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Abstract

A series of recent studies have demonstrated that the retinoblastoma tumor suppressor (RB) pathway plays a critical
role in multiple clinically relevant aspects of breast cancer biology, spanning early stage lesions to targeted
treatment of metastatic disease. In ductal carcinoma in situ, multiple groups have shown that dysregulation of the
RB pathway is critically associated with recurrence and disease progression. Functional models have similarly
illustrated key roles for RB in regulating epithelial-mesenchymal transition and other features contributing to
aggressive disease. Invasive breast cancers are treated in distinct fashions, and heterogeneity within the RB pathway
relates to prognosis and response to commonly used therapeutics. Luminal B breast cancers that have a poor
prognosis amongst estrogen receptor-positive disease are defined based on the expression of RB-regulated genes.
Such findings have led to clinical interventions that directly target the RB pathway through CDK4/6 inhibition which
have promise in both estrogen receptor-positive and Her2-positive disease. In contrast, RB loss results in improved
response to chemotherapy in triple-negative breast cancer, where ongoing research is attempting to define intrinsic
vulnerabilities for targeted intervention. These findings support a wide-reaching impact of the RB pathway on dis-

ease that could be harnessed for improved clinical interventions.

Background

The retinoblastoma tumor suppressor (RB) is a potent
regulator of cellular proliferation whose status provides
critical information related to breast cancer prognosis
and therapeutic interventions.

Although initially identified in a pediatric eye tumor,
the last 30 years of research have demonstrated that RB
plays an important role in many cancers. Loss of hetero-
zygosity at the Rbl locus represents the seminal basis
for the development of retinoblastoma, and was the
basis through which the gene encoding RB was identi-
fied [1-3]. RB has no known enzymatic activities, but
functions in a host of processes by mediating protein in-
teractions that are important for multiple phenotypes
[4-7]. It is well known that RB binds to the E2F family of
transcription factors and can repress the activity of E2F,
leading to the attenuation of many genes that are re-
quired for cell cycle progression. This is very much the
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canonical view of RB in cell cycle control, although one
should note that RB exerts many important affects that
are independent/complementary. For example, RB can
control chromatin cohesion, chromatin structure,
tumorigenic proliferation, differentiation, and cell death
through mechanisms beyond the dogmatic influence on
E2F activity [4,7,8].

In spite of this complexity, there is wide agreement
that RB must be inactivated for cell cycle progression,
and thereby cell division, to occur. In normal physiology
this is achieved via the phosphorylation of RB, which is
catalyzed by cyclin-dependent kinases (CDKs) [9-11]. In
particular, CDK4 and CDK6 are activated in response to
the accumulation of D-type cyclins by mitogenic signal-
ing and initiate the phosphorylation of RB [9,12,13].
CDK2 also plays a role in the phospho-inactivation of
RB [14,15]. The biochemical importance of these pro-
cesses was demonstrated using mutants of RB that can-
not be phosphorylated and are potent inhibitors of cell
cycle progression in the vast majority of tumor cells
[10,11,16]. Furthermore, the CDK4/6 inhibitor pl6ink4a
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is dependent on RB for function in suppressing cell cycle
progression and inducing senescence [17-20]. Together,
the pathway of CDK4/6, RB, and pl6ink4a define the
proximal RB pathway (Figure 1). Importantly, this path-
way demonstrates mutually exclusive disruption in can-
cer [21-24]. For example, tumors with loss of pl6ink4a
will retain wild-type RB, while tumors mutant for RB
will express pl6ink4a at very high levels (Figure 2).

Although the RB pathway is often simplified to the
level that all perturbations are viewed as being equiva-
lent, there are clearly unique features of CDK4/6,
pléink4a, and RB biology. For example, CDK4/6 and
cyclin D; have been shown to have important targets be-
yond the phosphorylation of RB [25-27]. pl6ink4a and
RB are members of gene families, and compensatory
mechanisms can mitigate the effects of loss of these
tumor suppressors in specific settings, most notably in
mouse models [28-30]. Additionally, phosphorylation of
RB can be regulated by a plethora of mechanisms be-
yond CDK4/6 [9,31] and, due to its downstream position
in the pathway, RB loss has a particularly significant ef-
fect on cell cycle control.

The analysis of many tumor types has indicated that
the RB pathway is perturbed in some form or another in
most cancers. However, there is often a tumor-specific
tropism for the mechanisms of pathway inactivation
[21,23,24,32]. For instance, pancreatic cancers frequently
lose pl6ink4a, while osteosarcomas often lose RB. There
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is thus both common loss of the pathway and intrinsic
diversity based on the mechanism through which the
pathway is inactivated.

In breast cancer, different subtypes of disease are dom-
inated by differential mechanisms of RB pathway inacti-
vation. Estrogen receptor (ER)-positive breast cancers
generally exhibit deregulation of the kinase components
CDK4/6 as a result of aberrant cyclin D; expression or
amplification [33-37]. Her2-positive breast cancers typic-
ally push on the pathway through D-type cyclins, and
similarly there are few cases that exhibit RB loss. In con-
trast, loss of the RbI gene and the RB protein has been
documented at high frequency in triple-negative breast
cancer (TNBC) [38,39] . In spite of these generalities,
one should note that any breast cancer can exhibit loss
of RB, loss of pl6ink4a, or amplification of cyclin Dy;
there is thus the opportunity to evaluate how these
events impinge on the underlying biology of disease and
the prognostic and therapeutic implications in the clinic.

Retinoblastoma tumor suppressor pathway
disruption in ductal carcinoma in situ

The majority of invasive breast cancers are believed to
develop from precursor lesions. In particular, ductal car-
cinoma in situ (DCIS) is considered the precursor to the
majority of breast cancers [40,41]. With standard use of
mammography, the frequency of DCIS diagnosis has
increased over 20-fold in the last 20 years [39]. The
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Figure 1 Schematic of the retinoblastoma tumor suppressor pathway. Diverse mitogenic and oncogenic signals induce the expression of
D-type cyclins that activate CDK4/6. The resultant kinase activity is balanced by the CDK4/6 inhibitor p16ink4a. Typically, p16ink4a is at low levels
in cells but can be induced by oncogenic or DNA damage stresses to suppress CDK4/6 activity. These signals coalesce to regulate the phosphoryl-
ation of the retinoblastoma tumor suppressor (RB). When active (unphosphorylated/hypophosphorylated), RB represses the activity of the E2F
family of transcription factors and limits the expression of a program of genes required for S-phase (for example, MCM7 and Cdc6é) and G2/M
progression (for example, Cdk1 and cyclin B;). Phosphorylation relieves this transcriptional repression and allows for cell cycle progression. CDK,
cyclin-dependent kinase; P, phosphorylated.
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Figure 2 Reciprocal inactivation of the retinoblastoma tumor suppressor pathway in cancer. There are three primary mechanisms through
which the retinoblastoma tumor suppressor (RB) pathway is inactivated in cancers that exhibit signature features. (Top) RB loss by genetic or
epigenetic mechanisms results in the loss of the RB protein that is typically accompanied by exceedingly high levels of p16ink4a and relatively
low levels of cyclin D;. (Middle) Cyclin Dy or CDK4/6 overexpression amplification is associated with intact RB and the relatively low levels of
p16inkda observed in normal tissue. (Bottom) Loss of p16ink4a is associated with intact RB and conventional levels of cyclin D;, as would be

observed in a proliferative tissue. CDK, cyclin-dependent kinase; P, phosphorylated.

control rates for DCIS are very good and women with a
DCIS diagnosis are generally treated with minimally in-
vasive surgery (that is, lumpectomy) coupled with adju-
vant radiation therapy [42,43]. However, it is apparent
that most DCIS cases do not require radiation, and in
fact most women are overtreated [40]. In a review of
large clinical trials on the treatment of DCIS, the recur-
rence rate is approximately 30% with surgery alone but
approximately 15% with the inclusion of radiation. This
means radiation induces a significant clinical benefit.
However, ~70% of the women who were treated with ra-
diation would have not had their cancer return; they
were therefore overtreated. In contrast, there are ~15%
of women for whom an even more effective treatment is
needed. For these reasons there has been a lot of interest
in understanding determinants of recurrence and pro-
gression to invasive disease in DCIS.

Early functional studies from Tlsty’s group and others
suggested that the CDK4/6 inhibitor pl6ink4a could be
a particularly important factor in suppressing the pro-
gression of DCIS [44-46]. Such a model is consistent

with the finding that high levels of pl6ink4a represent a
significant barrier to oncogenic conversion. For example,
high levels of plé6ink4a in benign Nevi are believed to
contribute to potent suppression of melanoma [18].
Paradoxically, high levels of pl6ink4a, particularly in
conjunction with a high proliferation index, were associ-
ated with disease recurrence and progression [47]. Such
a combination of markers (high pl6ink4a and high pro-
liferation) is indicative of the loss of RB. This is sup-
ported by a multitude of studies showing that pl6ink4a
levels are very high in tumors that have lost RB by muta-
tion or through the action of viral oncoproteins [48].
Furthermore, only through the loss of RB can the cyto-
static effect of pl6inkda be bypassed [17]. Subsequent
work validated the primary findings in independent co-
horts [49,50]. Importantly, subsequent direct analysis of
RB loss in DCIS by optimized immunohistochemistry re-
vealed that RB loss is one of the strongest markers of
DCIS recurrence and progression that has been identi-
fied and does occur in tumors that express high levels of
plé6ink4a [51] (Figure 3). The prognostic significance of
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levels of pl16ink4a.

Figure 3 Representative staining patterns observed in ductal carcinoma in situ. (A,B,C) One case retains intact retinoblastoma tumor
suppressor (RB) and the relatively low levels of p16ink4a as observed in most tissues. (D,E,F) The other case has lost RB and expresses very high

RB

J

RB-pathway deregulation is significant in multivariate
models, and is true both as a single marker and in com-
bination with other determinants of DCIS biology, in-
cluding Her2 levels, Cox2 levels, and PTEN levels
[49-52].

Defining the mechanisms underlying the progression
of DCIS has been the subject of recent intense study.
Functionally, the transition between DCIS and invasive
breast cancer represents invasion through ductal myoe-
pithelium and basement membrane into the surrounding
tissue. Molecular analysis comparing DCIS with invasive
breast cancer demonstrated that one of the key differ-
ences between these disease states is the presence of epi-
thelial-mesenchymal transition (EMT) in invasive
cancer [53,54]. This finding emerged from independent
groups using unbiased gene expression profiling on mi-
crodissected tissues. Interestingly, several groups have
demonstrated that, in addition to its canonical effects on
proliferation, RB loss can lead to EMT or a partial EMT
[52,55,56]. Particularly in a variety of breast cancer
models, knockdown of RB led to altered morphology
and the expression of specific markers of EMT (for ex-
ample, vimentin) [56]. These outcomes were ostensibly
driven through the induction of the activity of EMT-
mediators Zebl and Slug. Similarly, in mouse models it
was observed that tumors which arise with Rb1 deletion
are particularly characterized by aspects of EMT [57].
Lastly, in models of DCIS progression using three-
dimensional cultures of MCF10A cells, RB deficiency
drove an altered gene expression program indicative of
loss of epithelial characteristics [52].

The results from these multiple lines of investigation
support a critical role for RB in DCIS progression. Most
probably, RB loss represents a particularly potent hit for

DCIS as it both relieves control over the cell cycle allow-
ing for expansion of DCIS cells and promotes EMT-like
processes that promote invasion. These effects of RB loss
clearly occur in the context of other oncogenic events
(for example, loss of PTEN or Her2) that cooperate in
the genesis of DCIS and its ultimate progression to inva-
sive disease.

These provocative findings support the concept that
RB pathway status could be utilized to direct the care of
patients with DCIS. For example, cases of DCIS that are
pléink4a high and RB deficient would be expected to
have the most benefit from adjuvant radiation therapy.
In contrast, tumors that are RB proficient would have a
low risk of recurrence/progression and therefore may
not require radiation treatment. Unfortunately, in spite
of the data published thus far, no analysis of clinical
specimens has addressed whether the RB pathway status
can be used specifically to direct the care of DCIS. Add-
itional investigation is therefore required to bring the RB
status to clinical application in DCIS.

Multiple breast cancer subtypes necessitate a focus on
subtypes as individual diseases

Unlike the one-size-fits-all approach to DCIS, invasive
breast cancer represents at least three distinct diseases
with differing prognosis and therapeutic interventions
that are based on well-established molecular markers.
The three major clinicopathologic subtypes of breast
cancer (ER-positive, Her2-positive and triple-negative)
are defined based on the presence of specific proteins in
tumors that are therapeutically actionable. A plethora of
molecular studies have served to refine these subtypes
and provide added insight into the underlying biology of
these forms of disease [58,59]. In each of these disease
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contexts, the RB pathway plays discrete roles that have
significant clinical implications for the management of
breast cancer.

Estrogen receptor-positive breast cancer: the
retinoblastoma tumor suppressor pathway as a
prognostic tool and therapeutic target

Constituting ~70% of diagnosed breast cancer, ER-
positive breast cancer is the most prevalent form of
breast cancer and is treated based on the presence of the
ER. As mentioned above, ER-positive breast cancer is
dominated by deregulation of CDK4/6 that is driven by
amplication or overexpression of cyclin D; [36,60]
(Figure 4). This event has been hypothesized to contrib-
ute to more aggressive forms of ER-positive breast can-
cer, although this hypothesis remains controversial.

Prognostic retinoblastoma tumor suppressor/E2F
signatures

What is clearly without contention is that breast cancers
which harbor deregulated expression of RB/E2F target
genes are associated with poor prognosis [61-63]. In fact,
the expression of the proliferation-associated RB/E2F
target genes provides the basis for the distinction be-
tween luminal A and luminal B breast cancer [59]. An
example is shown in Figure 5, where deregulation of an
RB/E2F signature differentiates luminal A and luminal B
breast cancer. Simple analysis of TCGA datasets indi-
cates that luminal B cancers are over-represented for
cyclin D; amplification and loss of pl6ink4a or RB rela-
tive to luminal A breast cancer (Figure 4). Deregulation
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of the RB pathway thus does seem to associate with
more aggressive tumor behavior in ER-positive breast
cancer. Consistent with this point, perturbation of the
RB pathway has been shown to lead to more aggressive/
rapid tumor growth in preclinical models [64].

One of the most significant challenges in the manage-
ment of ER-positive breast cancer is relapsed disease.
Unlike other forms of breast cancer, recurrence can
occur very late after treatment, and suggests that de-
posits of ER-positive breast cancer can survive in a dor-
mant state for multiple years. Luminal B tumors are
known to exhibit rapid recurrence with endocrine ther-
apy. Such tumors are routinely detected in the clinic
through the use of existing diagnostic tests. For example,
oncotypeDx estimates the risk of recurrence using a pro-
prietary algorithm that is dependent on the expression
of proliferation-associated genes that are controlled by
RB/E2F [65,66]. Deregulation of RB/E2F activity is thus,
in effect, used clinically to estimate the risk of recur-
rence. In the case of ER-positive breast cancer, this infor-
mation is employed to direct adjuvant chemotherapy as
a means to reduce the subsequent risk of recurrence.

Impact of the retinoblastoma tumor suppressor pathway
on therapeutic resistance

Knowledge that deregulation of the RB pathway is asso-
ciated with rapid recurrence with endocrine therapy is
born out in multiple studies. Initially, endocrine therapy
was demonstrated to impinge on the RB pathway to
elicit cell cycle inhibition [67]. Similarly, perturbation of
the RB pathway through multiple mechanisms can blunt
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Figure 4 The retinoblastoma tumor suppressor pathway in different breast cancer subtypes via TCGA. CBIOPORTAL was used to access
data from the TCGA. The canonical retinoblastoma tumor suppressor (RB) pathway was evaluated for both genetic aberrations and altered
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Figure 5 Gene expression analysis of a retinoblastoma tumor suppressor/E2F signature in breast cancer. (Left) The intrinsic subtypes of
breast cancer were defined based on conventional gene expression properties. Luminal (Lum)B and basal cancers are characterized by elevated
expression of retinoblastoma tumor suppressor (RB)/E2F-regulated genes (highlighted with bracket). The tumors exhibit deregulation of RB/E2F-
regulated genes as shown by specific analysis of an RB signature. (Right) The relative level of the RB signature was evaluated across five breast cancer
subtypes. Data demonstrate the high levels of pathway deregulation in luminal B, basal, and Her2-positive cancers that have intrinsic poor prognosis.

i

05 i ol

Median-centered log, RMA expr.

LumA
LumB
Basal
Normal-like
Her2

the sensitivity to endocrine therapies and can help facili-
tate the development of resistance [64,68]. While im-
portant and demonstrating that downstream aberration
of the RB pathway can bypass the response to endocrine
therapy, loss of RB or cyclin D; amplification does not
represent the principle basis for acquired resistance in
preclinical models. Typically, deregulation of oncogenic
signaling molecules will drive the aberrant activation of
cyclin D; and RB phosphorylation independent of ER
[69]. More recently, it was shown that ER mutations
which drive resistance to endocrine therapy are selected
in metastatic disease. Therefore, while cyclin D; and RB
are important determinants of response, multiple paths
exist that lead to the RB pathway and bypass of endo-
crine therapy.

Direct targeting of the retinoblastoma tumor suppressor
pathway in estrogen receptor-positive breast cancer

If the RB pathway is in fact relevant for ER-positive
breast cancer, one would expect that interventions which
act specifically upon RB would be relevant for disease
control. Tumors that retain RB are dependent on
CDK4/6 to phosphorylate the tumor suppressor for cell
cycle progression. Several specific CDK4/6 inhibitors
have been developed. These inhibitors are highly specific
to RB-positive tumors and can induce profound cyto-
static effects in spite of multiple oncogenic signals that
are well known to bypass endocrine therapy [70,71].
Additionally, it has been shown that such agents are ex-
ceedingly effective at blocking the proliferation of
models that are resistant to endocrine therapy, probably

because CDK4/6 is downstream of multiple pathways
(for example, Her2 and PI3K) that are implicated in the
bypass of endocrine therapy [70,72,73] (Figure 6).

In considering the utility of such agents in the clinic,
there are three key features to consider. First, such
agents can act in concert with endocrine therapy, and
through their cytostatic action can limit the selection for
resistance to the primary endocrine agent [70]. Second,
such agents can function to prevent the expansion of re-
sistant clones that might emerge. Third, because the
CDK4/6 inhibitor is independent of ER signaling, even
models that are completely resistant to endocrine ther-
apy would still exhibit benefit [70,72,73]. Based on these
considerations, clinical trials have been initiated of
CDK4/6 inhibitors in conjunction with endocrine ther-
apy (Table 1). The most advanced of these trials involves
the Pfizer CDK4/6 inhibitor (PD-0332991; Pfizer; New
York, NY USA) in combination with the aromatase in-
hibitor letrozole for patients with recurrent disease. The
interim data that have been presented for this trial dem-
onstrate an incredible threefold enhancement of
progression-free survival in a randomized phase 2 trial
[74]. The findings from this work have spawned a pleth-
ora of clinical trials investigating CDK4/6 inhibitor
breast cancer, and support the overall contention that
the RB pathway does represent an actionable target in
ER-positive breast cancer.

Her2-positive breast cancer: an opportunity
Her2-positive breast cancer constitutes ~20% of diag-
nosed breast cancers. In general, Her2-positive disease is
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Figure 6 CDK4/6 is downstream of multiple pathways. Estrogen
receptor (ER) and Her2 as well as many oncogenic mechanisms (for
example, phosphatidylinositol 3-kinase) ultimately impinge on the
activity of CDK4/6 to drive cell cycle progression. CDK, cyclin-
dependent kinase; RB, retinoblastoma tumor suppressor;

P, phosphorylated.

more aggressive than ER-positive disease, although the
treatment paradigm has many parallels with ER-positive
breast cancer. For example, Her2-positive disease is
treated based on an addiction to Her2 signaling, and a
plethora of active Her2-targeted agents are now
employed in the clinic [75]. Like ER-positive disease, the
principle clinical issue remains recurrence or intrinsic
resistance to the front-line therapy. However, other than
Her?2 itself, there are no markers to direct treatment de-
cisions, and there is no clear indication that the status of
the RB pathway impinges on the sensitivity to Her2-
targeted therapy. In spite of the relatively limited analysis
of the RB pathway in clinical specimens, there are com-
pelling reasons to believe that the pathway will be rele-
vant as a therapeutic target in Her2-positive breast
cancer.

Preclinical data demonstrate a key dependence of
Her2 disease on the retinoblastoma tumor
suppressor pathway

Genetically engineered mouse models provide an im-
portant means to evaluate genetic dependencies in
tumor development. Sicinski’s laboratory investigated
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the relationship of cyclin D; genetic loss with the devel-
opment of mammary tumors in mice whose tumors
were driven by multiple different genetic stresses [76].
While Myc or Wnt oncogenes can effectively drive
tumor development irrespective of cyclin D;, genetic de-
letion of cyclin D; specifically prevented tumor develop-
ment driven by Her2 [77]. More recently, a conditional
knockout approach showed that cyclin D; does repre-
sent a therapeutic target in Her2-positive breast cancer
[78]. Parallel investigation has shown that Her2-positive
models are sensitive to CDK4/6 inhibitors in preclinical
models; interestingly, in such models CDK4/6 inhibition
not only prevents proliferation but also limits the inva-
sive potential of such models [52]. Therefore, in addition
to preventing tumor growth, such an arrest compro-
mises invasive potential. Presumably, as with ER-positive
breast cancer, the efficacy of CDK4/6 inhibition in this
context is due to its position downstream of the canon-
ical Her2 signaling. Clinical trials are now being initiated
to specifically address the ability of CDK4/6 inhibitors to
add to the control of Her2-positive cancers.

Triple-negative breast cancer
TNBC is widely accepted to represent the biggest clin-
ical challenge in breast cancer [78,79]. TNBC is highly
aggressive and almost certainly represents several differ-
ent diseases that have different sensitivities to therapies.
Currently, all patients with a TNBC diagnosis are treated
with cytotoxic chemotherapy. Such therapy can be in-
credibly effective for a subset of patients (~30% ), while
many patients do not effectively respond and will
undergo rapid recurrence [80]. Unfortunately, there are
minimal therapeutic interventions for such patients;
thus, while TNBC constitutes a relatively minor fraction
of breast cancer cases (~20% ), almost 50% of cancer-
associated deaths are associated with TNBC. Additional
targeted approaches are therefore urgently needed.
Unlike Her2-positive or ER-positive breast cancers that
have relatively limited loss of RB, TNBC exhibits fre-
quent loss of RB as determined by histological analysis
[38,39]. Such a finding is also supported by the high
levels of pl6ink4a observed in many TNBC cases [81].
Lastly, TNBC has very high levels of RB/E2F signature
genes relative to other tumor subtypes [62,63]. Repre-
sentative images of RB-positive and RB-deficient TNBC
are shown in Figure 7. Gene expression analysis and im-
munohistochemical approaches have shown that tumors
that lack RB have a good response to chemotherapy, as
indicated by a pathological complete response in neoad-
juvant studies or improved overall outcome [62,63,82].
This finding is counterintuitive because it suggests that
the most aggressive rapidly growing tumors in fact have
the best prognosis. The prevailing view of this paradox
is that such rapidly proliferating tumors lack critical RB-
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Table 1 Trials of CDK4/6 inhibitors in breast cancer

Trial of CDK4/6 agent Target disease Trial
phase

PD-0332991/Palbociclib (Pfizer; New York, NY, USA)

A Study of Palbociclib in Addition to Standard Endocrine Treatment in Hormone Receptor Positive Her2 Normal

ER-positive (adjuvant) 1

Patients with Residual Disease after Neoadjuvant Chemotherapy and Surgery (PENELOPE-B) (ClinicalTrials.gov

NCT01864746)

PD 0332991 and Anastrozole for Stage 2 or 3 Estrogen Receptor Positive and HER2 Negative Breast Cancer

(ClinicalTrials.gov NCT01723774)

A Study of PD-0332991 + Letrozole vs. Letrozole for 1st Line Treatment of Postmenopausal Women with ER

*/HER2™ Advanced Breast Cancer (ClinicalTrials.gov NCT017240427)

PD0332991/Paclitaxel in Advanced Breast Cancer (ClinicalTrials.gov NCT01320592)

LEEO11 (Novartis; New York, NY, USA)

Phase Ib/Il Trial of LEEO11 with Everolimus (RAD001) and Exemestane in the Treatment of ER*Her2™ Advanced

Breast Cancer

Study of LEEOT1, BYL719 and Letrozole in Advanced ER" Breast Cancer (ClinicalTrials.gov NCT01872260)

A Pharmacodynamics Pre-surgical Study of LEEOT1 in Early Breast Cancer Patients (MONALEESA-1) (ClinicalTrials.

gov NCT01919229)

Study of Efficacy and Safety of LEEO11 in Postmenopausal Women with Advanced Breast Cancer (MONALEESA-

2) (ClinicalTrials.gov NCT01958021)

ER-positive Il
(necadjuvant)

ER-positive (first-line Il
advanced)

All metastatic Ib

ER-positive (advanced/ /Il
metastatic)

ER-positive (advanced/ /1l
metastatic)

ER-positive Il
(necadjuvant)

ER-positive (advanced/ Il
metastatic)

CDK, cyclin-dependent kinase; ER, estrogen receptor.

mediated cell cycle checkpoints and are thus very sensitive
to chemotherapy [61]. Such a concept is supported by pre-
clinical data from multiple laboratories showing that RB
loss is associated with sensitivity to chemotherapeutic
agents. Recent drug screening efforts indicate a complex
combination of responses that is conditioned by the thera-
peutic intervention employed [83]. If more extensively vali-
dated, these data would suggest that RB loss could be
specifically used to define patients whose tumors would be
most apt to respond to optimized chemotherapy regimens.

These findings from RB pathway-based analysis are
largely consistent with recent findings from Pietenpol’s
group that TNBC represents several intrinsic subtypes
[84]. Those subtypes with the highest expression of RB/
E2F-regulated genes are generally more sensitive to
chemotherapy. In contrast, other subtypes can be treated
with other agents. For example, the luminal AR subtype
can be treated with androgen receptor antagonists [84].
What remains unclear is whether the analysis of RB/E2F
does in fact define subtypes that have improved response
to chemotherapy (for example, basal-like cancers) or
whether it provides additional information to the sub-
types that have been elucidated.

Defining targeted treatments of triple-negative
breast cancer through retinoblastoma tumor
suppressor

Because RB is lost in ~40% of TNBC, one would expect
that it could be used to define unique sensitivities upon
which to direct treatment. Anecdotal clinical data sug-
gest that CDK4/6 inhibition may not be particularly

effective in TNBC. There are multiple possible explana-
tions for this, including the fact that TNBC is inherently
heterogeneous, and most probably single targeted agents
will never have much impact on advanced disease that
has failed prior chemotherapy. Approaches to define
drugs that interact positively with CDK4/6 inhibitors are
therefore incredibly important. Unlike endocrine therapy
or Her2-targeted therapies that interact positively with
CDK4/6 inhibitors, multiple laboratories have shown an-
tagonism with chemotherapy [85,86]. As such, either
metronomic approaches will be needed or it will be crit-
ical to define targeted agents that have positive interac-
tions with CDK4/6 inhibitors in the treatment of TNBC.

While RB-deficient tumors do respond better to con-
ventional chemotherapy, the unfortunate reality is that
many RB-deficient tumors fail to respond or undergo re-
currence. These findings have lead to the pursuit of
drugs that exploit the vulnerabilities associated with loss
of RB. Several groups have explicitly screened for genes/
drugs that kill RB-deficient tumor cells [83,87]. Such
agents could presumably be effective for RB-deficient
TNBC that fail front-line chemotherapy.

Key questions to fully leverage the
retinoblastoma tumor suppressor pathway in the
clinic

The preceding volumes of data provide a compelling
basis to actively target the RB pathway in breast cancer.
However, several key questions in particular emerge in
realizing the capability of utilizing this information
clinically.
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levels of p16ink4a.

Figure 7 Representative staining patterns observed in triple-negative breast cancer. (A,B,C) One case retains intact retinoblastoma tumor
suppressor (RB) and the relatively low levels of p16ink4a as observed in most tissues. (D,E,F) The other case has lost RB and expresses very high

How should the retinoblastoma tumor suppressor
pathway be measured/annotated?

The use of immunohistochemical staining and gene expres-
sion profiling provides an important determinant of RB path-
way status in breast cancer conditions and subtypes. Clearly
gene expression profiling shows a general attribute of tumor
biology, while immunohistochemical analysis approaches
focus on a single protein. However, what remains poorly
understood is how the pathway is actually compromised in
many settings. For example, while ~20% of DCIS are RB-
negative and express high levels of p16ink4a, there is no indi-
cation as to how RB protein expression is lost. Current ana-
lysis of TCGA and other sequencing data suggest that RB
loss must be occurring via nongenetic means. One possibility
for this finding is that the expression of miR-210, which can
target RB and other tumor suppressors, is associated with ag-
gressive DCIS [88]. Similarly, many tumors with very high
levels of cyclin D, are not associated with gene amplification.
Whether the mechanistic basis of RB-pathway deregulation
is important is up for debate. However, cyclin D; amplifica-
tions are generally associated with a more robust phenotype
than simply overexpression of the gene. Understanding both
the expression and fundamental genetic/epigenetic basis of
pathway dysregulation could therefore prove clinically rele-
vant and could yield standardized methodologies for the ana-
lysis of the RB pathway in the clinic.

Can retinoblastoma tumor suppressor pathway status be
used to direct standard treatment?

The volume of data suggesting a crucial role for the RB
pathway in breast cancer therapeutic response or prognosis

spans DCIS, ER-positive breast cancer, and TNBC. In each
of these disease states, multiple groups have consistent data
and important treatment decisions could be made. To this
point, only in ER-positive breast cancer is the information
used in the clinic. Deregulated RB/E2F target genes (for
example, OncotypeDX) inform aggressive treatment with
adjuvant chemotherapy. Similar tools could be developed in
DCIS to provide disease risk assessment to help physicians
choose therapeutic options. For example, the subset of
TNBC tumors with low RB/E2F target genes and intact RB
most probably has a very poor response to chemotherapy,
and would have more benefit from other treatment options
upfront, as opposed to progressing through relatively inef-
fective chemotherapy. The key to changing treatment re-
quires very high levels of evidence that typically require
prospective trials or retrospective/prospective analysis using
clinical-grade diagnostic testing. Most laboratories simply
do not have the resources to affect such change and the
opportunity does not move forward, although a concerted
effort in application of the RB pathway would seem relevant
to inform different aspects of breast cancer management.
In spite of these impediments there are active trials evaluat-
ing RB pathway status as a determinant of prognosis or
therapeutic intervention (for example, ClinicalTrials.gov
NCT01514565 or NCT01976169).

Is there promise in directly targeting the retinoblastoma
tumor suppressor pathway?

Underlying each one of the breast cancer subtypes are
dysfunctions related to the RB pathway. The recent find-
ings in ER-positive breast cancer demonstrate that
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directly intervening at the level of the RB pathway can
yield large clinical dividends that are now being tackled by
multiple clinical trials focused on ER-positive breast can-
cer (Table 1). Presumably these findings in ER-positive
breast cancer could seed similar interventional strategies
in Her2-positive breast cancer. Recent investigation of
TNBC cases has parsed the disease into multiple subtypes.
Ostensibly, within these subtypes (for example, basal) the
loss of RB could represent a particularly frequent event
that could be targeted by specific vulnerabilities imparted
with RB loss. Conversely, within selected populations (for
example, luminal AR) it may be possible to utilize CDK4/
6 inhibition as an adjunct to other targeted therapies. Im-
portantly, many of these trials targeting the RB pathway
incorporate biomarkers to delineate the specific determi-
nants of therapeutic response.

Conclusion

In total, the hope is that the importance of the RB path-
way will be utilized to inform treatment in concert with
a full understanding of breast cancer biology to improve
disease outcomes.
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