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Abstract

PIK3CA mutations represent one of the most common
genetic aberrations in breast cancer. They have been
reported to be present in over one-third of cases, with
enrichment in the luminal and in human epidermal
growth factor receptor 2-positive subtypes. Substantial
preclinical data on the oncogenic properties of these
mutations have been reported. However, whilst the
preclinical data have clearly shown an association with
robust activation of the pathway and resistance to
common therapies used in breast cancer, the clinical
data reported up to now do not support that the
PIK3CA mutated genotype is associated with high levels
of pathway activation or with a poor prognosis. We
speculate that this may be due to the minimal use of
transgenic mice models thus far. In this review, we
discuss both the preclinical and clinical data associated
with PIK3CA mutations and their potential implications.
Prospective clinical trials stratifying by PIK3CA genotype
will be necessary to determine if the mutation also
predicts for increased sensitivity to agents targeting the
phosphoinositide 3-kinase pathway.

Introduction

Phosphoinositide 3-kinases (PI3Ks) comprise a family of
lipid kinases, discovered in the 1980s, that are respon-
sible for mediating important biological functions such
as cell survival, differentiation and proliferation [1]. In
breast cancer, mutations of the PIK3CA gene, which en-
codes the p110a catalytic subunit of PI3K, are highly fre-
quent (2,257/9,095 = 24.82% according to the Catalogue
of somatic mutations in cancer [2]), have been shown to
be oncogenic, and are likely to represent important
events in the initiation and progression of breast cancer.
However, several characteristics of PIK3CA mutations in
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breast cancer have been observed, including a strong as-
sociation with expression of the estrogen receptor (ER),
a lack of an association with robust activation of the
classical PI3K pathway, as well as a relatively good prog-
nosis for patients with mutations compared with their
wild-type counterparts. These features make it difficult
to understand the functional and clinical relevance of
PIK3CA mutations in breast cancer at present. In this
article we review and summarize the preclinical and
clinical data in breast cancer in an attempt to reconcile
these findings.

Background

Based on distinct structural characteristics and substrate
specificity, PI3Ks can be divided into three classes, I to
III. Class I can be further subdivided into class IA and
IB kinases, with class IA activated by receptor tyrosine
kinases (RTKs), G protein coupled receptors and other
oncogenes such as RAS, and class IB activated exclu-
sively by G protein coupled receptors [3]. Class IA PI3Ks
represent the most extensively studied subclass, with im-
plications in human carcinogenesis [3]. They are hetero-
dimers consisting of a catalytic (p110) and a regulatory
(p85) subunit, with the latter stabilizing the former in
quiescent cells and suppressing PI3K activity. There are
three different isoforms of the p110 subunit in mam-
mals, p110a, p110p and pl109, transcribed from the
genes PIK3CA, PIK3CB and PIK3CD, respectively, and
three isoforms of the p85 subunit, p85«, p55a and p50a;,
deriving from three genes PIK3R1, PIK3R2 and PIK3R3,
respectively [4]. The p110a subunit consists of five do-
mains: an amino-terminal domain termed adaptor-
binding domain, a Ras-binding domain, a C2 domain, a
helical domain and a kinase catalytic domain [5]. The
p85a regulatory subunit also contains five domains: an
amino-terminal SH3 domain, a Rho-GAP domain and
two Src homology 2 (SH2) domains (one towards the
amino terminus, nSH2, and one carboxy-terminal, cSH2),
separated by an inter-SH2 (iSH2) domain [5].
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Upon growth factor stimulation p85 binds through its
SH2 domains to phospho-motifs of RTKs, relieving its in-
hibitory effect over p110 and mediating the recruitment of
PI3K to the plasma membrane. The activated p110 sub-
unit catalyses the conversion of phosphatidylinositol-4,
5-bisphosphate to phosphatidylinositol-4,5-trisphosphate,
which subsequently provides a docking site for the pleck-
strin homology domain-containing proteins PDK1 and
AKT [6]. The next step is a dual phosphorylation of AKT
(on T308 and S473 residues), resulting in its activation
and a subsequent intracellular cascade of phosphorylation
of other proteins, including mammalian target of rapamy-
cin (mTOR) [7]. The final functional outcome of this cas-
cade of intracellular events is the induction of the multiple
biologic effects of the PI3K/AKT/mTOR signaling pathway.

Activation of the PI3K/AKT/mTOR pathway has been
demonstrated in all human cancers, with different aber-
rations variably affecting its different molecular compo-
nents. In the setting of breast cancer, this represents the
most commonly deregulated signaling pathway, with al-
terations that can be summarized as follows: i) overex-
pression of PI3K-activating RTKs; ii) inactivating events
of negative PI3K pathway regulators (that is, phosphat-
ase and tensin homologue (PTEN) and inositol poly-
phosphate 4-phosphatase type II); and iii) activating
events of PI3K pathway components and/or positive reg-
ulators. Mutations of the PIK3CA gene, belonging to the
third category, represent the most frequently reported
molecular alterations of the PI3K signaling pathway in
breast cancer.

Preclinical data

Oncogenicity of PIK3CA mutations

PIK3CA has been reported to be mutated frequently in
human cancer, particularly in common cancer types such
as breast, colorectal, endometrial and prostate [8-16]. This
makes it an attractive target for therapeutic intervention.
In the setting of breast cancer, PIK3CA mutations are ex-
tremely common, second only to 7P53 mutations [17-20].
The mutations display a non-random distribution, cluster-
ing within the helical domain (exon 9, commonly E542
and E545) and the kinase domain (exon 20, commonly
H1047). When first reported, the presence of these ‘hot-
spot’ positions strongly implied that the mutant protein
would be associated with increased kinase activity and
oncogenic properties [21]. Such clustering of mutations in
specific domains has been noted in other activating onco-
genes, such as BRAE RAS and EGFR. Interestingly, the
non-class I PI3Ks have not been reported to be associated
with oncogenic mutations.

The function of mutant PIK3CA protein compared
with the wild type has been characterized in both human
cancer cell lines and human mammary epithelial cells,
mainly using gene targeting approaches [22-24]. Several
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investigators have reported that the mutation was
strongly associated with AKT activation, growth factor-
independent cell proliferation, resistance to apoptosis, as
well as increased invasion and cell migration. Biochem-
ical inhibition of the PI3K pathway was found to be ef-
fective in reversing these properties, particularly in
PIK3CA mutant cell lines [22,23,25,26]. In human mam-
mary epithelial cell lines, the two most common mutant
alleles (H1047R and E545K) were found to activate PI3K
signaling and could easily form tumors in nude mice
[24,26]. Resistance to paclitaxel was also demonstrated
[23]. Interestingly, significant increases in tumor angio-
genesis have also been reported to be associated with
oncogenic PIK3CA activity [26].

Differences between the helical and kinase domain
mutants have also been extensively investigated. The
data suggest that there are at least two different mecha-
nisms by which mutant p110a can activate PI3K signal-
ing. These differences are also supported by structural
studies. The helical domain mutants require RAS bind-
ing for transformation and are independent of p85,
whereas the H1047R mutant depends on p85 binding
[27,28]. In another study, helical domain mutants pro-
duced a more aggressive phenotype than kinase domain
mutants with regard to cellular motility and enhanced
extravasation [29]. This study, however, used the MDA-
MB-231 breast cancer cell line, which is known to be
RAS mutant and ER-negative, so it is conceivable that
the helical domain mutant could have synergized with
these features. It is unclear how to extrapolate these data
when, in breast cancer, PIK3CA mutations are strongly
associated with an ER-positive phenotype and RAS mu-
tations are extremely rare [29]. As a possible explanation
for the phenotypic differences between the various
PIK3CA mutations, a recent study has reported that hel-
ical domain but not kinase domain mutants acquire the
capability to interact with IRS1, thus enhancing its abil-
ity to associate with the cellular membrane and subse-
quently activate the pathway [30]. This study highlighted
that loss of p85 was not enough to result in growth
factor-independent activity of p110a [30] and proposes a
mechanistic reason for the differences seen between the
helical and kinase domain mutations.

Crystal structure and biochemical analyses have also
helped elucidate how different oncogenic PIK3CA muta-
tions can change the PI3K architecture and promote
oncogenicity dependent on the location of the mutated
domain [31,32]. Mutations of the catalytic p110a subunit
cluster around the activation loop involved in substrate
recognition. In contrast, the helical domain mutants dis-
rupt the interface between p110a and p85a, which likely
increases the activity of the enzyme [31,32]. Besides
these commonly occurring ‘hotspot’ PIK3CA mutations,
rarer PIK3CA mutations on the C2 and RBD domains
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have also been found in human cancers. These have
mostly been found to also be oncogenic, although due to
different mechanisms. For example, mutations in the C2
domain are thought to facilitate p110a localizing to
plasma membrane by increasing the positive surface
charge of this domain [33].

Interestingly, in breast cancer, the clinical difference
between helical and kinase domain mutants is subtle
[34,35]. Double mutants, or cases with two different
PIK3CA mutations, have also been observed in breast
cancer, albeit infrequently. There seems to be a higher
incidence of PIK3CA mutations, particularly the helical
domain mutants, in lobular cancer versus ductal invasive
breast cancers (lobular 30.8% versus ductal 24.4%; P =
0.14) [34]. Also of note is that the common breast can-
cer cell lines used in preclinical experiments (MCF7 and
T47D) contain a PIK3CA mutation (helical and kinase
domains, respectively). These cell lines strongly express
ER, are of the luminal A’ phenotype and are sensitive to
treatment with the hormonal agent tamoxifen [36].

PIK3CA mutations and therapy resistance in vitro

PIK3CA mutations have been reported to be associated
with resistance to human epidermal growth factor recep-
tor 2 (HER2) and endocrine therapies in a number of pre-
clinical cell line and xenograft models. In the setting of
HER2-positive breast cancer, several preclinical studies
have reported that PIK3CA mutations are associated with
resistance to HER2 blockade with trastuzumab [37,38].
Another study also confirmed that these mutations could
mediate resistance to trastuzumab, although the E545K-
and H1047R-HER2 overexpressing breast cancer cell lines
were sensitive to GDC-0941, a pan-PI3K inhibitor [39].
PI3K signaling pathway activation has also emerged as a
molecular mediator of endocrine resistance in the setting
of luminal breast cancer, with multiple lines of evidence
supporting this notion [40-43]. Several studies have dem-
onstrated a clear synergy between endocrine treatment
and various PI3K blocking agents [41-44].

Mouse models of PIK3CA mutations
Generation of transgenic mouse models can help us better
understand the function of PIK3CA mutation in vivo, its
contribution to mammary tumorigenesis, as well as its
contribution to resistance of commonly used therapies.
Several different types of Pik3ca-driven mouse models of
breast cancer have been reported (Table 1) [45]. Interest-
ingly, in one study using the MMTV-Cre Pik3ca™**"®
model high lethality (75%) was observed in mice younger
than 4 months due to non-mammary tumor-related causes
[46]. Leakiness of the mouse mammary tumor virus
(MMTYV) promoter resulting in harmful Pik3ca™**"® ex-
pression in tissues other than mammary gland was thought
to be the cause. Similarly, another study with MMTV-Cre
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Pik3ca™°*"® mice also showed a high lethality rate for rea-
sons other than mammary tumors (43%), questioning the
utility of a broad transgenic method [47]. The other ap-
proach has been to create endogenous levels of Pik3-
ca™®® using a knock-in system under the control of a
native promoter (combined with MMTV-Cre) [48,49].
These models are created to induce physiological expres-
sion of the mutant protein in the mammary gland only.

All the Pik3ca-driven models have produced mam-
mary tumors of varying histologies in contrast to single
histology mouse models such as Neu, Myc and the poly-
oma middle-T antigen. These included fibroadenomas,
adenocarcinomas, adenosquamous carcinomas, sarco-
mas and spindle cell tumors. These tumors expressed
ERa, as well as basal and luminal cytokeratin markers.
Transgenic models resulted in far shorter latency pe-
riods, probably due to the overexpression of the mutant
and wild-type protein induced by the exogenous pro-
moters. In contrast, the knock-in models, which produce
endogenous levels of the mutant protein, had extremely
long latencies before the development of tumors, which
was shorter in parous versus nulliparous mice, suggest-
ing that pregnancy significantly accelerated Pik3ca
mutation-mediated mammary oncogenesis. Notably, in
one knock-in model, a significant increase in cell num-
ber in the ducts (hyperplasia), as well as the number of
surrounding stromal cells, was observed [48]. These cells
represented expansion of the luminal progenitor popula-
tion, which demonstrated enhanced colony size and for-
mation, though without signs of classical PI3K pathway
activation [48]. The lack of activation of the pathway
(pAKT and pS6) seems to more closely replicate the hu-
man observations. Overall, metastases have been rarely
reported, perhaps suggesting that additional genetic al-
terations are needed. Two studies reported reduced la-
tencies as a result of synergism between PIK3CA
H1047R and p53 mutations [47,49]. Another study re-
ported that PIK3CA mutant tumors could recur using
both PI3K-dependent and -independent mechanisms or
¢-MET and MYC overexpression, respectively, the latter
leading to resistance to a PI3K inhibitor [50].

These data highlight the importance of Pik3ca mouse
models in contributing to a better understanding of
PIK3CA mutant pathogenesis and breast cancer devel-
opment, as well as investigating resistance mechanisms
to commonly used therapeutics. They will provide a
better understanding of mutation-related cell-extrinsic
mechanisms as the tumors grow in the setting of intact
immune systems and surrounding stroma. /n vivo mouse
models may perhaps also clarify some of the counterin-
tuitive results that have been observed in the clinical set-
ting, which we will discuss below. Phenotypic differences
between knock-in and transgenic models are also evi-
dent, and clinical observations will eventually validate
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Table 1 Genetically engineered mouse models of PIK3CA mutations

Page 4 of 10

Study Mouse model Transgenic versus Inducible versus Penetrance Tumor latency  Histology
knock-in non-inducible
Tikoo et al. MMTV—H%%R Site-specific Non-inducible 100% Nulliparous mice:  Fibroadenoma (45%)
48] i 484 days Adenosguamous carcinoma (10%)
Biparous mice: Osteosarcoma (2.5%)
393 days
Yuan et al. MMT\/—HCre . Site-specific Non-inducible NR Nulliparous mice:  Fibroadenoma (76.9%)
. 10471
(49 Pik3ca 492 days Adenocarcinoma (15.4%)
Multiparous mice: Spindle cell neoplasia (7.7%)
465 days
Liu et al. MMW—Hr$&A7RTetO— Transgenic Inducible 95% 7 months Solid (33%)
[50] Pik3ca (doxycycline) Acinar (8%)
Glandular (5%)
Papillary (12%)
Squamous metaplasia (15%)
Mixed (28%)
Adams et al. MMTV-CreN-" Transgenic Non-inducible NR 5 months Adenosquamous carcinoma (51%)
[47] Pik3ca™*47® o
Adenomyoepithelioma (45%)
Spindle cell neoplasia (1%)
Poorly differentiated
adenocarcinoma (3%)
MMTV-CreN->T Transgenic Non-inducible NR <5 months Adenosquamous carcinoma (51%)
Pik3ca 1047, p53f/+
' Spindle cell/EMT tumor (33%)
Radial scar lesion (10%)
Poorly differentiated
adenocarcinoma (5%)
Meyer et al.  WAPi-Cre Pik3ca™'®"® Transgenic Non-inducible NR Nulliparous mice: Adenosquamous carcinoma
[46) 219 days (54.6%)
Adenomyoepithelioma (22.7%)
Parous mice: Adenocarcinoma with squamous
140.3 days metaplasia (13.6%)
Adenocarcinoma (9.1%)
MMTV-Cre Transgenic Non-inducible 25% Nulliparous mice:  Adenomyoepithelioma (100%)

Pik3caH1047R

214 days

EMT epithelial-mesenchymal transition, MMTV mouse mammary tumor virus, NR not reported.

which model more closely represents human PIK3CA
mutated breast cancer.

Clinical data
PIK3CA mutations, prognosis and treatment efficacy in
breast cancer
The clinical relevance of PIK3CA mutations in newly diag-
nosed breast cancer disease has been extensively inves-
tigated. Surprisingly, PIK3CA mutations have been
associated with good prognostic clinico-pathological fea-
tures in breast cancer. These include positive expression of
ER, smaller tumor size and low histological grade [51-54].
Whilst smaller studies initially reported inconsistent
prognostic results, the larger studies now emerging seem
to be trending in the same direction [40]. The largest

published study evaluated PIK3CA genotype from 687
tumor samples from patients enrolled in the FinHER
prospective, phase III clinical trial [34,55]. PIK3CA mu-
tant compared with wild-type patients were noted to
have a better prognosis in the first 3 years, which disap-
peared with longer follow-up [56]. Consistent with these
results, a single center retrospective cohort analysis of
590 patients also reported that PIK3CA mutations were
associated with significantly better clinical outcomes
[51]. A retrospective pooled analysis of four neoadjuvant
endocrine therapy breast cancer trials involving 278
women did not find that PIK3CA mutations were associ-
ated with endocrine therapy resistance [57]. Recently,
published in abstract form, PIK3CA genotyping of the
TEAM adjuvant endocrine study found a mutation
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frequency of 39.8% (1,702/4,272) in post-menopausal pa-
tients with ER-positive tumors [35]. Again, significantly
better survival was observed for the PIK3CA mutant
breast cancers: hazard ratio 0.76 (95% confidence inter-
val 0.63 to 0.91), P =0.003.

PIK3CA mutations have been reported in ductal carcin-
oma in situ [58], suggesting that they are an early event,
consistent with the knock-in mouse models. However, it
seems that in breast cancer the mutation is not associated
with high levels of PI3K pathway activation such as in-
creased phosphorylated AKT (S473) and pS6 [18,59]. A
genomic study reported that a gene signature developed
from PIK3CA mutant human breast cancers was associ-
ated with low mTORC1 output and high ESRI signaling
[44]. In contrast, PIK3CA mutant cell lines were associ-
ated with high levels of activation in vitro. This observa-
tion further supports the use of transgenic knock-in
mouse models rather than breast cancer cell lines to in-
vestigate the functional effects of PIK3CA mutations.
These data suggest several possibilities. Perhaps, similar to
PTEN deficiency, high levels of PI3K pathway activation
could be detrimental to the cell (that is, cause senescence);
therefore, strong negative feedback is active in containing
pathway activation until a ‘second hit’ disables this [60].
Alternatively, PIK3CA mutations may be weak activators
of the PI3K pathway, due to the requirement for plasma
localization and/or other activating factors, and require
another hit(s) for full activation. We also speculate that
the mutation may itself activate estrogen signaling given
the strong cross-talk that exists between the two path-
ways. This would result in patients with PIK3CA muta-
tions responding well to current endocrine therapies,
which may explain the clinical observations.

With regards to HER2-positive disease, a number of sin-
gle arm, cohort, single institutional series have suggested
an association between the PI3K signaling pathway and
trastuzumab and/or lapatinib resistance [61-65]. The ma-
jority of these have included PTEN loss or PIK3CA muta-
tions to define activated PI3K pathway. The only data
evaluating differences in treatment benefit from a ran-
domized study did not observe that PIK3CA mutations
were significantly associated with resistance to trastuzu-
mab [56]. In fact, the opposite was observed. In contrast,
in metastatic HER2+ disease, PIK3CA mutations have
been associated with poor prognosis. Results from a retro-
spective biomarker analysis in the CLEOPATRA study, a
phase III study assessing the trastuzumab, pertuzumab
and docetaxel triplet versus trastuzumab, docetaxel and
placebo in first-line treatment of HER2-positive metastatic
breast cancer [66], were recently presented. PIK3CA geno-
type from the primary (not metastatic) tumor was found
to be prognostic, with patients bearing a PIK3CA muta-
tion having a worse clinical outcome (P=0.0001) [67].
Interestingly, PIK3CA mutations did not predict for
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resistance to any type of HER2 blockade in this study, with
significant clinical benefit of the triple combination of
trastuzumab, pertuzumab and docetaxel persisting irre-
spective of its mutational status [67]. Further data will be
required to confirm these findings. A more complete un-
derstanding of the genetic composition of these tumors,
both primary and metastatic, will also be beneficial. It
could be that, in the advanced setting, dual HER2 amplifi-
cation and PIK3CA mutation results in complete and ro-
bust activation of the PI3K pathway.

Hence, it is becoming clearer that PIK3CA mutations
are associated with better outcomes in primary ER-
positive disease. Generating firm associations with prog-
nosis and clinical relevance could perhaps be achieved
by a pooled analysis of all available data. This could re-
sult in PIK3CA genotype being integrated into clinical
decision-making. However, its relevance in advanced dis-
ease is unclear and may be different from primary dis-
ease. However, the most interesting question remains:
will a PIK3CA mutation predict for increased sensitivity
to a PI3K inhibitor?

Therapeutic targeting of PIK3CA mutated breast
cancer

Currently, an abundance of targeted compounds are
under clinical development targeting several compo-
nents of the PI3K signaling pathway (Figure 1, Table 2)
[68]. Preclinical evidence demonstrates sensitivity of
PIK3CA mutated breast cancer cells to PI3K blocking
agents [69,70] and, with p110«a isoform-selective inhibi-
tors being under clinical development, there is the
promise for more potent target inhibition coupled with a
milder toxicity profile [71]. Whilst the clinical develop-
ment of those agents is still too preliminary for any de-
finitive conclusions to be drawn, early data from phase I
clinical trials do not support a strong association of anti-
tumor activity by pan-class I PI3K blocking agents with
PIK3CA genotype [72-74]. However, recent early results
using the p110a isoform-selective inhibitors look prom-
ising in heavily pretreated PIK3CA mutant breast can-
cers [72]. BOLERO-2 was a phase III trial that
randomized 724 patients with ER-positive metastatic
breast cancer resistant to nonsteroidal aromatase inhibi-
tors to receive exemestane and everolimus (an mTORC1
inhibitor) or placebo. The outstanding results have led
to the registration of everolimus in this setting [75]. A
biomarker analysis using available primary tumor from
227 (31%) patients from this study and a Foundation
Medicine 182 cancer-mutation panel found PIK3CA was
the most frequently mutated gene among the cases ana-
lyzed (48%). However, it was not found to be predictive,
with similar treatment benefit derived from the everoli-
mus plus exemestane therapy among PIK3CA mutated
and wild-type breast cancer patients [76]. Hence, the
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Figure 1 Schema of phosphoinositide 3-kinase blocking agents currently under clinical development. Dual phosphoinositide 3-kinase
(PI3K)/mammalian target of rapamycin (mTOR) inhibitors (for example, BEZ235, XL765, GDC-0980, GSK1059615), pan-PI3K inhibitors (BKM120, GDC-
0941, BAY 80-6946, SF1126, PX-866, XL147, CH5132799, GSK1059615), isoform-selective PI3K inhibitors (p110a selective: BYL719, MLN1117; p1103
selective: TGX-221, GSK2636771; p110y selective: AS-252424; p1106 selective: CAL-101), AKT inhibitors (MK-2206, XL418, GDC-0068, AR-67,
GSK690693, VQD-002), mTORC1/2 inhibitors (OSI-027, AZD-8055, PP-242, INK-128), and PDK1 inhibitors (AR-12, UCN-01). PIP,, phosphatidylinositol-
4,5-bisphosphate; PIPs, phosphatidylinositol-4,5-trisphosphate; RTK, receptor tyrosine kinase.

J
Table 2 Ongoing clinical trials recruiting breast cancer patients with PIK3CA mutations
Agent  Class Trial Description Patients (n)
BYL719  a-Selective PI3K  Phase | Dose escalation in combination with fulvestrant Postmenopausal women with
inhibitor (NCT01219699) MBC (160)
Phase Ib/Il Dose escalation in combination with AMG479 Advanced solid tumors (70)
(NCT01708161)
BKM120  Pan-PI3K Phase I/l Dose escalation in combination with lapatinib HER2-positive, trastuzumab-
inhibitor (NCT01589861) resistant MBC (106)
MK2206  AKT inhibitor Phase Il Safety and efficacy of MK2206 monotherapy Advanced breast cancer (40)
(NCT01277757)
Phase Il Safety and efficacy of MK2206 and anastrozole with or without ER-positive breast cancer,
(NCT01776008) goserelin in the neoadjuvant setting stage Il to IlIC (87)
AZD5363 AKT inhibitor Phase | Dose escalation Advanced solid tumors and
(NCT01226316) MBC (107)
Phase | Dose escalation in combination with paclitaxel ER-positive MBC (110)
(NCT01625286)

ER estrogen receptor, HER2 human epidermal growth factor receptor 2, MBC metastatic breast cancer, PI3K phosphoinositide 3-kinase.
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optimal PI3K pathway inhibition strategy in the setting
of PIK3CA mutations also remains to be determined.

The only way to definitively determine the prognostic
and predictive relevance of PIK3CA genotype in breast
cancer will be through prospectively defined, upfront
stratification in clinical trials. The ‘NeoPHOEBE’ trial
(ClinicalTrials.gov study NCT01816594 [77]) is one such
trial. This study will evaluate if the addition of BKM120,
an oral pan-class I PI3K inhibitor, to trastuzumab im-
proves response rates in HER2-overexpressing breast
cancer. Eligible patients will undergo upfront PIK3CA
genotyping as the trial will essentially have two identical
cohorts in order to ensure that the PIK3CA mutant
population is adequately powered. This trial will attempt
to provide answers to the following important questions:
i) is PIK3CA mutated, HER2-positive disease associated
with trastuzumab resistance compared with wild type
(prognostic implications), and ii) is PIK3CA mutation
compared with wild-type associated with an increased
response rate in the experimental arm with the PI3K in-
hibitor (predictive potential) (Figure 2). Only trials such
as this one will be able to enlighten us on both the prog-
nostic and predictive implications of this common
aberration.
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Conclusion

PIK3CA mutations represent one of the most common
molecular aberrations in breast cancer. Despite the coun-
terintuitive findings concerning their prognostic signifi-
cance, active investigation of PI3K pathway blockade is
currently ongoing and still could prove to be a curative
strategy for PIK3CA mutant breast cancers. Prospective
clinical trials selecting patients on the basis of PIK3CA
mutations are currently recruiting (Table 2), but upfront
stratification will be required in order to ensure enough
power is seen in the PIK3CA mutant subgroup. However,
there is still much to be learnt about how the mutation
contributes to breast cancer growth and, most of all, why
high levels of classical PI3K signaling are not observed in
human breast cancers. This may be critical to understand-
ing who will respond to therapeutic PI3K inhibition. Re-
cently developed mouse models will help to increase our
understanding of cooperating pathways and mammary
tumor pathogenesis, as well as immune and stromal influ-
ences. Detailed translational research correlative efforts
will need to be systematically coupled with clinical trials
evaluating efficacy of PI3K inhibitors in breast cancers, as
this will enhance our understanding of responders and
non-responders by providing the complete genomic
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landscape associated with PIK3CA mutations and treat-
ment response.
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