clinical Center (MEDx™
version 3.44, Medical Numerics, Germantown, MD, USA).
We have previously reported that the intra-observer ag-
reement for PMD assessed in 100 paired sets using MEDx
was 0.89 [14]. In addition, we found that Cumulus™ mea-
sures of PMD were strongly and positively correlated with
those assessed by MEDx (r = 0.84, P <0.0001) [14].

Computerized assessment of mammographic parenchymal
patterns
Regions-of-interest (ROIs) measuring 256 by 256 pixels
were manually selected by the same investigator (LL)
without knowledge of BRCA1/2 mutation status, from
the central breast region behind the nipple on digitized
craniocaudal projections (Figure 2). Detailed explana-
tions of the effects of ROI extraction, ROI size, and ROI
location on RTA have been reported elsewhere [20].
These ROIs were used in the subsequent analytic step to
extract and characterize the gray-level magnitude-based
and parenchymal texture-based features of the digitized
mammograms.

Radiographic texture analysis (RTA) of computer-extracted
features
The detailed descriptions of the 38 computer-extracted
parenchymal texture features (mathematical descrip-
tors used in the RTA) have been reported previously
[19,20,27-30,39-41]; their feature numbers, names and
definitions are summarized in Additional file 1: Table S1.
For ease of interpretation, gray-level magnitude (M)-based
features were assigned alpha-numeric descriptors ranging
from M1 to M9, and texture (T)-based features were
assigned descriptors ranging from T1 to T29. We assessed
the internal reliability of the reader’s ROI placement by
randomly submitting a masked set of 91 mammograms
(Susceptibility to Breast Cancer Study (n = 27); Breast
Imaging Study (n = 64)) for re-selection of the ROIs
and re-analysis by the RTA algorithms. The intraclass
correlation coefficient (ICC) was calculated to assess the
intra-observer reliability of the RTA features following
manual re-selection of the ROIs.

Statistical analyses
Selection of participants for the training and testing datasets
After exclusions, 237 subjects were eligible for analysis: 137
BRCA1/2 carriers, 100 non-carriers. We divided these
women into a training set used to develop discrimination
models to distinguish carriers from non-carriers, and a test-
ing set used to evaluate how well the discrimination model
distinguished carriers from non-carriers. From the 100
non-carriers, 6 were randomly selected from each non-
carrier quintile of age, for a total of 30 non-carriers, to
comprise the testing set. Likewise, from the 137 mutation
carriers, 6 women were randomly selected from each car-
rier quintile of age, yielding 30 carriers for the testing set.
The remaining 177 women comprised the training dataset.
Baseline characteristics were compared between BRCA1/2
mutation carriers and non-carriers within the training and
testing datasets using the two-sample t-test for independent
samples. We assumed equal variances for continuous mea-
sures, and used the chi-square test for discrete measures.

Stepwise feature selection using linear discriminant analysis
Utilizing the 177 subjects in the training dataset, we
employed stepwise feature selection using linear discrim-
inant analysis, in which RTA features were reiteratively
added and removed from the group of selected features
based on a feature selection criterion, that is, the Wilks’
lambda [42,43]. In each iteration step, linear discriminant
analysis was used to calculate the discriminant scores,
which were then used to compute the Wilks’ lambda. The
F-statistic was applied to determine whether a particular
feature contributed significantly (P-value <0.05) to the
performance of the linear discriminant analysis in each
step. Details of stepwise feature selection using linear dis-
criminant analysis are described in Additional file 2. The
stepwise feature selection was performed 177 times, by
leaving out one woman from the training set each time.
To be included as a classifier for distinguishing carriers
from non-carriers, a feature had to be selected in at least
half of these 177 analyses.

Merging of computer-extracted features
The RTA features selected in the linear discriminant
analysis were combined using a Bayesian artificial neural



Figure 2 A sample region-of-interest (ROI) selected from central breast region behind the nipple on a digitized mammogram.
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network (BANN) algorithm (Additional file 2). The output
from BANN was converted to an estimate (probability
score) of the likelihood of being within the BRCA1/2
mutation carrier group. These probability scores were
evaluated for their capacity to serve as an image-based
marker of risk in the independent testing data set by
assessing whether their distribution differed between
BRCA1/2 mutation carriers and non-carriers. In order to
assess how mammographic density might influence the
discrimination performance, we also developed (training
data) and tested (testing data) a modified BANN classifier
in which percent mammographic density was forced to be
included along with the same selected RTA features. Both
the linear discriminant analysis and the BANN algorithm
were completed in MatLab™ (The MathWorks, Inc.
Natick, MA, USA).

Performance evaluation and related statistical analyses
Spearman’s rank correlation coefficient was used to
describe the relationships between the selected computer-
ized texture features with PMD, age and each other. The
ability of the BANN-trained classifier to distinguish be-
tween BRCA1/2 mutation carriers and non-carriers was
evaluated in the testing dataset using several approaches.
We evaluated the relation between the BANN-trained
classifier output and BRCA1/2 mutation status in uni-
variate and multivariable logistic regression analysis, first
adjusted for age as a continuous variable, and then
adjusted for age and PMD. For comparison purposes, we
evaluated the relationships between (a) PMD alone, and
(b) the modified BANN-trained classifier, which included
PMD with BRCA1/2 mutation status in both univariate
and multivariable logistic regression analysis adjusted for
age. In sensitivity analyses, we additionally adjusted for
baseline characteristics that differed by mutation status.
Because carriers were on average approximately 10 years

younger than non-carriers [14], we also performed age-
matched sensitivity analysis in the testing data. First, we
applied the BANN-trained classifier from the original
training dataset to testing datasets restricted to pairs of
BRCA1/2 mutation carriers and non-carriers who were
randomly selected and matched on age within ±3 years
(that is, 19 mutation carriers, 19 non-carriers) and ±1 year
(that is, 17 mutation carriers, 17 non-carriers). Within the
age-matched testing datasets, the Wilcoxon signed rank
test was used to examine the mean paired difference in
the BANN probability score between carriers and non-
carriers. We performed a similar paired difference analysis
of BANN probability scores based on the selected features
and PMD. In an additional sensitivity analysis, we removed
women older than age 55 years from both the training and
testing datasets, and repeated the analysis conducted with
the combined dataset.
The utility of the computer-extracted RTA features, as

well as the output from BANN in the task of differentiat-
ing the two groups, was also evaluated by using receiver
operating characteristic (ROC) analysis [44,45]. The area
under the fitted ROC curve (AUC) was used to evaluate
the inherent discriminant capacity of the decision variable.
The AUC measures the probability that a randomly-
selected carrier will have a greater probability score than a
randomly-selected non-carrier. The ROCKIT™ software
package (ROCKIT, version 1.1b) [46] was used to evaluate
the statistical significance of the difference between two
AUC values (that is, the AUC from the BANN-trained
classifier was compared with the AUC from PMD alone)
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[47]. We used two methods to obtain age-adjusted esti-
mates of the AUC values explained by the BANN-trained
classifier. In the first method, we restricted our test-set to
pairs age-matched within ±3 and ±1 years, as defined
above. In an alternate approach, we computed individual
AUCs within age strata, in which the testing dataset was di-
vided into three age strata: 25 to <35 years, 35 to <45 years,
and 45 to 55 years. The AUCs were computed within each
age stratum, and then were averaged to yield the AUC
across the age strata. Except where noted above, analyses
were completed using SAS statistical software (SAS 9.2
software, SAS Institute Inc., Cary, NC, USA). Probability
values <0.05 were considered to be statistically significant.
All tests of statistical significance were two-tailed.

Results
Distribution of patient characteristics in the training and
testing datasets
The baseline characteristics of BRCA1/2 mutation car-
riers and non-carriers stratified by training and testing
datasets are shown in Table 1. Compared with non-
carriers, the BRCA1/2 mutation carriers were statistically
significantly younger, more likely to be white, nullipar-
ous or to have a later age at first birth, and to have
undergone surgical menopause. As previously reported,
age-adjusted mean PMD did not differ between BRCA1/2
carriers and non-carriers [14].
Because women were randomly selected from age

quintiles within each risk group for the training and test-
ing datasets, the age distribution of non-carriers in the
training set (n = 70) was similar to that of the testing set
(n = 30) (P = 0.44). Likewise, the age distribution of the
carriers in the training set (n = 107) was similar to those
in the testing set (n = 30) (P = 0.95). The distributions of
PMD within the risk groups were also similar between
training and testing sets (non-carriers: P = 0.66; BRCA1/2
carriers: P = 0.47). There were no statistically significant
differences in body mass index (BMI) between the risk
groups or between the training and testing datasets.

Descriptive characteristics of selected computer-extracted
features
The ICCs between duplicate measurements of the 38
computer-extracted RTA features for the 91 women with
repeated readings ranged from 0.79 to 0.99, documenting
high reliability of ROI selection and analysis (Additional
file 1: Table S1). Additional file 1: Figure S1 shows the
number of times that each feature was selected in the 177
leave-one-case-out feature selection analyses of the train-
ing data. Of the 9 gray-level magnitude- and 29 texture-
based computerized features explored using the training
dataset, two gray-level magnitude- (that is, M1: AVE; M2:
MinCDF) and two texture-based features (that is, T1:
Energy; T2: MaxF (COOC) were selected more than half
the time, and were therefore included in subsequent BANN
models. A third gray-level feature, “Balance”, was se-
lected in sensitivity analyses in which the training data-
set was truncated at the upper age-limit of mutation
carriers. The distribution of values for the selected fea-
tures of Energy and Balance are shown in the scatter
plot in Figure 3. This plot demonstrates that the paren-
chymal texture features of mutation carriers tend to
have low Energy, that is, they are less homogenous, with
a coarse pattern.
Table 2 presents descriptive information related to the

selected features. On average, mutation carriers tended to
have lower values for the gray-level magnitude-based fea-
tures, and texture-based features were less homogeneous
as compared with the non-carriers. With regard to the
three selected gray-level magnitude-based features, the
feature characterizing the average gray value within the
ROI (“AVE”) was positively correlated with PMD (r = 0.31,
P <0.0001), whereas the Balance feature was inversely
correlated with PMD (r = −0.32, P <0.0001). A weak in-
verse correlation was observed between the MinCDF fea-
ture (that is, the gray value corresponding to the 5%
region cutoff on the cumulative density function) and
PMD (r = −0.13, P = 0.04); MinCDF was positively corre-
lated with age (r = 0.23, P = 0.0005). Modest statistically
significant inverse correlations were observed between
PMD and both of the selected texture-based features,
Energy and MaxF (COOC), which are measures of image
homogeneity (Energy: r=−0.30, P < 0.0001; MaxF (COOC):
r= −0.24, P = 0.0002). These selected texture-based features
were positively correlated with age.
The selected gray-level magnitude-based features (AVE,

MinCDF, and Balance) were strongly correlated with each
other; however, of the three gray-level magnitude-based
features, only MinCDF was statistically significantly and
positively correlated with the two selected texture-based
features (Additional file 1: Table S2). The selected texture-
based features, Energy and MaxF (COOC), were strongly
and positively correlated with one another (r = 0.90,
P <0.0001) (Additional file 1: Table S2). There were
no statistically significant mean differences in the selected
computer-extracted feature measures between the training
and testing data sets (P -value range from Wilcoxon rank
sum test = 0.17 to 0.45; data not shown). Likewise, the
descriptive characteristics of and correlations between the
selected computer extracted features in the testing dataset
were consistent with those observed for the training and
testing datasets combined (data not shown).

Relationships between computer-extracted mammographic
features and BRCA1/2 mutation status: original training and
testing datasets
Table 3 shows the results for the ability of the BANN-
trained classifier, developed using the selected feature



Table 1 Baseline characteristics of BRCA1/2 mutation carriers and non-carriers according to the training and testing datasets

Training dataset (n = 177) Testing dataset (n = 60)

Variable Non-carriers
(n = 70)

Unaffected
BRCA1/2 carriers
(n = 107)

P-value for mutation
carriers versus
non-carriers

Non-carriers
(n = 30)

Unaffected
BRCA1/2 carriers
(n = 30)

P-value for mutation
carriers versus
non-carriers

P-value2 P-value3

Mean (SD) Range Mean (SD) Range P-value from t-test Mean (SD) Range Mean (SD) Range P-value from t-test P-value from t-test

Age, years 48.8 (9.6) 25, 79 37.7 (8.5) 22, 55 <0.0001 47.2 (10.1) 25, 74 37.8 (8.9) 25, 55 0.0003 0.44 0.95

Body mass index1 26.2 (5.7) 18.0, 45.5 25.5 (5.4) 17.9, 48.2 0.41 27.3 (6.7) 18.3, 49.5 25.9 (5.9) 19.5, 40.0 0.37 0.38 0.74

Percent mammographic
density, unadjusted

32.2 (15.2) 3.5, 76.3 37.6 (14.7) 2.8, 70.8 0.024 30.7 (14.7) 2.0, 53.7 35.5 (14.2) 4.8, 68.4 0.214 0.66 0.47

Number %* Number %* P-value from
chi square5

Number %* Number %* P-value from
chi square5

P-value from
chi square5

White, non-Hispanic 63 90.0 107 100.0 0.001 25 83.3 30 100.0 0.05 0.35 1.00

College graduate 52 74.3 83 77.6 0.62 21 70.0 22 73.3 0.77 0.66 0.63

Ever smoked 17 24.3 35 32.7 0.23 13 43.3 8 26.7 0.18 0.06 0.53

Age at menarche, years 0.78 0.87 0.96 0.40

<12 10 14.5 13 12.3 5 16.7 6 20.0

12 to 13 42 60.9 70 66.0 18 60.0 16 53.3

≥14 17 24.6 23 21.7 7 23.3 8 26.7

Missing 1 1

Parous 52 74.3 61 57.0 0.02 24 80.0 13 43.3 0.004 0.54 0.18

Age at first birth, years 0.09 0.02 0.27 0.62

<30 36 51.4 41 38.3 19 63.3 10 33.3

≥30 or nulliparous 34 48.6 66 61.7 11 36.7 20 66.7

Ever used oral
contraceptives

51 72.9 96 89.7 0.004 24 80.0 26 86.7 0.49 0.45 0.64

Menopausal status <0.0001 0.08 0.59 0.83

Premenopausal 44 64.7 60 56.1 16 57.1 19 63.3

Postmenopausal, natural 4 5.9 6 5.6 4 14.3 2 6.7

Postmenopausal, surgical 9 13.2 40 37.4 4 14.3 9 30.0

Postmenopausal, unknown 11 16.2 1 0.9 4 14.3 0 0.0

Missing 2 0 2 0
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Table 1 Baseline characteristics of BRCA1/2 mutation carriers and non-carriers according to the training and testing datasets (Continued)

Menopausal hormone
therapy

0.97 0.31 0.95 0.30

Never 48 68.6 74 69.2 20 66.7 25 83.3

Former 10 14.3 16 15.0 5 16.7 2 6.7

Current 12 17.1 17 15.9 5 16.7 3 10.0

Breast biopsy prior
to enrollment

21 30.0 26 24.3 0.40 5 16.7 7 23.3 0.52 0.16 0.91

*Missing values were excluded from percentage calculations. 1Weight (kg)/height2 (m2). 2P-value comparing non-carriers in the training set to those in the testing set. 3P-value comparing BRCA1/2 carriers in the training
set to those in the testing set. 4As previously reported [14], age-adjustment attenuatated the mean differences in percent mammographic density between carriers and non-carriers (age-adjusted P-value: training
dataset = 0.79; testing dataset = 0.87). 5P-value from chi square test or Fisher’s exact test when appropriate. P-values <0.05 are shown in bold font.
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Figure 3 Scatterplot of the computer-extracted parenchymal features of Energy and Balance for BRCA1/2 mutation carriers and non-
carriers. Energy, a texture-based feature, was identified as distinguishing between carriers and non-carriers; Balance, a gray-level magnitude-based
feature, was selected in age-matched analyses. Compared with non-carriers, mutation carriers tended to have a parenchymal texture with low Energy.

Gierach et al. Breast Cancer Research 2014, 16:424 Page 9 of 16
http://breast-cancer-research.com/content/16/5/424
subset, to distinguish between BRCA1/2 mutation car-
riers and non-carriers in the independent testing dataset.
The AUC (standard error, SE) for the BANN-trained
classifier of 0.68 (0.07) was an improvement over the
AUC (SE) for PMD alone (0.59 (0.07)); however, the two
AUC statistics were not significantly different from one
another (P = 0.52), likely due to the small sample size.
One SD increase in the probability score from the
BANN-trained classifier, developed using the features
selected in the original training dataset, was associated
in the testing data with about a two-fold increase in the
odds of predicting BRCA1/2 mutation status in both
unadjusted (odds ratio (OR) = 2.00, 95% CI: 1.59, 2.51,
P = 0.02) and age-adjusted (OR = 1.93, 95% CI: 1.53,
2.42, P = 0.03) models. Additional adjustment for PMD
did not alter the observed age-adjusted OR. The findings
were nearly identical when the BANN-trained classifier,
modified to include PMD (that is, Features + PMD in
Table 3), was used, and when adjusting for baseline
characteristics that differed by mutation status (that is,
parity, age at first birth, oral contraceptive use, and surgi-
cal menopause) (data not shown).

Relationships between computer-extracted mammographic
features and BRCA1/2 mutation status: sensitivity analyses
utilizing an age-matched testing dataset
By virtue of the Breast Imaging Study eligibility criteria,
the BRCA1/2 mutation carriers were on average ap-
proximately 10 years younger than the non-carriers. We
therefore conducted a series of age-matched sensitivity
analyses. First, the testing dataset was restricted to pairs
of BRCA1/2 mutation carriers and non-carriers matched
on age within ±3 years (Additional file 1: Table S3). The
mean paired differences in the probability scores from
the trained classifiers developed using selected features
alone and the features plus PMD were statistically signi-
ficantly greater than zero (P = 0.02 and P = 0.02, respect-
ively). Using the same age-matched testing dataset,
the corresponding AUC (SE) values for the BANN-trained
classifier without and with PMD were 0.71 (0.09) and 0.72
(0.08), respectively. When matching on age within ±1 year,
the findings were similar, although the mean paired differ-
ence in the probability score was no longer statistically
significant (P = 0.06 for features alone and P = 0.08 for fea-
tures + PMD). Computing AUCs within age strata yielded
comparable results (data not shown).
We performed additional sensitivity analyses by re-

moving women above age 55 years (the upper limit of
age among the Breast Imaging Study participants) from
both the training and testing datasets. This resulted in 96
women in the training data (48 mutation carriers and 48
non-carriers) and 38 women in the testing data (19 carriers
and 19 non-carriers) matched on age within ±3 years. The
mean paired difference in the probability score from the
BANN-trained classifier, developed using the newly-se-
lected feature subset (MinCDF, MaxF (COOC), Balance),
was of borderline statistical significance (P = 0.055). For-
cing PMD into the BANN-trained classifier did not



Table 2 Descriptive characteristics of selected computer-extracted features

Correlation with percent
mammographic density (n = 237)

Correlation with
age (n = 237)

Non-carriers
(n = 100)

Unaffected BRCA1/2
carriers (n = 137)

Feature type and number Feature1 Definition r* P-value r* P-value Mean (SD) Range Mean (SD) Range

Gray-level magnitude-based
features:

M1 AVE Average gray value within ROI;
higher values correspond to
denser region

0.31 <0.0001 0.01 0.89 139.6 (26.1) 69.0, 223.5 134.1 (28.9) 59.0, 242.0

M2 MinCDF Gray value corresponding to the
5% region cutoff on cumulative
density function; higher values
correspond to denser region

−0.13 0.04 0.23 0.0005 98.0 (23.6) 35.0, 162.0 78.1 (27.3) 15.0, 210.0

M3 Balance Ratio of (95% CDF-AVE) to
(AVE-5% CDF); related to skewness;
values less than one correspond to
having an ROI that is skewed
toward relatively denser values

−0.32 <0.0001 −0.04 0.49 1.07 (0.42) 0.45, 3.31 1.11 (0.40) 0.38, 2.33

Texture-based features:

T1 Energy Measure of image homogeneity;
higher values correspond to being
more homogeneous

−0.30 <0.0001 0.19 0.003 0.004 (0.011) 0.0, 0.109 0.003 (0.004) 0.0, 0.028

T2 MaxF (COOC) Largest number of a gray value pair
in the co-occurrence matrix; measure
of image homogeneity; higher
values correspond to being more
homogeneous

−0.24 0.0002 0.15 0.02 0.012 (0.024) 0.001, 0.239 0.010 (0.017) 0.001, 0.145

CDF, cumulative density function; COOC, co-occurrence; ROI, region-of-interest. *Spearman’s rank correlation coefficient. 1All features were selected using the training dataset. The Balance feature was only selected in
sensitivity analyses where the training dataset was truncated at the upper age-limit of mutation carriers. P-values <0.05 are shown in bold font.
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Table 3 Ability of trained classifier to distinguish between BRCA1/2 mutation carriers and non-carriers in testing dataset

Training dataset* Testing dataset Testing dataset results

Description Number of non-carriers Number of carriers Odds ratio 95% CI P-value Odds ratio 95% CI P-value OR 95% CI P-value AUC SE

Unadjusted Adjusted for age Adjusted for age and PMD

Percent mammographic
density (PMD) alone

30 30 1.022 (0.99, 1.06) 0.21 1.002 (0.96, 1.04) 0.96 N/A 0.59 0.07

Features alone1 30 30 2.003 (1.59, 2.51) 0.02 1.933 (1.53, 2.42) 0.03 1.933 (1.54, 2.43) 0.03 0.68 0.07

Features1 + PMD 30 30 2.103 (1.67, 2.65) 0.01 2.033 (1.62, 2.56) 0.03 N/A 0.72 0.07

*Training dataset includes 70 non-carriers and 107 BRCA1/2 mutation carriers. 1Four features were selected by the trained classifier: MinCDF, Energy, AVE, and MaxF (COOC); percent mammographic density was not
selected by the trained classifier but was forced into the models where noted. 2Odds ratios, per unit increase in percent mammographic density. 3Odds ratios, per one SD increase in probability score from trained
classifier; SD from both models = 0.342. AUC, area under the curve; N/A, not applicable; PMD, percent mammographic density; SE, standard error. P-values <0.05 are shown in bold font.

G
ierach

et
al.Breast

Cancer
Research

2014,16:424
Page

11
of

16
http://breast-cancer-research.com

/content/16/5/424



Gierach et al. Breast Cancer Research 2014, 16:424 Page 12 of 16
http://breast-cancer-research.com/content/16/5/424
substantially alter our ability to distinguish between
BRCA1/2 mutation carriers and non-carriers (P = 0.06).
The AUC (SE) for the BANN-trained classifier to distin-
guish between BRCA1/2 mutation carriers and non-carriers
was 0.72 (0.09) for features alone and 0.71 (0.09) for the fea-
tures plus PMD. The results from these sensitivity analyses
are consistent with those from our primary analyses based
on the original testing dataset.
In contrast to the differences we observed in the BANN-

trained classifier between BRCA1/2 mutation carriers and
non-carriers, we did not observe any statistically significant
mean paired differences in PMD between the test-set pairs
age-matched within ±3 or ±1 years or when using
the age-restricted dataset (Additional file 1: Table S3,
P = 0.83, P = 1.00, and P = 0.83, respectively).

Discussion
We investigated relationships between computer-extracted
mammographic texture features and BRCA1/2 mutation
status among women without breast cancer, and identified
novel mammographic texture features (AVE, MinCDF, En-
ergy, MaxF (COOC)) that appear to distinguish BRCA1/2
mutation carriers from non-carriers. We had previously
observed no difference in percent density obtained from
the entire mammogram by BRCA1/2 mutation status in
this same population, motivating our search for new
informative parenchymal characteristics based on radio-
graphic texture analysis within a retro-areolar ROI. These
associations changed minimally when we included PMD in
models with the four selected texture features. Thus, the
associations we have identified between specific RTA
features and mutation status are independent from any
possible modifying effect of mammographic density, which
in both our prior work and that of others appears no differ-
ent in mutation carriers than that observed in the general
population [12,14-18]. The strength of the RTA feature
associations was attenuated when mutation carriers were
age-matched to non-carriers, likely due to reduced sample
size. Our study adds to the existing RTA literature [19,20]
by analyzing the largest number of mutation carriers yet
studied in this manner, and our findings indicate that
computer-extracted mammographic features provide some
additional information for identifying women likely to
carry BRCA1/2 mutations. The RTA classifier we have
identified could prove a useful adjunct to mammographic
interpretation both in women from families with many
affected relatives in whom no genetic susceptibility has yet
been identified and in families known to have mutations in
these genes. However, because the positive predictive value
of such a test would be low in the general population,
owing to the rarity of these mutations, the strength of
the association we found is not high enough for screen-
ing a general population to identify candidates for muta-
tion testing.
The texture-based features Energy and MaxF (COOC) -
which describe the spatial distribution pattern for tissue
homogeneity - and AVE and MinCDF - which provide
gray-level magnitude information on tissue denseness -
were the strongest RTA predictors of mutation status
within a given ROI. The RTA texture-based features selec-
ted in this study characterize similar parenchymal attri-
butes found in previous studies on digitized screen/film
mammograms [19,27,28,30], such that BRCA1/2 mutation
carriers tend to have retro-areolar parenchymal patterns
that are coarse in texture. It is important to note that a
given parenchymal attribute may be described by multiple
computer-extracted features. For example, image homo-
geneity can be measured by Energy and the largest num-
ber of a gray-value pair in the co-occurrence matrix
(MaxF (COOC)), as selected in this study, or by the first
moment of the power spectrum (FMP) or Coarseness,
which Huo et al. and Li et al. previously found to be asso-
ciated with BRCA1/2 mutation status [19,27]. In addition,
our findings are consistent with two case-control studies
reporting that mammograms of coarse texture are associ-
ated with increased breast cancer risk [23,24]. In these
studies, however, simultaneous inclusion of the texture
features in a model with PMD did not improve breast
cancer risk prediction [23,24].
Although we found that the selected texture features

significantly improved our ability to distinguish between
mutation carriers and non-carriers when compared with
PMD alone, ours was a cross-sectional study evaluating
features associated with BRCA1/2 mutation status rather
than subsequent risk of developing breast cancer. Prior
studies have questioned the importance of mammo-
graphic density for breast cancer risk prediction among
BRCA1/2 mutation carriers [11]; further research is war-
ranted to investigate the predictive value of computer-
extracted texture features among this high-risk patient
population. We currently have no information on the
association between the RTA classifier and the risk of
breast cancer per se among BRCA mutation carriers.
While it may seem logical to assume that women with
the BRCA-related RTA mammographic texture pattern
will actually be at increased risk of breast cancer, that
fact has not yet been established. Further clinical devel-
opment of the RTA classifier will require proof of this
hypothesized association; we strongly recommend that a
new study with that question as its primary study end-
point be undertaken.
Mutation carriers tended to have lower values for the

RTA gray-level magnitude-based features selected in this
study, suggesting that their breasts were less dense in
the retro-areolar region as compared with the non-carriers.
This finding is inconsistent with prior studies suggesting
that mutation carriers have gray-level magnitude-based
features that are low in contrast [19,30]. It is possible that
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differences in film digitizers and/or digital mammographic
image acquisition systems between studies could in-
fluence RTA, particularly for the gray-level magnitude-
based features which have been previously shown to be
sensitive to the effects of variable gain [48]. Consistent
with the idea that texture-based features are more robust
than gray-level magnitude-based features across systems
of varying gain [48], a prior study, which utilized full-
field digital mammograms (FFDM) to identify high-risk
features, resulted in selection of only spatial distribu-
tion texture-based features [49]. Hence, the gray-level
magnitude-based features that were related to mutation
status in our study population may not be generalizable to
FFDM. This is not surprising as image processing of
FFDM permits the degree of contrast in the image to be
manipulated, such that contrast may be increased in
the dense areas of the breast in order to maximize
mammographic sensitivity [50]. As clinical practice is
rapidly shifting toward digital breast imaging, this
work should set the stage for applying the strategies de-
scribed herein to newer images from mutation carriers as
they become available.
Our research method was also limited by the need for

manual placement of retro-areolar ROIs; however, man-
ual ROI reselection for a randomly selected subset of
participants was found to be highly reliable, both in this
study and as reported previously [20]. Automation of
ROI placement could be applied in future work. Our
study had several strengths, including the largest number
of mutation carriers and non-carriers yet studied in this
manner, assessment of digitized images that was com-
pletely masked to mutation status and evaluation of the
proposed classifier in independent test data. Although the
discriminatory accuracy of the RTA classifier was modest
(AUC= 0.68), and for a diagnostic test we would like to
have a higher value, the AUC does compare favorably with
AUC statistics reported in most breast cancer risk models
[51]. Further, we performed extensive sensitivity ana-
lyses, and our findings persisted in the presence of
multiple potential confounding factors, including age
and PMD. Although statistical power was limited for
the age-matched sensitivity analyses, these analyses
provided an important confirmatory way to control
for age and results were consistent in their suggestion
of a relation between computer-extracted mammographic
texture pattern features and mutation status. Thus, our
findings warrant validation in larger independent clinical
studies.
The biology of mammographic density is poorly under-

stood [52,53], and the biologic correlates of texture-based
features are even less well-characterized. Nevertheless,
evidence from animal models and human breast tis-
sues suggests underlying biological differences in the mo-
lecular histology and pathology of the breast by BRCA1/2
mutation status [54-57]. While it is possible that our
results may be related to true anatomical differences
between carriers and non-carriers as reflected in their
parenchymal patterns, other biologic factors, such as
biochemical differences, also need to be explored.

Conclusions
Several noteworthy clinical implications flow from our
results. First, we confirm an important observation,
previously made by Huo et al. and Li et al. [19,20] but
not widely appreciated in the clinical community: the
digitized mammographic image contains computer-
extractable information not captured during routine
radiologic interpretation which may permit improved,
real-time risk stratification among women undergoing
screening mammography. Nonetheless, it is early days for
the tools used in this analysis; further development of
these techniques might identify additional, more strongly-
correlated features. In the current instance, our computer
model was significantly correlated with the presence of
deleterious mutations in BRCA1/2, conferring a two-fold
increase in the likelihood of being a mutation carrier,
per one SD increase in the probability score. If the
interpreting radiologist were to be made aware of this
information while reading clinical mammographic im-
ages, it could alter image interpretation by increasing
the prior probability of disease in subjects with the
BRCA-related pattern. The model’s ability to distin-
guish between BRCA1/2 mutation carriers and non-
carriers might, in the context of a positive family his-
tory of breast and/or ovarian cancer, serve as an indi-
cator to consider formal genetic risk assessment in
persons who have not been previously tested. Integra-
tion of breast imaging data with family history and
breast tumor markers could be formally assessed by
estimating the added value of our image-based probability
score to existing statistical models that are used to
predict BRCA1/2 mutations [58]. Although mathemat-
ical and statistical concepts involved in generating the
RTA classifier are complex, a great deal of work has
already been done relative to the details of this
methodology. Should the RTA classifier be validated
clinically, this algorithm is amenable to a user-friendly
implementation. The current data do not support these
clinical applications at the present time, but they provide a
solid basis for extending this novel research into larger,
more rigorously-designed studies utilizing digital im-
aging modalities. Our findings also serve as a reminder of
the importance of keeping an open mind relative to
novel applications of old technologies. This value-
added strategy may improve the cost-benefit ratios of
tried, true and readily available clinical tests, without
the development costs associated with an entirely new
technology.
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