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Introduction
We selectively and briefly review the recent literature
describing mathematical modeling and computer
simulation of breast cancer biology, as well as how this
work might ultimately aid patient care. The first group of
papers provide a basis for measuring prognosis among
individual patients after therapy, employing neural network
or statistical regression tools. The second set of papers
use simulations of the growth and/or spread of tumors
and, on this basis, predict clinically relevant results.

Prognostic assessment by neural net or
regression analysis
In a report published in 1989, Gail and coworkers [1]
discussed the risk for developing breast cancer using
family history. The proposed model was validated and
variously modified by other researchers, who incorporated
genetic risks but not hormonal factors. Tyrer and
coworkers [2] attempted to include most known predictive
factors and proposed a model for calculating the risk for

breast cancer based on a knowledge of individual genetic
markers such as BRCA, family factors, and personal
history data. It requires verification, however.

The need to take into account multiple clinical and
prognostic factors, the limitations of traditional
mathematical models, and the effort needed to apply
inferences to individuals rather than to populations has
fueled the development of artificial neural network (ANN)
methods. An ANN is an information-processing paradigm
that is inspired by the way in which biologic nervous
systems, such as the brain, process information. The
structure consists of a large number of highly
interconnected processing elements working in unison to
recognize patterns. ANNs, like people, learn by example.
Learning in biologic systems and ANNs involves
successive adjustments to the synaptic connections [3]
using a training set. ANNs may be used in the process of
therapeutic decision making and as exploratory tools for
studies of disease dynamics. Although all ANNs require
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both a training set and a validation set of data, their true
performance should be tested on a separate verification set.

The most important of the ANN programs is that
developed by Ravdin [4], termed ‘Adjuvant!’
(www.adjuvantonline.com), which is used to provide
prognosis of early stage breast cancer patients after
various modes of standard adjuvant therapy. This program
is available online and has recently been independently
verified to predict recurrence and survival to within 2% of
actual observed outcomes. It will probably be widely used
by clinicians to make treatment decisions in concert with
patients, and it may eventually supplant TNM as a staging
system. Like all neural network methods, however, it is not
useful for new therapies, such as the forthcoming adjuvant
antiangiogenic and targeted pathway modalities, because
it depends on mature clinical data. That is the one
drawback to Adjuvant! that we can identify.

Other tools are under development that are based on
ANN, fuzzy logic, linear regression, and partial logistic
ANN [5–10]. These have important potential for clinical
applications because there are many clear needs.
However, none of these mathematical tools are at the
mature level or as valuable as Adjuvant!

Mathematical and computer models of breast
cancer growth
Before publication of a report by Collins and coworkers in
1956 [11], tumors were said to grow fast or slow. Those
investigators introduced tumor volume doubling time to
quantitatively describe the rate at which a tumor grew and
assumed that the doubling time was constant (exponential
growth) and that tumors grew continually. The
spontaneous mutation model of acquired drug resistance
based on exponential kinetics by Coldman and Goldie
[12] was an important theoretical development in our
understanding of adjuvant chemotherapy.

It was observed, however, that exponential growth could
only fit data for some particular conditions, such as
multipassaged animal models [13] and when a limited life
span of the tumor was studied. These difficulties
prompted the next step in the evolution of mathematical
models, which is the use of Gompertzian or damped
exponential kinetics, in which growth is approximately
exponential in its early stages before gradually slowing
and asymptotically approaching zero.

Laird [14], who first proposed that Gompertzian growth
(formerly used for population kinetics) applies to tumors,
measured the growth of ‘19 examples of 12 different
tumors of the rat, mouse, and rabbit’ and concluded that
‘The pattern of growth defined by the Gompertz equation
appears to be a general biological characteristic of tumor
growth.’ That is a far-reaching statement based on only 18

rodents and one rabbit. The Gompertzian model proved
better than the exponential model in describing tumor
growth and became widely used. These early models are
‘continuous growth’ models and, for breast cancer in
particular, they are unable to account for the long-lasting
recurrence risk (metastasis appearance even more than
30 years after curative primary tumor removal) and many
observations of temporary dormancy [15–26]. This major
discrepancy between theory and observation leads us to
reject the continuous growth assumption of Collins and
coworkers.

In addition to temporary dormancy, there are other striking
aspects of breast cancer that must be addressed. A
double-peaked hazard of relapse with menopausal status
dependent features has been reported for early stage
breast cancer patients undergoing resection of the
primary tumor. Distinct peaks at 1–2 years and at
5–6 years appear in several large and mature databases
[7,27–34]. Moreover, a screening paradox has resulted for
women aged 40–49 years. As reported by eight
randomized trials of breast cancer screening, women
aged 50–59 years who are invited to screening have a
20–30% mortality advantage as compared with control
women. However, when women aged 40–49 years are
screened, there is either no advantage or a slight dis-
advantage for the first 6–8 years in individual trials, meta-
analyses, and overviews of all trials. After that, an
advantage begins to appear [35–42]. Clearly, models
incorporating more biology and possessing more general
growth patterns than exponential or Gompertz dynamics
are required to explain such phenomena.

The Norton–Simon [43] model assumes Gompertzian
growth kinetics and has played an important ‘cultural’ role
[44–47], although it suffers from the continuous growth
flaw. It has nonetheless aided the recent development of
dose-dense adjuvant chemotherapy and significant
survival gains for certain patient subsets.

A paper by Guiot and coworkers [48] proposed
application to tumors of the general model of ontogenic
growth proposed by West – that is, a scaled variation of
Gompertz growth derived from basic principles for the
allocation of metabolic energy between maintenance of
existing tissue and production of new biomass. It does not
address points in the continuous growth crisis, and the
conclusions should therefore be used with caution to help
design therapies for clinical evaluation [49].

Plevritis [50] presented a growth model incorporating
exponential growth to analyze screening data. Interest-
ingly, despite the use of exponential growth, that author
calculated a histogram of primary tumor doubling time
distribution that agrees remarkably with stochastic
dormancy model results.
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The biology-based model for breast cancer growth and
metastases development by Retsky, Demicheli and co-
workers [51–53] incorporates tumor dormancy, transitions
between micrometastatic phases, and metastasis
acceleration by surgery. The computer simulation
proposed an explanation of the various peaks in relapse
hazard and predicted that more than half of all relapses in
breast cancer are accelerated. The model quantitatively
describes tumor dormancy, the mammography paradox
and the bimodal relapse pattern, and it gives clues as to
why adjuvant chemotherapy works best in premenopausal
node-positive patients [53]. It suggests that an
antiangiogenic drug given before surgery or timing surgery
to the menstrual cycle for young women will reduce
growth stimulation from surgery. This model has spawned
a few clinical trials and logically could lead to metronomic
therapy protocols [54–60]. The fundamental difference in
this approach is that it specifies and quantifies the
inherently intermittent or saltatory nature of tumor growth.
Consideration of the duration, timing, and frequency of
dormant spans is a unique attribute of this model. The
dynamics of the dormancy–growth pattern are deter-
mined, over time, by the balance between tumor-based
and host-based factors.

Objectively speaking, the weakness in this model is that it
is based on only one database and is the product of one
group. Although it is perhaps unlikely that the computer
simulation will be duplicated by others, independent
verification of the bimodal relapse pattern plus supportive
reactions from breast cancer clinicians and researchers in
the inevitable debate is needed before acceptance should
be considered.

Conclusion
Medical science has long relied on empirical methods to
learn how to successfully treat disease. However, that
strategy does not work well with a disease like breast
cancer with over 10 years between application of
treatment and ultimate determination of outcome. It is
primarily for this reason that computational methods have
played an important historical role in the very long struggle
to understand breast cancer – a still elusive goal. Perhaps
recent computational efforts are making some progress in
that direction. We are also reminded by this study (the
mammography paradox in particular) that according to the
scientific method when theory and experiment disagree,
we are compelled to revisit the theory.
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