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Introduction
Breast cancer is the most commonly diagnosed form of
cancer and the second leading cause of cancer death in
Western women. Between one out of eight and one out of
10 women will develop breast cancer during her lifetime,
with the disease being a leading cause of mortality in
women over the age of 35 years. Survival rates of patients
with early breast cancer in the United Kingdom and in the
United States have improved steadily over the past
15 years [1], largely as the result of advances in and
improved access to early diagnosis and more effective
therapy. Additional gains, however, will require new pre-
ventative and therapeutic strategies that require better
understanding of the genetics and biology of human
breast cancer. Such knowledge, which is rapidly accruing
as the result of postgenomic technologies such as pro-
teomics and transcriptional profiling, must be translated
into a setting in which potential clinical responsiveness
can be evaluated. This in turn requires better in vitro and
in vivo models of human breast cancer.

Although in vitro culture of established breast cancer cell
lines is probably the most widely used model for such pre-

clinical evaluation, it is limited in so far as it contains no
stromal cells and, as generally used, lacks three-dimen-
sional structure. These limitations make it poorly represen-
tative of real cancers. Animal models in which stroma and
structure are present should, if they are to be useful,
possess genetic and other biomarker abnormalities similar
to, if not identical to, their human counterparts. The most
direct way to achieve this is to merge human and animal
models in the form of heterotransplanted tissues,
implanted either heterotopically (subcutaneous) or ortho-
topically (mammary fad pad). This commentary discusses
the basic concepts of current ‘xenograft’ models and out-
lines some of their limitations and potential, as compared
with syngeneic and genetically engineered (transgenic)
rodent models.

Syngeneic and genetically engineered mouse
models
With the recent introduction of syngeneic mouse tumour
models, the choices of animal models have improved [2].
However, the most widely used animal models have a
limited role in cancer research because the biology of
rodents and their tumours differs significantly from that of
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humans and human cancer. The differences in develop-
mental programmes of mouse and humans manifest in
many ways, with size being an obvious example. Cellular
targets for oncogenic transformation consequently differ in
number, in their degree of maturation and in their differen-
tiation in mouse tissues compared with their human coun-
terparts. In the mammary gland, for example, full glandular
maturation is contingent on pregnancy in rodents, but not
in humans. This has significant implications with regard to
the presence, or absence, of multipotential stem cells, and
their role in mammary carcinogenesis.

The shorter lifespan of rodents means that observable
tumours must have a rapid programme of progression as
mice can develop very malignant tumours showing multi-
ple genetic alterations within a relatively short time period
(6–18 months). Although the basic mutation frequency is
similar in both species, cells of rodent origin are much
easier to transform in vitro by oncogene transfection or
chemical carcinogens. Possible explanations for the easier
transformation include less efficient DNA repair, poorer
control of genetic stability, and or altered control of gene
expression through processes such as DNA methylation
[3]. Another difference lies in immortalization, which is a
key step in tumour progression [4], and the ease with
which rodent cells become immortalized [5,6]. Mouse and
primary human cells have major differences in telomere
dynamics and telomerase regulation. Telomeres are signifi-
cantly longer in laboratory mice (40–60 kb) compared with
in humans (10 kb), and the enzyme telomerase is widely
expressed in adult mouse tissues. In contrast, human
cancer cells have acquired the capacity to maintain telom-
eres through the reactivation of telomerase or other mech-
anisms to avoid replicative senescence.

Although rodents are intrinsically more susceptible to car-
cinogenesis, sporadic cancers are quite rare in wild-type
rodents. Many decades have been devoted to selective
inbreeding to enhance the incidence of specific tumours
to useful levels in syngeneic mice, thus altering the
genetic background in each strain. Mouse strains suscep-
tible to mammary cancer were isolated many years ago,
with vertical transmission (Bittner or milk factor) subse-
quently shown to be due to a mouse mammary tumour
virus. Viruses have yet to be convincingly implicated in
human breast cancer, except as possible cofactors [7].
Chemical carcinogenesis has been used in rats to
enhance mammary tumour formation, again with no direct
human parallel, and with enhanced chemically induced
mutations, some of which can result in a partial immune
response in the incompletely inbred rat strains.

Overall, a smaller number of genetic changes, in compari-
son to humans, are required for rodent cell transformation
in vitro [8], and this is probably also true for rodent
tumours in vivo. This may contribute to the notable differ-

ences in tumour biology and pathology observed between
the species. For example, about one-half of human breast
cancers are hormone responsive at diagnosis, while the
vast majority of mouse tumours are hormone independent
with much lower levels of oestrogen/progesterone recep-
tors than human tumours [9]. Although similar morphologi-
cal patterns can be seen in lesions in both species, the
detailed morphology of most mouse tumours do not
resemble the common human breast cancers and cannot
be classified in an equivalent manner to the standard
human tumour pathology grades and types [10,11]. Rat
tumours are likewise distinct, and differ from both mouse
and human counterparts in detailed histology. The metasta-
tic patterns between the species are also different.

Breast cancer in humans usually spreads lymphatically,
starting with local lymph glands, followed by distant
metastasis predominantly to the bone, the brain, the
adrenal gland, the liver and the lung. In contrast, mouse
mammary cancers metastasize almost exclusively to the
lung via the haematogeneous route [12]. One other major,
but infrequently mentioned, difference between rodent
and human cells, whether in vitro or in vivo, relates to their
respiratory quotient. Small animals, such as mice and rats,
consume greater amounts of oxygen on a per-cell basis
than larger animals. This will result in very different cellular
microenvironments, particularly in relatively avascular and
hypoxic tumours, where hypoxia-induced genes may play
an important role in growth and differentiation [13]. Larger
experimental animals can provide potentially better models
of human breast disease in this and other respects, but
are seldom used for a variety of nonscientific reasons.

Genetically manipulated animals generated by transgenic
and gene-targeting (knockout) technology have undoubt-
edly contributed tremendously to our understanding of
gene function and regulation at the molecular level in the
context of the whole organism. However, genetically engi-
neered mice (GEM), like syngeneic rodent models, also
present fundamental differences at the level of the organ-
ism and the cell. GEM are designed to reproduce very spe-
cific aspects of tumour formation and progression, usually
but not invariably based on knowledge of human tumour
genetics. When using transgenic mice, the extent and type
of genetic abnormalities that cause disease must be
assessed in relation to those that cause human disease, to
decide whether they differ to a degree that makes them an
unacceptable model. The precise genetic background on
which the abnormal genes are either overexpressed or
underexpressed within the tumour cells is also important as
it may influence their effects or penetrance.

To date, most oncogene-bearing transgenic mice and
tumour suppressor gene knockouts have had a whole-
body phenotype, in which all tissues and cells bear the
same defect. They thus do not mimic sporadic tumours
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that arise from an initiating mutation affecting a single cell
in an otherwise normal microenvironment. These models
are effectively the rodent equivalent of human familial
cancer syndromes. This problem has to some extent been
rectified with the use of cell-type specific promoters to
limit gene expression to specific target tissues, and with
the use of promoter-specific recombinase-based (cre-lox)
mechanisms for eliminating transgenes from specific
tissues. However, these methods themselves generate
other limitations in respect of mammary tumours, as they
frequently depend on hormone-sensitive promoters such
as the mouse mammary tumour virus long terminal repeat
and whey acidic protein promoter. These promoters have
hormone-regulated enhancer elements that are not the
natural promoters for the activated oncogenes in human
breast cancer. This can lead to inappropriate responses,
for example enhanced mammary tumourigenesis caused
by pregnancy, whereas pregnancy is protective in
humans [11].

Despite these limitations, molecular events that occur in
human breast cancer can be reproduced in mice, with the
same genes triggering the same molecular events. Inter-
estingly, the mammary tumours that are produced in GEM
have phenotypes dissimilar to those in mouse mammary
tumour virus-induced or chemically induced mammary
tumours, and may have greater similarities with human
breast cancers. Examples of human genes triggering
similar molecular events in mice include a splice variant of
erbB2 in humans, which mimics the transmembrane
domain mutations that activate the murine c-erbB2 as the
oncogene neu, as well as conditional mutants of the
tumour suppressor gene BRCA1 that produce mammary
gland tumours in mice [14,15]. These syngeneic and GEM
models have thus contributed significantly to our under-
standing of the fundamental aspects of breast cancer
genetics, but do not provide sufficient similarity with
human tumours for preclinical drug testing [16].

Xenograft models
The fact that some human breast cancer cell lines form
tumours in immunodeficient mice was first reported by
Isaacson and Cattanach in 1962 [17]. However, the com-
plexity of the procedures used to render wild-type mice
immunodeficient, a combination of surgery (thymectomy)
radiation and/or drug treatment, meant that this approach
was not widely used until the introduction of the mutant
nude mouse. Today the nude (Foxn1) mice and severe
combined immunodeficiency (SCID) mice, which have nat-
urally occurring single gene mutations that affect their
immune system, are the most commonly used research
models in xenograft experiments. Nudes have a chromo-
some 11 autosomal recessive mutation that causes failure
of hair growth and other defects, including thymic epithe-
lial dysgenesis, which renders them T-cell deficient [18].
The SCID mouse has a spontaneous mutation inactivating

DNA protein kinase resulting in lack of functional T cells
and B cells [19,20]. Immunodeficient strains have been
developed from other species, including the rat, but are
not widely used.

Human breast cancer is one of the more difficult tumours
to transplant directly into experimental animals, including
nude mice and SCID mice. The reported success (take
rates) for invasive human breast cancer is 7–20% [21],
with differences accounted for by site of implantation
(orthotopic being better), the age and strain of mice used,
and whether hormonal supplementation is used (nude
mice have low oestrogen levels, compared with humans).
Serially transplantable xenografts are much rarer. Para-
doxically, better success has been reported with preinva-
sive disease samples (ductal carcinoma in situ) [22,23]. It
has very recently been reported that subsets of
immunophenotypically distinct (CD44+/CD24–) cells
within primary breast tumours have an enhanced take rate
as xenografts [24]. Directly established mammary tumour
xenograft lines with the capacity to metastasize were not
developed until the early 1990s [25], although prior and
subsequent to this a number of established in vitro lines
have been adapted to xenograft cultures. Some such
lines are able to locally invade or metastasize, sometimes
as the result of further genetic engineering to a more
aggressive phenotype.

There are currently many human xenograft models avail-
able for use in breast cancer research (Table 1), most
derived from both established cancer cell lines and spon-
taneously or genetically engineered immortalized normal
breast epithelial cells. Among the more commonly used
are the MCF10AT and MCF-7 systems, probably because
of their ease of use and the wealth of information available
on these lines from previous in vitro studies. However, the
use of established cancer lines as the source of xenograft
models raises a number of questions. Cancer cells that
have been adapted to grow in culture are likely to have dif-
ferent environmental requirements to primary breast
tumour cells. In vitro establishment is a rare event, found
in no more than 1% of primary cancers [26] and almost
certainly involving further selection of an ‘establishment’
phenotype. Thus, cell selection in conversion to continu-
ous culture line, changes in later generations of cell lines
(genetic drift) as well as viral or Mycoplasma infection,
mislabelling of individual cell lines, and/or doubts as to
their actual tumour of origin are factors that impact on the
validity of such models.

By contrast, much less effort has been directed at improv-
ing primary tumour engraftment. It has recently been
reported that histomorphologically intact primary human
breast lesions and cancers can be grown in athymic mice.
An experimental model system has been developed in
which dissociated cells from surgical breast cancer
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Table 1

Commonly used breast cancer xenograft models

Human breast cancer
xenograft model Description Reference

MCF-7 Breast adenocarcinoma cell line, oestrogen receptor-positive [37]

MCF-7/6 Oestrogen sensitive [38]

MCF-7 BAG Immunodeficient xenograft model [39]

MCF-7/hVEGF hVEGF overexpressing

MCF-7-TAM LT Long-term tamoxifen-stimulated breast tumour model [40]

MCF-7/neu Overexpressing oncogene neu [41]

MCF-7-MIII Oestrogen sensitive [42]

MCF-7Ca Transfected with human aromatase gene [43]

MT2 MCF-7 tamoxifen-stimulated tumour with Asp351Tyr mutant oestrogen receptor [44]

MT2 TAM MCF-7-derived tumour serially passaged with tamoxifen [40]

MT-1 Oestrogen and progesterone receptor-negative in nude rats [45]

MT-3 Oestrogen receptor-negative [45]

LY2 Anti-oestrogen-resistant variant of MCF-7 [46]

UMB-1Ca Oestrogen-independent variant of MCF-7 [47]

MDA-MB-231 Oestrogen independent [48]

MDA-MD-231 BAG Immunodeficient xenograft model [39]

MDA-MB-361 Brain metastasis-derived breast adenocarcinoma cell line [49]

MDA-MB-435 Oestrogen receptor-negative [48]

MDA-MB-435A Ascites model [50]

MDA-MB-435S Spindle-shaped strain of parent line [51]

MDA-MD-435 BAG Immunodeficient xenograft model [39]

MDA-MB-453 BAG Fibroblast growth factor receptor overexpressing [39]

MDA-453/LCC6 [52]

MDA-MB-468 Oestrogen receptor-negative metastasis-derived cell line [49]

MDA-MB-453 Breast adenocarcinoma cell line [53]

MCF10AT Preneoplastic and proliferative model; nontumourigenic [54]

MCF10AneoN Transfected with neomycin-resistance gene [55]

MCF10AneoT T24-Ha-ras-transformed derivative of MCF10A [55]

MCF10DCIS.com Comedo ductal carcinoma in situ [56]

MC-2 [57]

MC-5 [57]

MC-18 [57]

SK-BR3 Breast adenocarcinoma cell line that overexpresses oncogenic protein p185HER2; [58]
oestrogen receptor-negative

SK-BR3/hVEGF VEGF overexpressing cell line [58]

BT-20 Oestrogen receptor-negative [37]

BT-474 Erb2 overexpressing breast tumour [59]

ZR-75-1 Oestrogen-dependent breast carcinoma [60]

Continued overleaf
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Table 1 Continued

Commonly used breast cancer xenograft models

Human breast cancer
xenograft model Description Reference

SUM149 Inflammmatory breast cancer cell line [61]

SUM159PT Oestrogen independent [62]

T47D Oestrogen receptor-positive [63]

T47D-E2 Tamoxifen naïve tumour [63]

KPL-1 Oestrogen receptor-positive [64]

KPL-4 Oestrogen receptor-negative [65]

MaTu Oestrogen receptor-negative solid human mammary carcinoma cell line [45]

MC4000 Oestrogen receptor-negative [45]

HT-39 Oestrogen receptor-negative [66]

HX99 [67]

T61 Oestrogen receptor-positive ductal carcinoma [68]

B37 [69]

BO Oestrogen receptor-positive [70]

Br10 [71]

SE [71]

WIBC-9 Inflammmatory breast cancer cell line [57]

Met-1 Metastatic breast cancer cell line

MAXF401 [72]

MX-1 [73]

MAXF 499 Solid ductal [74]

NCI/ADR or MCF-7/ADR Multidrug-resistant MCF-7 cell line that overexpresses P-glycoprotein [75]

4296 Oestrogen receptor-positive [76]

4049 Oestrogen receptor-negative [76]

4151 [75]

4134 [75]

3366 [77]

4000 [77]

CAL51 Metastatic model of adenocarcinoma [78]

MA-11 Oestrogen and progesterone negative receptor in nude rats [79]

H31 [80]

MARY-X Inflammatory breast cancer model [81]

HBT 3477 Adenocarcinoma [82]

Hs578T Carcinosarcoma derived, epithelial in origin [82]

C8161 Breast cancer line with high levels of spontaneous metastasis [83]

M24met Breast cancer line with high levels of spontaneous metastasis [83]

CaMa 15 Primary infiltrating ductal breast carcinoma [37]

MaNo 4 Medullary breast carcinoma [37]

GI-101 Metastatic breast tumour line [25]

UISO-BCA-NMT-18 Primary breast carcinoma [84]

VEGF, vascular endothelial growth factor.
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specimens, after mixing with extracellular matrices, have
been transplanted into nude mice. These transplanted
cells undergo morphogenesis that reflects their original
phenotype, and they provide a much more relevant model
for studying primary human breast lesions and cancers in
vivo [27].

However, even these models that are derived directly from
clinical samples have their limitations. Overall, xenografts
contain fewer stromal cells and the stroma that does exist
is murine in origin, resulting in a chimeric tumour. The
biology of chimeric rodent/human tumours can differ sig-
nificantly from that of humans and can result in unpre-
dictable growth, differentiation or metastatic properties
[16]. Another limitation inherent to all xenograft models is
the lack of an immune response against the tumour cells.
However, there are several potential solutions to the
immune response problem in the context of modelling
immunotherapies. For example, it has been shown that
nondisrupted pieces of tumour biopsy tissues implanted
into SCID mice resulted in the coengraftment of tumours
plus tumour infiltrating lymphocytes, with tumour infiltrating
lymphocytes within the tumour graft remaining functional
and responding to lymphocyte cytokines [28]. Human
peripheral blood lymphocytes, injected subcutaneously
with a human lung tumour into SCID mice, also engraft
and display antitumour cytotoxic activity [29]. One could
envisage the use of mice that combine the immunodefi-
ciency phenotype of the nude/SCID with engraftment of
human bone marrow stem cells.

Future progress
Better understanding of breast cancer biology has lead
to the realization that tumour stromal interactions, includ-
ing desmoplasia and neo-angiogenesis, are of major
importance in cancer biology. Understanding these reci-
procal interactions offers the possibility of new potential
therapeutic strategies, including those that target breast
cancer stroma itself. Tumour fibroblasts, which have an
activation phenotype different to that of resting tissue
fibroblasts, thus offer a potential target for antitumour
therapy [30]. Also, recent reports have shown that
cancer stromal alterations precede the malignant conver-
sion of tumour cells [31]. In the light of this new evi-
dence, therapeutic targeting of stromal cells as opposed
to (or as well as) epithelial cells is now considered an
appropriate strategy [32–34]. Developing better model
systems representing both human stromal and epithelial
cells will enable these emerging therapies to be tested
more critically.

This requirement has long been recognized, but attempts
to date have often floundered on the lack of readily avail-
able human stroma in a form that can be easily manipu-
lated. Ideally, these xenograft models should represent
both stromal and epithelial cells with normal, premalig-

nant, preinvasive malignant, invasive malignant and
metastatic phenotypes. A novel three-dimensional
cell–cell interaction model was recently xenografted into
immunodeficient mice. This comprised normal breast
fibroblasts derived from reduction mammoplasties, plus
normal human umbilical vein endothelial cells in combi-
nation with normal and preneoplastic human breast
epithelial cells derived from clinical samples [35].
However, the model has some deficiencies. Key among
these is the difficulty in assembling such cell combina-
tions on a long-term and reproducible basis. Normal cell
types have a limited lifespan in vitro, and will undergo
senescence-related changes if extensively passaged.
Reproducibility is also an issue if the cells are freshly iso-
lated for each preparation from different donors. Also,
umbilical vein endothelial cells differ from their mature
vascular counterparts.

The cells used for such mix-and-match combinations
should ideally be derived from the breast, be capable of
being generated without donor or passage-related differ-
ences, and be available in limitless quantities. With the
recent development of immortalized human adult
mammary stromal cells [36], it has now become possible
to satisfy these criteria and to perhaps develop a fully
‘humanized’ breast cancer model in immunodeficient mice.
Both endothelial cells and fibroblasts were immortalized
using a combination of retroviral transduction of the cat-
alytic subunit of human telomerase plus mutant variants of
the SV40 T-antigen gene. Despite its name, the large
T protein does not transform the stromal cells, but it does
unlock their indefinite proliferation, provided that telomeric
erosion is prevented by the telomerase activity present in
the cells. Neither gene singly was capable of full immortal-
ization of these cells.

The availability of cells that are conditionally immortalized
(temperature sensitive) as well as nontemperature-sensi-
tive variants from the same individual donor stocks
enables different combinations of quiescent and prolifera-
tively active cells to be generated. In this way, the
response of tumour cells to continued stromal proliferation
(equivalent to desmoplasia and neo-angiogenesis) can be
examined, as well as the response of quiescent stromal
cells to the presence of proliferating tumour. Preliminary
experiments have shown that multicellular spheroids com-
posed of mammary epithelial, endothelial and fibroblastic
cell types can be created in vitro using ‘zero gravity’
culture vessels, as a step towards the engraftment of such
aggregates in nude mice. We envisage that such models
will initially comprise combinations of xenograftable
tumours derived directly from primary clinical material,
rather than pre-adapted cell lines, in combination with the
immortalized stromal cells; however, such combinations
could substitute purified primary tumour cells from invasive
or in situ carcinoma types.

Available online http://breast-cancer-research.com/content/6/1/22
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Conclusion
Good models for preclinical testing must not only repro-
duce the pathology and behaviour of human tumours, but
must also be highly reproducible with predictable end-
points. To enable mouse xenograft models to be used in
routine screening of preventative and therapeutic strate-
gies, they must reflect the cellular composition of ‘real’
tumours but also be simple to construct and preferably not
too costly. Barriers to progress include an attitude that
animal model and tumour cell line development is not criti-
cal research, restricted access to existing animal models
and, finally, difficulties that pertain to the direct access and
use of fresh clinical materials on a routine basis. Although
considerable difficulties will be encountered in the genera-
tion and use of such complex models, their potential value
in the longer term is such that every effort should be made
to develop them.
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