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Abstract

Introduction: There is a major need to better understand the molecular basis of triple negative breast cancer
(TNBC) in order to develop effective therapeutic strategies. Using gene expression data from 587 TNBC patients we
previously identified six subtypes of the disease, among which a mesenchymal-stem like (MSL) subtype. The MSL
subtype has significantly higher expression of the transforming growth factor beta (TGF-β) pathway-associated
genes relative to other subtypes, including the TGF-β receptor type III (TβRIII). We hypothesize that TβRIII is tumor
promoter in mesenchymal-stem like TNBC cells.

Methods: Representative MSL cell lines SUM159, MDA-MB-231 and MDA-MB-157 were used to study the roles of
TβRIII in the MSL subtype. We stably expressed short hairpin RNAs specific to TβRIII (TβRIII-KD). These cells were then
used for xenograft tumor studies in vivo; and migration, invasion, proliferation and three dimensional culture studies
in vitro. Furthermore, we utilized human gene expression datasets to examine TβRIII expression patterns across all
TNBC subtypes.

Results: TβRIII was the most differentially expressed TGF-β signaling gene in the MSL subtype. Silencing TβRIII
expression in MSL cell lines significantly decreased cell motility and invasion. In addition, when TβRIII-KD cells were
grown in a three dimensional (3D) culture system or nude mice, there was a loss of invasive protrusions and a
significant decrease in xenograft tumor growth, respectively. In pursuit of the mechanistic underpinnings for the
observed TβRIII-dependent phenotypes, we discovered that integrin-α2 was expressed at higher level in MSL cells
after TβRIII-KD. Stable knockdown of integrin-α2 in TβRIII-KD MSL cells rescued the ability of the MSL cells to migrate
and invade at the same level as MSL control cells.

Conclusions: We have found that TβRIII is required for migration and invasion in vitro and xenograft growth in vivo.
We also show that TβRIII-KD elevates expression of integrin-α2, which is required for the reduced migration and
invasion, as determined by siRNA knockdown studies of both TβRIII and integrin-α2. Overall, our results indicate a
potential mechanism in which TβRIII modulates integrin-α2 expression to effect MSL cell migration, invasion, and
tumorigenicity.
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Introduction
The term ‘triple negative breast cancer’ (TNBC) is used to
classify the 10% to 20% of all breast cancers that lack estro-
gen receptor (ER) and progesterone receptor (PR) expres-
sion as well as amplification of the human epidermal
growth factor receptor 2 (HER2) [1]. Disease heterogeneity
and the absence of well-defined molecular targets have
made treatment of TNBC challenging. There is a major
need to understand better the molecular basis of this type
of breast cancer in order to develop effective therapeutic
strategies [1]. In a previous study, we performed gene
expression (GE) analyses and identified six distinct mo-
lecular TNBC subtypes with unique biological drivers
[2], including one that was enriched for mesenchymal-
associated genes termed mesenchymal-stem like (MSL).
The MSL subtype is characterized by increased expres-
sion of genes related to transforming growth factor beta
(TGF-β) signaling as well as pathways that play roles in
extracellular matrix (ECM), focal adhesion, cell motility
and cell differentiation [2]. Of note, TGF-β receptor
type III (TβRIII) (gene symbol: TGFBR3) was among the
differentially expressed TGF-β signaling components in
the MSL subtype.
The TGF-β signaling pathway has been implicated in

cancer initiation and progression through tumor cell au-
tonomous and non-autonomous signaling [3,4]. Initially
identified as a tumor suppressor and then as a mediator
of tumor progression, TGF-β signaling demonstrates di-
verse capabilities in cancer. The TGF-β pathway suppresses
tumor growth through regulation of epithelial and stromal
cell signaling [5]. Dysfunction of the pathway leads to car-
cinoma progression and metastasis [3]. While there has
been significant focus on TGF-β receptor type I (TβRI) and
TGF-β receptor type II (TβRII), research on TβRIII has
lagged. Prior studies have demonstrated that TβRIII can
regulate TGF-β signaling either via delivering TGF-β2
ligand to TβRII [6-9] or by binding to the cytoplasmic
domain of TβRII, forming an active TβRI-TβRII signal-
ing complex [10-13]. Currently, analysis of gene expres-
sion data sets generated from multiple cancer types
indicates that TβRIII expression is decreased in higher-
grade cancers [14-17]. However, the role of TβRIII is
controversial in breast cancer, since it has been reported
that TβRIII can act as either a tumor suppressor or pro-
moter in this cancer [18,19].
In the current study, we focused our investigations on

the functional role of TβRIII in the MSL subtype of
TNBC. We used a loss-of-function approach in represen-
tative MSL cell lines to demonstrate that TβRIII is re-
quired for maintenance of tumorigenicity in MSL TNBC
cell lines and that regulation of integrin-α2 (gene symbol:
ITGA2) expression is mechanistically involved in the ob-
served phenotypes. This study demonstrates that TβRIII
promotes the in vivo growth of a subset of TNBC and
provides a pre-clinical rationale for consideration of TβRIII
as a potential target for further discovery efforts.

Materials and Methods
Cell culture
SUM159 cells (Asterand, Detroit, MI, USA) were main-
tained in (Dulbecco’s) Modified Eagle’s Medium: Nutri-
ent Mixture F12 ((D)MEM-F12, GIBCO, Grand Island,
NY, USA) supplemented with 5% fetal bovine serum
(FBS) (GIBCO) and 0.5 μg/ml hydrocortisone. MDA-
MB-231 and MDA-MB-157 (ATTC, Manassas, VA,
USA) were maintained in (D)MEM (GIBCO) supple-
mented with 10% FBS. Stable TβRIII-KD SUM159 cell
lines were generated by lentiviral infection with virus
carrying four independent short hairpin RNA (shRNA)
clones (sequence-verified shRNA, pLKO.1-puro),
(Sigma-Aldrich, St. Louis, MO, USA), Mission shRNA li-
brary #SHCLNG-NM_003243: clone#TRCN0000033433
(TβRIII-KD), clone#TRCN0000359000 (TβRIII-KD2),
clone#TRCN0000359001 (TβRIII-KD3), and clone#
TRCN0000359081 (TβRIII-KD4)) followed by puromycin
selection (Invitrogen-Life Technology, Inc, Carlsbad, CA,
USA). MDA-MB-231 and MDA-MB-157 were stably in-
fected with clone# TRCN0000033433. Integrin-α2 was
stably knocked down in TβRIII-KD MSL cells using
lentiviral particles carrying shRNA to integrin-α2 (α2-
KD) (Sigma-Aldrich, Mission shRNA validated library,
#SHCLNG-NM_002203, clone#TRCN0000308081).

Three-dimensional culture assay
The wells in 48-well plates were coated with 50 μl of growth
factor reduced BD Matrigel (BD Biosciences #356231,
San Jose, CA, USA) and allowed to polymerize at 37°C
for 15 minutes. Then, 5 x 105 cells were resuspended in
200 μl of growth factor reduced BD Matrigel and plated
onto the matigel-coated wells. Plates were incubated for
30 minutes after which 1 ml of media was added to the
top of the matrigel. Media was replenished every 48 hours.
Images were taken at day six. Quantification of the images
was performed using Fiji Software.

Cell proliferation assays
Cell counts
Cells were plated into six-well plates at a density of 1.25 x
105 cells/well. The following day cells were treated with
1 ng/ml TGF-β1 (R&D Systems, #102-B1, Minneapolis,
MN, USA) and TGF-β2 (R&D Systems, #102-B2). After
72 hours treatment with TGF-β, viable cells were counted.

3H-Thymidine incorporation assay
A total of 2.5 × 104 cells were plated in a 24-well dish
and allowed to grow overnight. The next day the medium
was aspirated and replaced with complete medium con-
taining +/−TGF-β1 or TGF-β2 (1 ng/ml). The cells were
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then subjected to [3H] thymidine incorporation assay as
previously described [20].

Migration and invasion assays
Magnetic attachable stencils migration assays
This migration method serves as a more reproducible alter-
native to the scratch assay. The use of magnetic force to at-
tach stencil to the multi-well plates is a new strategy that
creates defined and reproducible cell-free voids for quanti-
tation of cell migration and has been well characterized and
described by Ashby et al. [21]. Magnetic attachable stencils
(MAtS) were attached to the surfaces of each well of a 12-
well plate by placing a platform with magnets underneath
and in direct contact with the 12-well plate. Cells were then
plated in triplicate at 7.5 x 105 cells per well around the
MAtS in serum-free media. The next day the MAtS were
removed and cells were treated with 1 ng/ml TGF-β1
(R&D Systems, #102-B1) and 1 ng/ml TGF-β2 (R&D Sys-
tems, #102-B2). Gap closure was quantified (Tscratch soft-
ware) at both 0 and 24 hours and percent of closure
determined with the following equation: percent of closure
= average of ((gap area: 0 hour) – (gap area: 24 hours))/(gap
area: 0 hour) using images from 12 different microscopic
fields per well (4X magnification).

Transwell assays
Migrations (Costar, #3422, Tewksbury, MA, USA) were
conducted by plating 2.5 x 104 cells in the top of the trans-
well and media with 10% FBS in the bottom of the well to
act as a chemoattractant. Cells were fixed in 4% paraformal-
dehyde and stained with 4′, 6-diamidino-2-phenylindole
(DAPI). Quantification was performed by taking pictures of
multiple regions of the membrane after which cells’ nuclei
were counted using Metamorph software. The same migra-
tion assay was used to measure blocked integrin-α2 func-
tion. The TβRIII-KD cells were incubated for 30 minutes
with integrin-α2 blocking antibody (Abcam, #ab24697,
Cambridge, MA, USA) washed two times with PBS and
plated in the top of the transwell. Invasion assays were
conducted by plating 5 x 105 cells in serum-free media
in the upper chamber, pre-coated with growth factor re-
duced matrigel. In the bottom chamber (D)MEM with
10% FBS was used as a chemoattractant (BD Biosci-
ences, #354483). Cells that had invaded through the
matrigel were fixed in 4% paraformaldehyde and stained
using DAPI. Quantification of cells that invaded into the
matrigel was performed using the same protocol as de-
scribed for the transwell assays.

Xenograft tumor studies
One milllion cells embeded in collagen were implanted
into the number four gland of six- to eight-week-old
female athymic nude- Foxn1nu/nu mice (purchased from
Harlan Sprague- Dawley, Inc., Indianapolis, IN, USA).
Mice were monitored weekly for tumor growth. Tumor
measurements were performed once a week for five
weeks after palpable tumors formed. Tumor volume was
measured at the indicated times with calipers, and tumor
volumes were calculated as width2 x length/2. All mouse
experiments were approved by the Vanderbilt University
Institutional Animal Care and Use Committee (IACUC).

Luciferase reporter assay
Cells were seeded at a density of 2 X 104 cells/well in 12-
well tissue culture plates. The following day, the cells were
transiently transfected using Transfectin lipid reagent fol-
lowing the manufacturer’s protocol (Bio-Rad #170-3351,
Hercules, CA, USA). Cells were transfected with 1.5 μg
3TP-Lux [22] or CAGA(9)-Luc [23]. pRL-CMV-renilla
(Promega #E2261, Madison, WI, USA) was co-transfected
and used as an internal control to correct for transfection
efficiency. Eighteen hours after transfection, cells were
treated with 1 ng/ml TGF-β1 or TGFβ-2 (R&D Systems,
#102-B1 and #102-B2, respectively). Twenty-four hours
after TGF-β treatment, cells were harvested and assayed for
promoter specific luciferase activity using a Dual-Luciferase
Reporter Assay System (Promega #E1910) according to the
manufacturer’s protocol. Luciferase activity was measured
using a BD/Pharmigen Monolight 3010 luminometer.

RNA preparation and quantitative PCR
RNA was isolated and purified using an RNeasy Mini
Kit and an RNase-Free DNase Set (Qiagen, Valencia, CA,
USA). A total of 750 μg of RNA was used to synthesize
cDNA using Superscript III reverse transcriptase as de-
scribed by the manufacturer (Invitrogen). Bio-Rad iCy-
cler and CFX96 machines were used for qPCR employing
Power SYBR Green (Applied Biosystems, Carlsbad, CA,
USA) or SsoAdvanced SYBR Green Supermix (Bio-Rad),
respectively. Ct values were normalized to GAPDH for
statistical analyses. Primer sequences are available in
Additional file 1.

Immunoblotting
Standard protein preparation and electrophoresis proce-
dures were used as described [4]. Western membranes
were blocked in 5% milk and incubated with primary anti-
body overnight. The antibody list with concentrations and
the catalog numbers are available in Additional file 1.

Flow cytometry
Cells were detached using Accutase (Life Technologies),
pelleted, washed and counted. One million cells were incu-
bated with TβRIII antibody (Cell Signaling, #5544, Danvers,
MA, USA) for 30 minutes, washed, and then incubated at
4°C with Alexa Fluor 488 conjugated secondary antibody
(Life Techologies, #A11034) for 30 minutes. One million
cells were labeled with fluorescence-conjugated integrin-α2
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antibody (BioLegend, #314308, San Diego, CA, USA) for
30 minutes at 4°C. Cells were washed three times then ana-
lyzed on a FACSCalibur flow cytometer (Becton Dickinson,
San Jose, CA, USA) using CellQuest Pro software. Data
were analyzed with FlowJo software (Tree Star).

Microarray gene expression analysis
Public database analysis
Human tissue and cell line microarray datasets were an-
alyzed using GeneSpring GX 12.0 microarray analysis
software (Agilent). Previously published TNBC gene ex-
pression profiles (n = 587 patients) [2] consisting of pub-
licly available microarray data sets (the GEO registration
numbers are referenced in Additional file 1) were obtained
and processed as previously described and were in compli-
ance with ethical requirements [2]. Comparisons between
expression of TGFBR3 and ITGA2 for different TNBC
subtypes were performed in R 3.0.1 [24] using the t test
function for paired two-tailed Student’s t-tests and graph-
ically represented using ggplot2 [25].

In vitro three-dimensional culture analysis
vRNA was extracted from SUM159 three-dimensional cul-
ture samples and hybridized to the human gene 1.0ST
array, scanned with Affymetrix using AGCC v. 3.2.4 and
then analyzed in R 3.0.1 using the oligo package. Samples
were normalized with the RMA algorithm, genes were an-
notated with the pd.hugene.1.0.st.v1 package, and differen-
tial gene expression analysis was conducted using the
limma package. The three-dimensional culture microarray
data discussed in this publication have been deposited in
the National Center for Biotechnology Information
(NCBI)’s Gene Expression Omnibus [26] and are accessible
through GEO Series accession number GSE54756 [27].

Statistical analysis
All data were analyzed using the unpaired two-tailed
Student’s t test (GraphPad Prism 5). Error bars show
mean ± SEM. A two-sided P value less than 0.05 was
considered significantly different.

Results
Human mesenchymal stem-like triple negative breast
tumors and representative cell lines have increased
TβRIII expression
Using a gene expression data set generated from 587 TNBC
tumors, we examined the relative mRNA levels of TGF-β
receptors and ligands across subtypes of TNBC. We ob-
served elevated expression of TGFBR3 in basal-like1 (BL1),
mesenchymal (M) and MSL tumors (Figure 1A). The high-
est relative level of TGFBR3 expression was in the MSL
subtype (Figure 1B). Average probe intensities for the TGF-
β receptors I and II as well as TGF β ligands 1 and 3 were
also elevated in the MSL subtype in comparison to the rest
of the TNBC subtypes (Additional file 2: Figure S1). Simi-
larly, analysis of TGFBR3 gene expression across a panel of
TNBC cell lines, representative of the various subtypes,
demonstrates that the M and MSL subtypes have relatively
higher levels of TGFBR3 mRNA (Figure 1C-D). These find-
ings were validated by qPCR (Figure 1E) and immunoblot
analyses for TβRIII protein levels (Figure 1F). Although the
TNBC M subtype cell lines also showed increased levels of
TβRIII expression, we focused our studies of this receptor
on the MSL subtype as their expression is more consistent
with human datasets (Figure 1A-B).

Knockdown of TβRIII in MSL TNBC cells leads to
decreased tumorigenicity in vivo
In order to determine the significance of the TβRIII expres-
sion in MSL TNBC cell behavior, we knocked down TβRIII
in MSL cells and performed orthotopic xenograft tumor
studies. We used a panel of four shRNA expression vectors
to optimize TβRIII knockdown, as validated by immunoblot
and flow cytometry analyses (Figure 2A-C). We utilized im-
munocompromised nude mice to establish orthotopic xeno-
graft tumors from cell lines representing the MSL subtype
of TNBC with and without TβRIII knockdown. Initially we
tested SUM159 cells with two shRNA expression vectors
(TβRIII-KD and TβRIII-KD4) to eliminate off target effects
of the shRNA (Additional file 2: Figure S2). After establish-
ing that both expression vectors resulted in a similar pheno-
type, we used a single shRNA (TβRIII-KD) in all subsequent
experiments across three MSL cell lines. Knockdown of
TβRIII in the SUM159 and MDA-MB-231 MSL cell lines
significantly decreased xenograft tumor growth (Figure 2D-
E). MDA-MB-157 showed inconsistent results (Additional
file 2: Figure S3A) and after further investigation we discov-
ered that the TβRIII-KD tumors expressed TβRIII (Add-
itional file 2: Figure S3B). Thus, either there was a selection
against the knockdown in vivo and, therefore, the tumor
cells expressed TβRIII, or there was a small subpopulation
of MDA-MB-157 cells at the start of the experiment that
retained expression and seeded the tumor growth. Regard-
less, both explanations provide further evidence for the
tumor-promoting effect of TβRIII.

Knockdown of TβRIII in MSL cell lines does not affect cell
proliferation or viability
Since TβRIII-KD markedly decreased the tumorigenic
potential of mesenchymal TNBC cells, we further ex-
plored whether this was due to a proliferation defect.
TβRIII can bind to all TGF-β ligands but with highest
affinity for TGF-β2 [29,30]; therefore, cells were treated
with TGF-β2 in addition to TGF-β1. Both controls and
TβRIII-KD MSL cell lines responded similarly to the li-
gands (Figure 3A-B). TβRIII-KD did not alter the prolif-
eration rates of MSL cell lines (SUM159, MDA-MB-231
and MDA-MB-157) by live cell counts (Figure 3A) or
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3H-thymidine incorporation assay (Figure 3B). Consist-
ent with an intact TGF-β signaling pathway [22,23] we
have observed an increase in phospho-SMAD2 following
ligand treatment (Additional file 2: Figure S4). In order
to examine cell viability and determine whether knock-
down of TβRIII influenced apoptosis, we analyzed cleaved-
caspase 3 and cleaved-PARP and we did not detect any
difference between control and TβRIII-KD MSL cells
(Figure 3C).
Knockdown of TβRIII in MSL cells impairs motility,
invasion and the ability to form invasive protrusions in
three-dimensional cultures
Using a validated method (please see methods section
for details) for measurement of cell migration [21], we
found that TβRIII-KD significantly decreased the migra-
tion of SUM159, MDA-MB-231 and MDA-MB-157 cells
(Figure 4A-C). Treatment with TGF-β ligands had no ef-
fect on migration. In order to determine the invasive
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properties of MSL lines we analyzed their ability to mi-
grate through a barrier using an invasion transwell assay.
TβRIII-KD impaired the ability of the MSL cell lines to
invade through matrigel pre-coated transwells and the
addition of TGF-β ligands had little effect on invasion in
either controls or knockdowns (Figure 4D-F). Next, we
examined the effect of TβRIII-KD on the ability of MSL
cells to form colonies in three-dimensional matrigel
culture. After five days in culture, SUM159 cells with
TβRIII-KD had smooth edges around cell spheres while
control cells had multiple protrusions invading into the
surrounding matrix (Figure 4G). These results were
quantified by calculations of the perimeter, which show
a significant difference between controls and TβRIII-KD
(Figure 4H). Overall, these data indicate that TβRIII
modulates migration and invasion, independent of TGF-
β stimulation, in MSL cells. To further investigate TGF-
β pathway signaling [31] in the MSL lines we used
standard CAGA-luc (Additional file 2: Figure S5A) and
3TP-lux (Additional file 2: Figure S5C) reporter assays for
measurement of TGF-β activity [22,23]. Assays were per-
formed either in the presence of TGF-β1 or TGF-β2 ligands
and compared to untreated controls [30,32]. In addition,
we performed qPCR analysis for SMAD7 (Additional file 2:
Figure S5B) and PAI-1 (Additional file 2: Figure S5D)
gene expression as readout for downstream targets for
canonical and non-canonical TGF-β activity, respect-
ively [33,34]. The results of both assays indicate that
knockdown of TβRIII does not modulate either arm of
the TGF-β signaling pathway. Thus, MSL lines with
TβRIII knockdown have resulting phenotypic changes
without concomitant changes in the TGF-β signaling
pathways measured. Considering these results and know-
ing that TβRIII can also bind to bone morphogenetic pro-
teins (BMPs) [35], we treated the engineered MSL cell
lines with BMP4. We did not observe significant changes
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in Smad1/5/8 phosphorylation in TβRIII-KD versus con-
trol MSL cells (data not shown). The results suggest that
TβRIII modulates the tumorigenic potential of MSL
TNBC cells through other signaling pathways.
Knockdown of TβRIII is associated with increased
expression of integrin-α2 in MSL TNBC cells
To determine which genes and/or signaling pathways are
significantly altered in MSL cells after TβRIII knockdown,
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cell line with TβRIII-KD in comparison to control with or without TGF-β1 and TGF-β2 treatment; graph bars represent the mean of three
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we performed gene expression microarray analyses on
SUM159 cells grown in three-dimensional cultures. The
integrin signaling pathway, along with other cell adhesion
pathways, were among the most significant pathways
differentially expressed in TβRIII-KD MSL cells relative to
control cultures (Additional file 3: Table S1). Analysis of
individual genes of the integrin pathway revealed that
ITGA2 was a top gene that was significantly increased
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upon TβRIII knockdown (Additional file 3: Table S2).
In vitro qRT-PCR analysis indicates a statistically signifi-
cant (above two-fold) upregulation of integrin-α2 in the
TβRIII-KD MSL cells (Figure 5A-C). The upregulation of
integrin-α2 was further validated by flow analysis across
all MSL (Figure 5D-F).

TβRIII modulation of integrin-α2 expression is required
for the migratory and invasive MSL cell line phenotypes
Using a clinically relevant, spontaneous mouse model of
breast cancer progression and metastasis, Ramirez et al.
demonstrated that integrin-α2β1 acts as a tumor suppres-
sor and α2-null cells were more motile and invasive [36].
The in vivo and in vitro findings were further correlated
with analysis of microarray gene expression datasets of
human breast and prostate cancers, which showed a
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correlation between decreased expression of ITGA2 and
poor prognosis. Considering this role of integrin-α2 in
breast cancer, we hypothesized that the decrease in migra-
tion and invasion upon TβRIII-KD in MSL cells could be
rescued by concomitant knockdown of integrin-α2. To
test our hypothesis, we stably knocked down integrin-α2
(α2-KD) in the MSL TβRIII-KD cells and performed mi-
gration and invasion assays (Figure 6A-B and Additional
file 2: Figure S6A-B). Knockdown of integrin-α2 was suffi-
cient to reverse the migration (Figure 6C and Additional
file 2: Figure S6C) and invasion (Figure 6E and Additional
file 2: Figure S6D) phenotype of MSL cells with TβRIII-
KD to those of control cells. In addition, using an
integrin-α2 neutralizing antibody we rescued the migra-
tory phenotype (Figure 6D) in a manner similar to that
observed after α2-KD in TβRIII-KD cells. Knelson and
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colleagues showed that knockdown of TβRIII leads to
diminished fibroblast growth factor 2 (FGF2)-mediated
ERK phosphorylation [37]. Consistent with this previous
study, after knockdown of TβRIII in the MSL cells, the
phospho-ERK levels decreased and were restored in the
cells after simultaneous integrin-α2 and TβRIII knock-
down (Figure 6F and Additional file 2: Figure S6E).
Relationship between gene expression of TβRIII and
integrin-α2 in TNBC patient dataset
To further investigate the association between TβRIII
(TGFBR3) and integrin-α2 (ITGA2) in TNBC, we used the
TNBC patient dataset described in Figure 1A [2] to analyze
the relationship between TGFBR3 and ITGA2 gene expres-
sion. Our results indicate an inverse correlation between
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ITGA2 and TGFBR3 expression across TNBC subtypes.
In particular, we see the strongest inverse correlation in
TNBC subtypes with either high TGFBR3 expression
(MSL; P = 5.274e-06); or low TGFBR3 expression (basal-
like 2; with P = 5.16e-07 and Luminal AR (LAR); with
P = 1.759e-07) (Figure 7A-B). The clinical association
between ITGA2 and TGFBR3 expression is relevant as it
further links the impact of the interplay between the
TGF-β and integrins pathways in TNBC.

Discussion
Currently, the functional role of TβRIII is controversial
in breast cancer. Some reports suggest a tumor suppres-
sive function of TβRIII [18], while other reports indicate
a tumor-promoting role [19,38-40]. Through GE analysis
of 587 TNBC patients, we demonstrated that the TGFBR3
is expressed at a higher level and most consistently in the
MSL subtype of TNBC. Furthermore, we have identified
MSL cell line models that express high levels TGFBR3. To
understand better the molecular basis of TGFBR3 GE
we used representative MSL cell lines and a TβRIII loss-
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migratory and invasive cell line phenotypes were further
associated with modulation of the integrin- α2 pathway.
Previously, the loss of TβRIII expression was corre-

lated with progression from a pre-invasive to an invasive
state of breast cancer [18]. In addition, restoring expres-
sion of TβRIII in a breast cancer cell line led to a de-
crease of tumor invasiveness in vitro and tumor invasion
and metastasis in vivo [18]. Other studies have demon-
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cancers, especially TNBC [2], we took a more focused
approach to study the role of TβRIII in breast cancer
progression. Since it has been previously established that
TβRIII can modulate TGF-β signaling [6,43-46], it is not
surprising that TβRIII has been shown to have both pro-
and anti-tumorigenic effects in breast cancer. Our study
shows that knockdown of TβRIII in MSL cells appears
not to alter the cells’ ability to respond to TGF-β either
through the canonical and non-canonical arms of the
pathway, or the BMP pathway. Rather, we observed that
loss of TβRIII results in a decrease in cell motility and
invasion. To further investigate potential mechanisms by
which TβRIII regulates these cell functions, we performed
gene expression analysis on cells after TβRIII knockdown.
We found that the expression of genes involved in integrin
signaling and cell-ECM interactions were significantly dif-
ferentially regulated after TβRIII knockdown.
Previous work has shown that inhibition of integrins

can reverse the transformed state of breast cancer cells
and that α2β1 integrin can play a role in cancer progres-
sion [47]. A more recent study demonstrated that α2β1 in-
tegrin acts as a metastasis suppressor in breast cancer,
where migratory and invasive abilities of tumor cells are
enhanced after loss of α2β1 integrin expression [36]. This
supports our finding wherein a decrease in the migratory
and invasive phenotype, upon TβRIII knockdown, was
linked to increased integrin- α2 expression levels. The pre-
cise mechanistic link between TβRIII and integrin- α2
expression levels is unknown. The only other association
between integrins and TβRIII was reported in MCF10A
breast epithelial cells where TβRIII was shown to regulate
integrin- α5 localization [48].
Knockdown of integrin- α2 in TβRIII-KD MSL TNBC

cells reverses the loss of motility and invasion that occurs
upon TβRIII knockdown alone. One explanation for the
observed rescue of migratory and invasive phenotype is
through the regulation of ERK phosphorylation possibly
mediated by integrin- α2. As shown in Figure 6, upon
knockdown of TβRIII we observed a decrease of phospho-
ERK simultaneous with an increase in integrin-α2. Fur-
thermore, upon knockdown of integrin-α2 in TβRIII-KD
cells we see an increase in phopho-ERK suggesting that
integrin-α2 is suppressing ERK activity. This is in agree-
ment with other studies that have shown that integrins
can regulate ERK activity [49-51]. In addition, studies have
demonstrated that continuous ERK activity can regulate
invasion and migration by regulating transcription of
genes or directly regulating enzymes necessary for cell
movement [52,53]. Therefore, the increase in phospho-
ERK seen upon integrin-α2 knockdown could be an ex-
planation for the increase in mobility of our TβRIII-KD
cells. Our data show a correlation between TβRIII’s modu-
lation of migration and invasion and the reduction of
phospho-ERK levels, possibly mediated by integrin-α2.
Further studies will be required to elucidate the precise
mechanistic relationship between TβRIII and integrin-α2.

Conclusions
In summary, our studies using MSL TNBC models dem-
onstrate that TβRIII is an oncogenic driver of migration
and invasion in vitro as well as tumor growth in vivo. Fur-
ther mechanistic characterization of MSL TNBC would
provide insights on how to use this protein and/or signal-
ing pathway as a biomarker or to provide insights to new
targets for therapy. Considering the limitations of in vitro
studies, it is necessary to develop a mouse TβRIII breast
cancer model to further elucidate the role of this mol-
ecule. Such a model would provide more accurate obser-
vations for studying the role of TβRIII in the tumor
microenvironment. The results of this study provide
mechanistic insight into the role of TβRIII in TNBC and
highlight an association between TβRIII and integrin-α2
expression and regulation of cell motility, invasion and
tumorigenicity. In addition, this study provides a pre-
clinical rationale for consideration of TβRIII as a potential
target for further discovery efforts.

Additional files

Additional file 1: Additional information about primer sequences,
antibodies and list of GEO registration numbers [2] are referenced
in methods section of the manuscript.

Additional file 2: Figure S1. Average probe intensities for TGF-β
receptors and ligands across 587 TNBC patients. A-B) Quantification of
TGFBR1 and TGFBR2 mRNA expression across TNBC tumor subtypes. C-E)
Quantification of TGFB1, TGFB2 and TGFB3 mRNA expression. Figure S2.
Knockdown of TβRIII with two independent shRNA vectors decreases
orthotopic tumor volume of SUM159 xenografts. Bars represent mean
volume of eight tumors. Figure S3. MDA-MB-157 expresses TβRIII after
implanted in vivo thus does not exhibit significant change in tumor
growth. A) Bars represent mean tumor volume of 10 tumors. B) qRT-PCR
comparison of TGFBR3 expression in MDA-MB-157 cells before implantation
and from tumors. Figure S4. pSMAD2 and TβRII levels indicate that TGF-β
signaling is intact in TβRIII controls and TβRIII-KD MSL lines. Immunoblot
analysis. Figure S5. TGF-β signaling appears to remain functional in
TβRIII-KD MSL cell lines. A) Controls and TβRIII-KD MSL cells were
examined for CAGA-Luc expression. Bars represents mean of four
replicates. B) qRT-PCR analysis for SMAD7 mRNA expression; bars
represent the mean of three replicates. C) 3TP-lux expression. Bars
represent mean of four replicates. D) qRT-PCR analysis for PAI-1 mRNA
expression; graph bars represent the mean of three replicates.
Figure S6. Knockdown of integrin- α2 (α2-KD) in TβRIII-KD MSL cells
reverses migratory and invasive TβRIII-KD phenotypes. A) qRT-PCR
analysis. B) Flow cytometry analysis of α2-KD; arrow pointing to the
left shows a shift towards a decrease in integrin-α2 with TβRIII-KD
after α2-KD. C) Transwell migration assay with α2-KD in TβRIII-KD;
bars represents a mean of three replicates. D) Transwell invasion assays
with inserts pre-coated with matrigel to test for invasion by α2-KD in
TβRIII-KD cells. E) Immunoblot analysis for phospho-ERK with TβRIII-KD
and TβRIII-KD/α2-KD. For all figures, error bars represent SEM, ns = not
significant and *P = <0.05, **P = <0.01, ***P = <0.001.

Additional file 3: Table S1. Integrin pathway is among significantly
changed signaling pathways in SUM159 TβRIII-KD three-dimensional
culture system. Genes were considered differentially expressed and
included for pathway analysis if they met a cutoff of |log2FC| >0.5 and
FDR adjusted P value <0.05. Pathway analysis was performed by querying

http://www.biomedcentral.com/content/supplementary/bcr3684-S1.pdf
http://www.biomedcentral.com/content/supplementary/bcr3684-S2.pdf
http://www.biomedcentral.com/content/supplementary/bcr3684-S3.pdf
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against the C2 Canonical Pathways in the Molecular Signature
Database (MSigDB). Table S2. Integrin family members in SUM159 cells
three-dimensional cultures with TβRIII-KD. Table represents list of integrin
family genes from microarray analysis. Genes are ordered based on
adjusted P values (low to high). ITGA2 was the top integrin gene with
lowest P value (P = 0.003).
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