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Abstract

Background The transcription factor hypoxia-inducible factor-1
(HIF-1) is a key regulator of the cellular response to hypoxia.
Previous studies showed that concentrations of its subunit HIF-
10, as a surrogate for HIF-1 activity, are increased during breast
carcinogenesis and can independently predict prognosis in
breast cancer. During carcinogenesis, the cell cycle is
progressively deregulated, and proliferation rate is a strong
prognostic factor in breast cancer. In this study we undertook a
detailed evaluation of the relationships between HIF-1a and cell
cycle-associated proteins.

Methods In a representative estrogen receptor (ER) group of
150 breast cancers, the expression of HIF-1a, vascular
endothelial growth factor, the ER, HER-2/neu, Ki-67, cyclin A,
cyclin Dy, p21, p53, and Bcl-2 was investigated by
immunohistochemistry.

Results High concentrations (5% or more) of HIF-1a were
associated with increased proliferation as shown by positive

correlations with Ki-67 (P < 0.001) and the late S-G2-phase
protein cyclin A (P < 0.001), but not with the G1-phase protein
cyclin Dy. High HIF-1a concentrations were also strongly
associated with p53 positivity (P < 0.001) and loss of Bcl-2
expression (P=0.013). No association was found between p21
and HIF-1a (P = 0.105) in the whole group of patients.
However, the subgroup of ER-positive cancers was
characterized by a strong positive association between HIF-1a
and p21 (P = 0.023), and HIF-1a lacked any relation with
proliferation.

Conclusion HIF-1o overexpression is associated with
increased proliferation, which might explain the adverse
prognostic impact of increased concentrations of HIF-1o in
invasive breast cancer. In ER-positive tumors, HIF-1a is
associated with p21 but not against proliferation. This shows
the importance of further functional analysis to unravel the role
of HIF-1 in late cell cycle progression, and the link between HIF-
1, p21, and ER.
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Introduction

Hypoxia is an important cellular stressor that triggers a sur-
vival program by which cells attempt to adapt to the new
environment. This primarily involves adaptation of metabo-
lism and/or stimulation of oxygen delivery. These cell-rescu-
ing mechanisms can be conducted rapidly by a
transcription factor that reacts to hypoxic conditions, the
hypoxia-inducible factor-1 (HIF-1) [1]. HIF-1 stimulates
processes such as angiogenesis, glycolysis and erythro-
poiesis [2] by activating genes that are responsible for
these processes. The HIF-1 complex consists of two subu-

nits, HIF-1a and HIF-1p. Protein concentrations of HIF-1a
depend on the cellular oxygen concentration [3,4]. During
normoxia the HIF-1a protein has a very short half-life owing
to its continuous Von Hippel-Lindau (VHL) protein-medi-
ated ubiquitination, which results in low protein concentra-
tions in the cytoplasm. Hypoxia results in stabilization of the
HIF-1a protein and translocation of the HIF-1 complex to
the nucleus. In the nucleus HIF-1 binds to DNA of the con-
sensus sequence 5-RCGTG-3', the so-called hypoxia
response elements in the promoters of target genes [5]. In
this way HIF-1 allows the cell to adapt metabolism,

ER = estrogen receptor; HIF-1 = hypoxia-inducible factor-1; PTEN = phosphatase and tensin homolog deleted on chromosome ten; pVHL = von
Hippel-Lindau (tumor suppressor gene) protein; VEGF = vascular endothelial growth factor.
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increases O, delivery and stimulates cell survival [6].
Besides hypoxia, HIF-1 can be upregulated by loss of the
tumor suppressor genes PTEN (phosphatase and tensin
homolog deleted on chromosome ten) [7] and loss of p53
[8], and by the overexpression of oncogenes such as HER-
2/neu [9].

Cancer cells are able to survive and proliferate in extreme
microenvironmental circumstances and show changes in
oncogenes and tumor suppressor genes. Hypoxia and HIF-
1 have been implicated in carcinogenesis and in clinical
behavior of tumors. Upregulation of HIF-1a was noted dur-
ing breast carcinogenesis [10], especially in the poorly dif-
ferentiated pathway. Hypoxia is related to poor response to
therapy in various cancer types. In invasive breast cancer,
high HIF-1a concentrations were associated with poor sur-
vival in lymph node-negative patients [11]. As prognosis in
breast cancer is closely related to proliferation rate [12],
and poorly differentiated tumors usually exhibit high prolif-
eration and HIF-1a overexpression, the prognostic value of
HIF-1a might well be explained by a close association
between HIF-1a and proliferation.

Proliferation is under the control of many proteins involved
in cell cycle regulation. We proposed that HIF-1, as a mas-
ter regulator for surviving hypoxia, might interact with such
cell cycle-related proteins. We therefore investigated
whether concentrations of HIF-1a were associated with
aberrant expression of cell cycle proteins in human breast
cancer. As a result, we report here that high concentrations
of HIF-1a are associated with overexpression of p53 and
markers of proliferation during the late S—G2 phase of the
cell cycle. In the subgroup of estrogen receptor (ER)-posi-
tive cancers only a positive association between HIF-1a
and p21 was noticed. Probably, in ER-positive cases, p21
causes cell cycle arrest as a response to increased HIF-1a
concentrations.

Materials and methods

Patients

A representative and previously described group of 150
stage I/l breast cancer patients, diagnosed between 1985
and 1993 at the VU University Medical Center, Amsterdam,
The Netherlands, was used [11]. By 'representative' we
mean that tumor size, distribution of histological subtypes
and lymph node status were as expected in a random
group of stage /Il patients. Breast-conserving therapy or
modified radical mastectomy were the applied surgical pro-
cedures for the primary tumors, and axillary dissection
including at least levels | and Il was performed for all
patients. All surgical specimens were directly fixed in neu-
tral 4% buffered formaldehyde.

All invasive breast carcinomas were histologically classified
according to WHO criteria as one of the following: ductal

(n=129), lobular (n = 11), mucinous (n = 4), tubular (n =
3), cribriform (n = 1), medullary (n = 1), or metaplastic (n =
1). Tumors were graded in accordance with the criteria of
Elston [13] as grade | (n = 35), grade Il (n = 49), or grade
Il (n = 66). The mean age at the time of diagnosis was 60
years (range 30 to 86). The mean tumor diameter was 2.6
cm, ranging from 0.7 to 7.0 cm (according to the TNM
[tumor, node, metastases] system: 45 T,, 94 T,, and 11
T,). Locally advanced breast cancers (TNM stage Ill) were
excluded. The group included 81 (54%) lymph node-nega-
tive and 69 (46%) lymph node-positive patients. None of
the patients received preoperative chemotherapy, hormo-
nal therapy or radiotherapy.

Immunohistochemistry

Paraffin-embedded tumor tissue was derived from the
archives of the Department of Pathology of the VU Univer-
sity Medical Center. Anonymous use of redundant tumor
material for research purposes is part of the standard treat-
ment agreement with patients in our hospital [14]. Immuno-
histochemistry was performed on sections 4 um thick. After
deparaffination and rehydration, sections were immersed
for 30 min in methanol containing 0.3% hydrogen peroxide
to block endogenous peroxidase activity. For assessment
of HIF-1a the catalyzed signal amplification system (Dako,
Glostrup, Denmark) was used as described previously
[11]. All slides, except for HER-2/neu, were pretreated with
a citrate buffer (10 mM, pH 6.0) for antigen retrieval by
heating the slides in either a microwave oven or an auto-
clave (for details see Table 1).

After cooling down and preincubation with normal serum of
the species of the secondary antibody, the primary antibod-
ies were incubated as described in Table 1. For recognition
of vascular endothelial growth factor (VEGF), a rabbit poly-
clonal antibody was used, which was detected with a pig
anti-rabbit antibody (Dako). Subsequently, slides were
incubated for 30 min with biotinylated secondary antibod-
ies, followed by incubation for 1 h with 1:200 streptavidin—
biotinylated horseradish peroxidase complex (Dako). For
Bcl-2 and p21 staining, a biotinyl-tyramide enhancing step
was introduced [15]. After a 30 min incubation of 1:1000
(instead of 1:200) streptavidin—biotinylated horseradish
peroxidase complex, slides were incubated for 10 min with
1:1000 diluted biotinyl-tyramide solution with 0.01%
hydrogen peroxide in phosphate-buffered saline, followed
by incubation for 30 min with 1:200 streptavidin—bioti-
nylated horseradish peroxidase complex. In all cases 3, 3-
diaminobenzidine was used as chromagen and hematoxylin
as counterstaining. Positive controls consisted of known
immunoreactive carcinomas (VEGF, HIF-1qa, ER, p53, cyc-
lin Dy, p21, HER-2/neu) or tonsil tissue (Ki-67, Bcl-2, cyclin
A). Negative controls were obtained by omission of the pri-
mary antibodies from the staining procedure.



Table 1
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Mouse monoclonal antibodies, availability, dilution, incubation, antigen retrieval and detection method used

Antibody Company Dilution Incubation Antigen retrieval Detection
Ki-67 Dako 1:40 o/n, 4°C MW ABC
Cyclin A Novocastra 1:100 o/n, 4°C Autoclave ABC
Cyclin D, Neomarkers 1:400 o/n, 4°C Autoclave ABC
p21 Pharmingen 1:500 o/n, 4°C Autoclave ABC-BT
p53 DAKO 1:50 o/n, 4°C MW ABC
Bcl-2 DAKO 1:50 o/n, 4°C Autoclave ABC-BT
ER DAKO 1:50 o/n, 4°C Autoclave ABC
VEGF R&D systems 1:40 o/n, 4°C Autoclave ABC
HIF-1o Abcam 1:500 1 h, 20°C Waterbath CSA kit
HER-2/neu M v/d Vijver 1:10,000 o/n, 4°C None ABC

Autoclave, autoclave for 20 min at 120°C; ABC, avidin-biotinyl complex; ABC-BT, biotinyl-tyramide enhancement; Mv/d Vijver, Dr M van der Vijver,
Dutch Cancer Institute, Amsterdam, The Netherlands; MW, microwave in citrate buffer pH 6.0 for 10 min near to boiling; o/n, overnight;

Waterbath, 45 min at 95°C.

Quantification

For all cell cycle biomarkers, except Bcl-2, the percentage
of positively stained nuclei of invasive tumor cells was
scored blind by one experienced observer (PJvD). ER
status was determined by the Histoscore, taking 100 or
more as positive. HIF-1a staining was considered positive
only when there was homogeneously dark nuclear staining;
cytoplasmic staining was ignored. Cytoplasmic staining for
Bcl-2 in invasive breast cancer epithelium was compared
with adjacent normal breast tissue and scored as negative
when absent, and as weak or strong when intensity was
diminished or increased, respectively, compared with adja-
cent normal tissue. Cytoplasmic VEGF expression was
assessed as moderate or strong.

Statistical methods

For statistical analysis with SPSS for Windows version
9.0.1., 1999 (SPSS Inc., Chicago, IL), the nonparametric
12 was used to evaluate correlations between HIF-10 and
cell cycle-associated proteins. For the cell cycle-related
proteins we used traditional cutoff values [16] (as shown in
Table 2), and for HIF-1a. 5% was used as the cutoff value
as described previously [11]. Parametric tests and correla-
tion tests using the continuous data were also performed,
but these yielded similar results and have therefore not
been described to keep description of the statistical results
as succinct as possible. Two-sided P values below 0.050
were regarded as significant.

Results

Whole group

Analyzing the whole group of patients (n=150), there were
significant and positive associations between HIF-1a and

Ki-67 (P < 0.001), cyclin A (P < 0.001), and p53 (P <
0.001) (Table 2). A positive trend between high concentra-
tions of HIF-1a and expression of p21 (P = 0.105) was
noticed, and there was a significant inverse association
between Bcl-2 (P = 0.025) and HIF-1a expression. No
association between HIF-1a and cyclin D, was found. In
addition, both ER positivity and overexpression of p21 were
positively associated with overexpression of cyclin D, (P <
0.001) in the whole group of patients.

ER subgroups

Interestingly, subgroup analysis of ER-positive cancers (n=
52) revealed different associations (Table 3). Only p21
positivity was significantly associated with high concentra-
tions of HIF-1a. (P = 0.023). No associations for HIF-1a
were found with Ki-67, cyclins A and D4, p53, and Bcl-2. In
this subgroup, p21 was positively associated with cyclin D,
(P < 0.001) but not with p53. In contrast, the subgroup of
ER-negative cancers (n = 98) showed strongly significant
positive associations between HIF-1a on the one hand and
Ki-67 (P < 0.001), cyclin A (P < 0.001), and p53 (P =
0.003) on the other. Again, loss of Bcl-2 (P = 0.048) was
significantly negatively associated with high concentrations
of HIF-1a, and no association between HIF-1a, p21, and
cyclin D, was found. The striking difference in biomarker
expression between the ER-positive and ER-negative sub-
groups led us to test further whether this was associated
with proliferation or with HIF-10o. In the ER-positive sub-
group HER-2/neu-positivity was associated with high con-
centrations of HIF-1a (P = 0.035), but no association was
found between HIF-1a, p53, and VEGF. Further, in this
subgroup we observed low ER expression in HIF-1a-posi-
tive regions. In the ER-negative subgroup strong VEGF

R452



R453

Breast Cancer Research Vol 6 No4 Bos et al.

Table 2

Association of HIF-1a expression with cell cycle-related
proteins in 150 invasive human breast cancers

Protein Cutoff value  Concentration of HIF-1a P(x2)
<5% >5%

Ki-67 <10% 58 13 <0.001
>10% 41 38

Cyclin A <10% 67 19 <0.001
>10% 31 32

CyclinD;  <10% 80 44 0.402
>10% 19 7

p21 <10% 89 41 0.105
>10% 10 10

p53 <25% 89 35 <0.001
>25% 10 16

Bcl-2 Negative 4 5 0.025
Moderate 35 26
Strong 60 19

HIF, hypoxia-inducible factor.

expression (P = 0.007), p53 accumulation (P = 0.003),
and HER-2/neu-positivity (P = 0.003) were all positively
associated with high concentrations of HIF-1a.

p53 subgroups

To exclude the possibility that the data for the ER sub-
groups were dependent on p53 status, we also performed
subgroup analysis based on p53 status (Table 4). In short,
the subgroup assumed to be 'wild-type' p53 was charac-
terized by different associations from the subgroup of ER-
positive cases.

Lymph node status subgroups

Because in our former study we found an independent
prognostic value for HIF-1a only in lymph node-negative
breast cancers, we analyzed the subgroups of lymph node-
negative (n = 81) and lymph node-positive cases (n = 69)
separately (Table 5). Positive significant associations were
found in the subgroup of lymph node-negative cancers
between HIF-1a and Ki-67 (P < 0.001), cyclin A (P <
0.001), p21 (P=0.049), and p53 (P=0.001). Also in this
subgroup Bcl-2 (P = 0.008) was significantly inversely
associated with HIF-1a. No association was found for cyc-
lin Dy. In the subgroup of lymph node-positive cancers, Ki-
67 (P = 0.035) and p53 (P = 0.042) revealed a positive
association with HIF-1a. No relation with HIF-1a was found
for cyclins A and Dy, p21, and Bcl-2.

Ductal type subgroup

To exclude confounding mechanisms based on the mixed
group of different types of breast cancer, we also per-
formed the statistical analysis described above on the sub-
group of ductal type of invasive breast cancers (n = 129),
as shown in Tables 6 and 7. In short, the same associations
were found as described for the group of 150 patients.

Discussion

In this study we found positive associations between HIF-
1a and the cell cycle-related proteins cyclin A, Ki-67, and
p53 in invasive human breast cancers. These associations
were most evident in the lymph node-negative cases and
might therefore contribute to the poor prognosis of HIF-1a.-
positive cancers described previously [11]. Further, the ER
subgroups showed differential expression of biomarkers,
suggesting an interaction between HIF-1 and ER.

In general, the expression of cyclin A and Ki-67 indicates
that cells are in the S or G2 phase. Cyclin A expression is
stimulated by the protein-tyrosine phosphatase cdc25A
[17] and is associated with undifferentiated and ER-nega-
tive breast tumors heralding poor prognosis [18,19]. It is
common to use protein concentrations of Ki-67 as a prolif-
eration marker although its function is unknown; it is
present at highest concentration in the S phase but also in
the G1-G2 phase [20]. Like cyclin A, Ki-67 overexpression
denotes a high proliferation rate and thus poor prognosis.
Our data show that high concentrations of HIF-1a are
associated with high concentrations of cyclin A and Ki-67
as markers of proliferation.

The association of HIF-1 with proliferation has been noted
before [10], but it is still not fully understood [21,22]. The
main question is whether HIF-1 is acting on, or is a reaction
to, tumor proliferation. The latter mechanism assumes that
unorganized rapidly growing tumors will outgrow their own
vasculature, leading to a lack of oxygen supply, necessitat-
ing adaptation by switching to anaerobic metabolism and
induction of angiogenesis. Because HIF-1 has a crucial role
in these latter processes, it could be postulated that rapidly
proliferating tumors need HIF-1. In this light the association
between HIF-1 and proliferation is more or less epigenetic
or due to tumor necrosis. According to the former mecha-
nism, primary HIF-1 overexpression might also lead to
tumor proliferation. One argument for this hypothesis is
based on the observation that HIF-1o expression is not
restricted to necrotic tumor areas. Another argument might
be the influence of oncogenes (such as HER-2/neu or Bcl-
6), tumor suppressor genes (such as von Hippel-Lindau
[tumor suppressor gene] protein [pVHL] or PTEN), or
growth factors (such as IGF-2) on the protein concentra-
tions of HIF-1a [7,9,23-26]. These tumorigenic mecha-
nisms also stimulate proliferation. In addition, the recent
demonstration that pulmonary artery fibroblasts, when
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Association of HIF-1o with cell cycle-related proteins in estrogen receptor-positive (n = 52) and estrogen receptor-negative (n = 98)

breast cancers

Protein Cutoff value ER-positive ER-negative
HIF-1 o P2 HIF-1 o P(x?)
<5% >5% <5% >5%

Ki-67 <10% 24 7 0.624 34 6 <0.001
>10% 15 7 26 32

Cyclin A <10% 28 9 0.756 39 10 <0.001
>10% 10 4 21 28

Cyclin D, <10% 25 9 0.736 55 35 0.938
>10% 14 4 5 3

p21 <10% 33 7 0.023 56 34 0.497
>10% 6 6 4 4

p53 <25% 36 11 0.415 53 24 0.003
>25% 3 2 7 14

Bcl-2 Negative 0 0 0.609 4 5 0.048
Moderate 12 5 23 21
Strong 27 8 33 11

VEGF Weak 8 2 0.685 21 4 0.007
Strong 31 11 39 34

HER-2/neu Negative 36 9 0.035 55 26 0.003
Positive 3 4 5 12

ER, estrogen receptor; HIF, hypoxia-inducible factor; VEGF, vascular endothelial growth factor.

exposed to hypoxia, stimulate the proliferation of adjacent
pulmonary artery smooth muscle cells by means of hypoxia-
regulated genes indicates a stimulating role for HIF-1 in the
cell cycle machinery [27].

In contrast, recent work from Goda and colleagues [28]
showed in two different primary differentiated cell types
that HIF-1 is necessary for the induction of growth arrest
during hypoxia. HIF-1 alters the cell cycle during hypoxia by
increasing the concentrations of cyclin-dependent kinase
inhibitors p21 and p27. In addition, hypophosphorylation of
retinoblastoma proteins is HIF-1 dependent. Goda and col-
leagues [28] also showed that cells lacking the HIF-1a
gene had an increased progression into S phase. These in
vitro data are logical in physiologic circumstances but do
not comply with our observations in human cancers. Thus,
it is difficult to say whether these mechanisms also occur in
human breast cancer. More possibly, it might be postulated
that cancer cells have lost control over the cell cycle and its
potential interplay with HIF-1a..

Subgroup analyses based on ER status revealed that only
in ER-positive cases positivity for p21 was associated with
high concentrations of HIF-1a, without correlation between
HIF-1 and proliferation. This points to an intact feedback
loop in ER-expressing cells in which p21 might cause cell
cycle arrest as a response to increased HIF-1a concentra-
tion, which might be regulated by cyclin D, [29]. In contrast,
in ER-negative cases, a positive association between HIF-
1 on the one hand and Ki-67, cyclin A, p53, and loss of Bcl-
2 on the other was noted. Apparently, the p21 feedback
loop is not functional in ER-negative cells. In addition, in the
ER-positive cases no association for HIF-a. with VEGF and
p53 could be demonstrated, which was opposite to the
observation in the ER-negative subgroup. These findings
suggest that the different associations in both ER sub-
groups cannot be attributed only to a different proliferation
rate. We excluded the option that the p53 status might be
the underlying cause for these differences, as shown in
Table 4. It is therefore tempting to suggest that these differ-
ences might be caused by an interaction between HIF-1
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Table 4

Association of HIF-1a with cell cycle-related proteins in WT-p53 (n = 124) and M-p53 (n = 26) breast cancers

Protein Cutoff value 'Wild type' p53 'Mutated' p53
HIF-1 o P(x2) HIF-1 o P(x?)
<5% >5% <5% >5%
Ki-67 <10% 55 12 0.006 3 1 0.264
>10% 34 23 7 15
Cyclin A <10% 62 15 0.004 5 4 0.192
>10% 26 20 5 12
Cyclin D, <10% 71 31 0.248 9 13 1.00
>10% 18 4 1 3
p21 <10% 80 28 0.139 9 13 1.00
>10% 9 7 1 3
Bcl-2 Negative 3 3 0.273 1 2 0.132
Moderate 31 15 4 11
Strong 55 17 5 2
VEGF Weak 28 5 0.051 1 1 1.00
Strong 61 30 9 15
HER-2/neu Negative 82 27 0.021 9 8 0.037
Positive 7 8 1 8

aFisher Exact Test when appropriate. HIF, hypoxia-inducible factor; VEGF, vascular endothelial growth factor; WT-p53, probably wild type p53; M-
p53, probably mutated p53.

Table 5

Association of HIF-1a with cell cycle-related proteins in lymph node-negative (n = 81) and lymph node-positive (n = 69) breast

cancers
Protein Cutoff value Lymph node-negative Lymph node-positive
HIF-1 o P(32) HIF-1 o P(x2)
<5% >5% <5% >5%
Ki-67 <10% 36 9 <0.001 22 4 0.035
>10% 15 21 26 17
Cyclin A <10% 40 10 <0.001 27 9 0.305
>10% 10 20 21 12
Cyclin D, <10% 40 25 0.593 40 19 0.438
>10% 11 5 8 2
p21 <10% 47 23 0.049 42 18 0.839
>10% 4 7 6 3
p53 <25% 47 21 0.009 42 14 0.042
>25% 4 9 6 7
Bcl-2 Negative 0 3 0.008 4 2 0.459
Moderate 17 15 18 11
Strong 34 11 26 8

HIF, hypoxia-inducible factor.
R455



Table 6

Association of HIF-1a expression with cell cycle-related
proteins in all ductal type (129 of 150) invasive human breast
cancers

Protein Cutoff value  Concentration of HIF-1a P(x2)
<5% >5%

Ki-67 <10% 44 11 0.001
>10% 39 35

Cyclin A <10% 52 16 0.002
>10% 30 30

Cyclin D, <10% 67 39 0.564
>10% 16 7

p21 <10% 75 36 0.057
>10% 8 10

p53 <25% 68 25 0.001
>25% 15 21

Bcl-2 Negative 4 5 0.042
Moderate 29 23
Strong 50 17

HIF, hypoxia-inducible factor.

and ER. Little is known about the interaction between HIF-
1 and ER, but an almost significant positive association
was found in endometrial cancer [30] but not in breast can-
cer [11,31]. In prostate cancer the presence of the andro-
gen receptor seems necessary to potentiate the
angiogenic effects of HIF-1a, although this effect is medi-
ated by the epidermal growth factor/phosphatidylinositol
3'-kinase/protein kinase B pathway [32]. In two studies it
was shown that hypoxia downregulates ER in breast can-
cer cell lines [33,34]. More studies are therefore merited to
investigate the interaction between ER and HIF-1.

Most knowledge about the interaction between HIF-1 and
the cell cycle has been gathered around p53. Some of this
interplay between p53 and HIF-1 was defined by An and
colleagues [35], who showed that during hypoxia p53
could not stabilize without the presence of HIF-1a. Even a
direct association between p53 and HIF-1a was shown by
co-immunoprecipitation in hypoxic cells. Subsequently, it
was shown that p53 depends on HIF-1a when it initiates
apoptosis during hypoxia [21]. In contrast, Ravi and col-
leagues [8] showed that the concentration of HIF-1a
increased when no p53 was present in tumor cells that
responded to hypoxia. HIF-1 and p53 can therefore be
seen as competitors because both are upregulated by
hypoxia. Whereas HIF-1 maintains homeostasis, p53 is
known to induce apoptosis. However, HIF-1 might also

Available online http://breast-cancer-research.com/content/6/4/R450

induce apoptosis in concert with p53 [36] and through
NIP3 [37]. Other factors influencing the balance between
p53 and HIF-1 are competition for the cofactor p300 [38]
and MDM-2 (murine double minute-2) degradation of HIF-
10 through p53 [8]. Thus, a loss of wild-type p53 might be
associated with increased tumor growth during hypoxia
because of diminished apoptosis and augmented HIF-1-
induced transcriptional activation of VEGF. Indeed, the
positive association between VEGF and the accumulation
of p53, which is associated with p53 mutation, has been
noted in breast cancer [39].

In the present study we found a positive association
between the accumulation of p53 with HIF-1a and that of
p53 with VEGF (the positive association of HIF-1a and
VEGF has been described elsewhere [11]). The p53/HIF-
1 data are in concordance with those of Zhong and col-
leagues [22], who noted this association in a mixed group
of colon and breast cancer patients. In contrast, in lymph
node-positive breast cancer and epithelial ovarian cancer
no relation between p53 and HIF-1a was found [31,40].
Interestingly, we noticed that a classical association of HIF
with proliferation and VEGF is true in wild-type p53 but not
in the 'mutated' subgroup (assuming that more than 25%
nuclear p53 accumulation points to a p53 mutation). Thus,
these data imply that HIF needs wild-type p53 to exert its
downstream effects.

Combined high expression of p21 and cyclin D, was posi-
tively associated with high differentiation and low prolifera-
tion in various carcinomas including breast cancer [29,41].
Interestingly, in this study, increased concentrations of cyc-
lin D, corresponded to high concentrations of p21 (as pre-
viously [29]), but not of HIF-1a. Many investigators have
searched for an explanation of why cyclin D; becomes
upregulated in breast cancer. The most plausible explana-
tion is the assumption that an amplification or translocation
of the cyclin D, gene is responsible, but other mechanisms
also seem to be involved because of the low incidence of
cyclin Dy amplification. It has been shown that cyclin D,
exerts the effects of ER [42], confirming the importance of
cyclin Dy in breast cancer. The results reported here might
provide circumstantial evidence that upregulation of cyclin
D, might be caused indirectly either by hypoxia or onco-
genes that can stimulate HIF-1 and thereby p21. In fact,
some specific pVHL-deficient renal cell carcinoma cell lines
showed such an association, although no feasible mecha-
nism was described [43].

BCL-2 is known as an inhibitor of apoptosis. In this study
we found an inverse association between HIF-1a and BCL-
2. This is in contradiction of an earlier study on melanoma
cell lines that showed that BCL-2 augments the angiogenic
potential of HIF-1 by means of increased VEGF transcrip-
tion and prolonged VEGF mRNA stabilization [44]. How-
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Table 7

Association of HIF-1a with cell cycle-related proteins in only ductal carcinoma, subdivided into estrogen receptor-positive (n = 46)

and estrogen receptor-negative (n = 83) breast cancers

Protein Cutoff value Estrogen receptor-positive Estrogen receptor-negative
HIF-1 o P(x2?) HIF-1 o P(x2?)
<5% >5% <5% >50%

Ki-67 <10% 20 5 0.730 24 6 0.002
>10% 15 6 24 29

Cyclin A <10% 24 7 0.717 28 9 0.003
>10% 10 4 20 26

Cyclin D, <10% 22 7 0.100 45 32 0.693
>10% 13 4 3 3

p21 <10% 29 5 0.022 46 31 0.235
>10% 6 6 2 4

p53 <25% 29 7 0.175 39 18 0.008
>25% 6 4 9 17

Bcl-2 Negative 0 0 0.477 4 5 0.141
Moderate 11 5 18 18
Strong 24 6 26 11

VEGF Weak 8 2 1.00 18 3 0.003
Strong 27 9 30 32

HER-2/neu Negative 33 8 0.080 43 23 0.008
Positive 2 3 5 12

aFisher Exact Test when appropriate. HIF, hypoxia-inducible factor; VEGF, vascular endothelial growth factor.

ever, another paper suggested that VEGF itself stimulated
BCL-2 expression in breast cancer [45]. Meanwhile, loss of
BCL-2 fits the model in which upregulation of HIF-a is
associated with breast cancer aggressiveness, because a
loss of BCL-2 is associated with tumor aggressiveness
[46]. We described previously that the rate of apoptosis
and the concentrations of HIF-1a are both increased in
aggressive breast cancers [47]. This could be an epige-
netic phenomenon, but other studies do indeed point to a
direct apoptotic effect of HIF-1 when the cell loses control
of homeostasis despite HIF-1 activation [48].

Conclusion

HIF-1a overexpression is associated with increased prolif-
eration, which might explain the adverse prognostic impact
of increased concentrations of HIF-1a in invasive breast
cancer. In ER-positive tumors HIF-1a is associated with
p21, but not with proliferation. This shows the importance
of further functional analysis to unravel the role of HIF-1 in
late cell cycle progression, and the link between HIF-1,
p21, and ER.
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