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profiling identifies signatures from benign stromal
proliferations that define stromal components of
breast cancer
Xiangqian Guo, Shirley X Zhu, Alayne L Brunner, Matt van de Rijn and Robert B West*
Abstract

Introduction: Multiple studies have shown that the tumor microenvironment (TME) of carcinomas can play an
important role in the initiation, progression, and metastasis of cancer. Here we test the hypothesis that specific
benign fibrous soft tissue tumor gene expression profiles may represent distinct stromal fibroblastic reaction types
that occur in different breast cancers. The discovered stromal profiles could classify breast cancer based on the type
of stromal reaction patterns in the TME.

Methods: Next generation sequencing-based gene expression profiling (3SEQ) was performed on formalin fixed,
paraffin embedded (FFPE) samples of 10 types of fibrous soft tissue tumors. We determined the extent to which
these signatures could identify distinct subsets of breast cancers in four publicly available breast cancer datasets.

Results: A total of 53 fibrous tumors were sequenced by 3SEQ with an average of 29 million reads per sample.
Both the gene signatures derived from elastofibroma (EF) and fibroma of tendon sheath (FOTS) demonstrated
robust outcome results for survival in the four breast cancer datasets. The breast cancers positive for the EF
signature (20-33% of the cohort) demonstrated significantly better outcome for survival. In contrast, the FOTS
signature-positive breast cancers (11-35% of the cohort) had a worse outcome.

Conclusions: We defined and validated two new stromal signatures in breast cancer (EF and FOTS), which are
significantly associated with prognosis. Our group has previously identified novel cancer stromal gene expression
signatures associated with outcome differences in breast cancer by gene expression profiling of three soft tissue
tumors, desmoid-type fibromatosis (DTF), solitary fibrous tumor (SFT), and tenosynovial giant cell tumor
(TGCT/CSF1), as surrogates for stromal expression patterns. By combining the stromal signatures of EF and FOTS,
with our previously identified DTF and TGCT/CSF1 signatures we can now characterize clinically relevant stromal
expression profiles in the TME for between 74% to 90% of all breast cancers.
Introduction
The tumor microenvironment (TME) is comprised of
fibroblasts, endothelial cells, immune cells and extracel-
lular matrix (ECM). The cells within the TME have been
demonstrated to play significant roles in the develop-
ment and progression of cancer [1-8], but most studies
view each of these cell groups as a relatively uniform
population that is similar across different patients.
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Profiling the non-neoplastic cells within the TME
directly is difficult due to the variety and relative paucity
of these cells in the tissue and practical issues with the
isolation of these cells. Our approach rests on the
hypothesis that, similar to lymphomas where each tumor
is a clonal outgrowth of a particular lymphoid cell type,
each soft tissue tumor type can also be regarded as a
clonal outgrowth of a particular connective tissue cell
type to represent subclasses of stromal proliferation that
occur in epithelial tumors.
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cell type have phenotypes distinct from each other,
can be easily profiled and act as “discovery tools” for
various types of TME expression patterns to yield a
relatively uniform signature. Using gene array-based
expression profiling of fresh frozen specimens of fi-
broblastic tumors (desmoid type fibromatosis-DTF
and solitary fibrous tumor-SFT) and macrophage-rich
tumors (tenosynovial giant cell tumor-TGCT/CSF1),
we previously discovered novel types of stromal reaction
patterns that emphasize the variations in the fibroblast
and macrophage compartment in breast cancer between
different patients [1,2,8,9]. The biological significance of
the identification of these stromal reaction patterns was
borne out by the fact that several of these stromal expres-
sion patterns have prognostic significance independent
from traditional prognosticators such as tumor size, tumor
grade and even lymph node status [1,2,8].
Based on our previous findings, the DTF signature

robustly defined a stromal pattern for 25 to 35% of invasive
breast cancers [2], while the TGCT/CSF1 signature was
found in 17 to 28% of breast cancers [1]. However, a signifi-
cant number of breast cancers were not classified by these
signatures. In order to find additional stromal patterns we
performed gene expression profiling on a spectrum of fi-
broblastic lesions. As most of these lesions are quite small,
they are routinely entirely submitted as formalin fixed par-
affin embedded (FFPE) tissue. Here, we have applied an
RNA-Seq method for the expression profiling of archival,
FFPE tissue, termed 3SEQ (3′end RNA sequencing), which
we have previously developed. This method can be used to
perform global gene expression profiling of FFPE material
[10-12], as well as to discover and characterize expression
levels for lncRNAs [13]. Within this study, we have used
3SEQ to determine specific gene expression signatures for
10 types of fibroblastic tumors and found that 2 can identify
breast cancers with distinct clinical outcome. Taken together
with the two previously identified stromal signatures (DTF
and TGCT/CSF1 signatures), the combined four stromal
signatures now classify 74% to 90% of breast carcinomas.

Methods
Samples selection, treatment and 3SEQ analysis
Paraffin blocks from 53 fibrous tumors were collected
from the Department of Pathology at Stanford University
Hospital, with Health Insurance Portability and Ac-
countability Act (HIPAA)-compliant Stanford University
Medical Center Institutional Review Board approval. And
the tissues were collected with a waiver of consent due to
the archival nature of the specimens. The samples con-
sisted of collagenous fibroma (FC, six cases), elastofi-
broma (EF, four cases), infantile digital fibromatosis
(IF, three cases), palmar fibromatosis (PF, eight cases),
nasopharyngeal angiofibroma (NPAF, six cases), fibroma
of tendon sheath (FOTS, four cases), nodular fasciitis (NF,
six cases), dermatofibrosarcoma protuberans (DFSP, four
cases), desmoid type fibromatosis (DTF, seven cases) and
solitary fibrous tumor (SFT, five cases). Multiple 2 mm-
diameter cores were taken from diagnostic FFPE material
for RNA isolation as reported previously [12].

3SEQ sequencing and data analysis
3SEQ libraries for next generation sequencing-based ex-
pression profiling were built according to previously de-
scribed methods [10-13] and protocols in our lab website
[14], and then were sent to Stanford Center for Genomics
and Personalized Medicine to be sequenced directionally
(36 bp) from 5′end of mRNA fragments towards their poly
(A) ends using Illumina GA IIx machines (Illumina, Inc.,
San Diego, CA, USA).
Sequence reads, after filtering for read quality, were re-

filtered by fastx (fastx_artifacts_filter) [15], and mapped
to the transcriptome (refMrna, downloaded from the
UCSC genome browser, www.genome.ucsc.edu/) by using
SOAP2, allowing at most two mismatches [16]. Total
numbers of sequence reads for each gene symbol from the
transcriptome mapping were determined and were used
to create the gene-expression profile matrix. Read counts
from each library were normalized to transcripts per
million reads (TPM). Adequacy of sequencing depth for
each library was assessed using an estimation of library
saturation for transcriptome detection, which showed that
our sequencing depths were sufficient to detect an average
of 67% of reference mRNAs. The distances between
sequencing reads and 3′ ends of mRNAs were measured
to be around 100 to 200 nt as we expected based on the
length of mRNA after shearing.
Hierarchical clustering was performed as previously

described (filter by SD100, adjust data by “log transform
data” and “center genes”, then perform Hierarchical clus-
tering with “Spearman Rank Correlation” and “Centroid
Linkage”) [8] and a clustered heatmap was visualized with
Java TreeView (http://sourceforge.net/projects/jtreeview/
files/). Two class SAM analysis (Significance Analysis of
Microarrays) [17] was used to identify genes expressed dif-
ferentially between each type of fibrous tumor versus the
other fibrous tumors with FDR of 0.05. Genes that were
specific for a particular tumor type and that were highly
expressed were used to define the fibrous tumor signature
for each tumor type. All gene expression profiling data
used for this study have been deposited in the Gene Ex-
pression Omnibus (GEO) and are publicly accessible
through GSE42948. The 3SEQ and SAM analyses scripts
for this study are attached as Additional file 1.

Analysis of breast cancer microarray expression data
Four publicly available breast cancer expression data-
sets with clinical follow-up information were used for
this study (NKI [18], GSE1456 [19], GSE3494 [20] and
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Figure 1 H&E images of representative fibroblastic tumors
profiled by 3seq. A) Desmoid type fibromatosis; B) Elastofibroma;
C) Fibroma of tendon sheath; D) Solitary fibrous tumor.
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GSE4922 [21]). The combined sets of positively expressed
genes that are unique for each fibrous tumor signature were
identified in each of the four breast cancer datasets. Using
only the expression data for these genes, the breast cancers
were grouped by unsupervised hierarchical clustering
using Cluster 3 software (http://bonsai.hgc.jp/~mdehoon/
software/cluster/). The resulting heatmap was visualized
with Java TreeView. We then identified the breast cancer
cases that were most closely associated with each fibrous
tumor signature. These cases were visually identified in the
heatmap as sharing the largest group of genes with high ex-
pression. These observations were validated by calculating
the volume of expression (the averaged expression values of
each probe within the gene set after removing all the nega-
tive values in the matrix) to confirm that the visually identi-
fied group of cases had indeed the highest levels of
expression relative to other groups of cases.
After studying 10 fibrous tumor signatures in four breast

cancer expression datasets, we identified the fibrous tumor
signatures which significantly stratify breast cancers into
two groups with different outcomes; only the EF and FOTS
signatures divided each of four breast cancer datasets into
two groups with statistically significant outcome differences
in the four datasets. To refine our analysis, we determined
the “core” genes for EF and FOTS signatures: genes that are
consistently coordinately and highly expressed in the breast
cancer datasets. We defined the EF and FOTS core genes
as those exhibiting greater than 0.1 correlated expression
and present in at least three of the four gene clusters in four
datasets [1,2].
For the association analysis between core gene signa-

tures, a chi-square test was performed using the software
GraphPad (GraphPad Software, Inc., La Jolla, CA, USA).
Kaplan-Meier plots were used to compute the survival
curves, and Log-rank (Mantel-Cox) Test was used to de-
termine the statistical significance of survival between
groups by using GraphPad Prism5 software. Univariate
and multivariate analysis by the Cox proportional hazard
method was performed by using the survival package in
R. Analysis of gene ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathway
was done by using DAVID Bioinformatics Resources
version 6.7 (http://david.abcc.ncifcrf.gov/).

Results
Expression of fibrous tumor gene signatures in breast
cancer
Gene expression profiling by 3SEQ was performed on 53
fibrous tumors representing 10 groups of benign fibrous
soft tissue tumors (Figures 1 and 2, see Additional files
2, 3, 4). For each diagnostic entity, up to 2,598 genes
were highly expressed relative to all other tumors based
on two-class SAM analysis, defining 10 unique fibrous
tumor gene signatures (Table 1, see Additional file 5).
To the fibrous tumor gene signatures in breast cancer,
we analyzed four publicly available breast cancer data-
sets (GSE1456, GSE4922, GSE3494 and the NKI Data-
set). Each breast cancer dataset was clustered separately
with the gene sets specific for each of the 10 fibrous
tumor signatures. We identified the fibrous tumor genes
coordinately over-expressed in a subset of breast cancers
for each dataset as representing the stromal expression
pattern in the breast cancers that is most similar to that
particular fibroblastic tumor. Four fibrous tumor signa-
tures did not show coordinated expression patterns in
the four breast cancer datasets. Another four fibrous
tumor signatures demonstrated coordinated expression
patterns in the breast cancer datasets, but did not con-
sistently show a statistically significant difference in the
prognosis between the two groups of breast cancers de-
fined by these fibrous tumor signatures. On the contrary,
both the EF and FOTS gene signatures demonstrated
meaningful outcome results for survival in all four breast
cancer datasets (see Additional file 6).

Core gene sets of FOTS and EF and their implication in
the prognosis of breast cancer
To extend our analysis, we determined the fibrous
tumor “core” gene signature as being the genes coordi-
nately over expressed in all four breast cancer datasets
as we previously had defined the core gene set for DTF
signature [2], by requiring that each “core” gene has to
be present in at least three of the four gene clusters in
four datasets. For each core gene signature and breast
cancer dataset, the group of breast cancer samples with
the highest aggregate of expression of fibrous tumor sig-
nature genes was identified as having a correlation >0.2
(Figure 3). The breast cancer subgroups were assessed
for clinicopathologic correlations in each of the four
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Figure 2 Unsupervised hierarchical clustering of expression profiles of 10 groups of 53 fibrous tumors. Unsupervised hierarchical
clustering of 53 tumors (columns) using 961 genes (rows). Within the heatmap, red represents higher expression, black represents mean
expression, green represents lower expression, and gray represents normalized expressional level zero. Note: In several instance tumors of the
same diagnosis appear adjacent to each other in the figure. It should be noted that the arms of the dendrogram can rotate freely and that it is
the length of the dendrogram arms that determines the similarity between cases.

Table 1 Differentially expressed genes between each type of tumors and all others by SAM

Diagnosis of fibrous tumors Sigillum Number of cases Number of genes up-expressed Number of genes down-expressed

1 Desmoid type fibromatosis DTF 7 42 0

2 Solitary fibrous tumor SFT 5 2,598 51

3 Dermatofibrosarcoma protuberans DFSP 4 452 8

4 Collagenous fibroma FC 6 30 0

5 Elastofibroma EF 4 259 279

6 Infantile digital fibromatosis IF 3 191 0

7 Palmar fibromatosis PF 8 166 1

8 Nasopharyngeal angiofibroma NPAF 6 273 26

9 Fibroma of tendon sheath FOTS 4 66 0

10 Nodular fasciitis NF 6 89 0
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Figure 3 Hierarchical clustering of four breast cancer datasets by FOTS/EF core gene sets. Within the heatmap, red represents higher
expression levels, green represents lower expression levels, and black represents mean expression levels. Sample clusters designated with Orange
and Blue trees are FOTS + breast cancers and EF + breast cancers in GSE1456 (A), GSE3494 (B), GSE4922 (C) and NKI dataset (D).
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breast cancer datasets. The EF core gene signature
positive breast cancers demonstrated significantly better
outcome (P <0.05) for survival than EF core gene
signature-negative cases (Figures 3 and 4). EF-like breast
cancers account for 20 to 33% of all breast cancers in
each cohort (see Additional file 7). The EF signature was
defined by 41 genes (see Additional file 8). In contrast to
the EF signature, the FOTS core gene signature positive
breast cancers had a worse outcome than breast cancers
(P <0.05) that failed to express it (Figures 3 and 4).
FOTS-like breast cancers account for 11 to 35% of all
breast cancers in each cohort (see Additional file 7). This
gene set was comprised of 16 genes (see Additional file 8).
Multivariate analysis showed that both the FOTS and EF
signatures are independent of other clinical parameters,
such as tumor grade, lymph node status, ER expression
and so on (see Additional file 9).
To better understand the functions of the two new

stromal core gene set signatures (EF and FOTS), we
performed Gene Ontology (GO) and KEGG pathway
analysis. The results show that the EF core genes are
significantly enriched in biological processes including
‘response to wounding’ and BMP signaling, were enriched
in Pathways including Tyrosine metabolism, Complement
and coagulation cascades (see Additional file 8). For the
FOTS core gene set, biological processes, including
glycolysis, were enriched based on the 16 core genes
(see Additional file 8), KEGG pathways including “Gly-
colysis/Gluconeogenesis” and “Fructose and mannose
metabolism” were enriched (see Additional file 8).

Independent signatures of FOTS and EF with DTF
fibroblast and TGCT/CSF1 macrophage signatures
Previously, our group reported that the DTF fibroblast
signature is associated with good outcome in breast
cancer [2,8], and that the TGCT/CSF1 macrophage
signature is associated with higher tumor grade in breast
cancer [1]. We compared these signatures with those of
EF and FOTS to determine the degree of overlap
between cases with either of the two good prognosis
signatures (EF and DTF fibroblast) and the overlap
between cases with either of the bad prognosis signa-
tures (FOTS and TGCT/CSF1 macrophage) in the four
independent breast cancer datasets (NKI, GSE1456,
GSE3494 and GSE4922). In order to make these signa-
tures more comparable and reproducible, we defined the
DTF fibroblast breast cancers and TGCT/CSF1 macro-
phage breast cancers by the same criteria as the criteria
for EF/FOTS-like cases (cases with high expression of
signature and >0.2 correlation within clusters). Chi-
square test indicated that the association between DTF
fibroblast cases and EF-like cases is not statistically
significant in three of four datasets although there are
overlapping assignments by these two signatures. Likewise,



Figure 4 Kaplan-Meier plot for breast cancer cases stratified by FOTS/EF core gene sets. The Kaplan-Meier survival curves are tested by
the Log-rank (Mantel-Cox) Test to determine the statistical significance of association of EF+, FOTS + or other breast cancers with overall survival
(A, P = 0.0085), disease specific survival (B, P = 0.0064), disease free survival (C, P = 0.0370), and overall survival (D, P <0.0001) within the four breast
cancer datasets, respectively.

Guo et al. Breast Cancer Research 2013, 15:R117 Page 6 of 11
http://breast-cancer-research.com/content/15/6/R117
the association between TGCT/CSF1 macrophage cases
and FOTS-like cases is also not statistically significant in
three of four datasets (see Additional file 10). These data
show that the signatures associated with good outcome
(DTF and EF) identify non-overlapping sets of tumors and
that similarly the two signatures associated with poor
outcome (TGCT/CSF1 and FOTS) also describe distinct
sets of tumors.
To examine the degree to which the two new signa-

tures provide additional information to the previously
identified DTF/TGCT/CSF1 signatures, we stratified
breast cancer into four categories based on DTF/EF
signatures for good outcome (DTF+/EF+, DTF+/EF-,
DTF-/EF+, DTF-/EF-) or FOTS/TGCT/CSF1 signatures
for poor outcome (FOTS+/TGCT/CSF1+, FOTS-/TGCT/
CSF1+, FOTS+/TGCT/CSF1-, FOTS-/TGCT/CSF1-) in
the four breast cancer datasets. EF+/DTF + breast can-
cers account for 11 to 16% of the cases, while EF-/
DTF- breast cancers account for 44 to 47% of the cases.
FOTS+/TGCT/CSF1+ breast cancers account for 6 to
12% of the cases, whereas FOTS-/TGCT/CSF1- breast
cancers account for 41 to 65% of the cases in the four
breast cancer datasets (see Additional file 7). The progno-
sis of these four categories for DTF/EF signatures or
FOTS/TGCT/CSF1 signatures was assessed by overall
survival (OS), disease specific survival (DSS), and disease
free survival (DFS) by the pooled cases of four datasets
(Figure 5). EF-/DTF- breast cancers demonstrated signifi-
cantly worst outcome in overall survival, disease specific
survival and disease free survival. EF + breast cancers
showed the best outcome in overall survival, disease
specific survival and disease free survival, independent of
DTF signature status, while the EF-/DTF + breast cancers
showed better outcome than EF-/DTF- breast cancers.
FOTS-/TGCT/CSF1- breast cancers demonstrated signifi-
cantly better outcome in overall survival, disease specific
survival and disease free survival. The FOTS+/TGCT/
CSF1- breast cancer showed the worst outcome in overall
survival, disease specific survival and disease free survival.
Correlation with conventional clinical parameters indi-

cated that FOTS+/TGCT/CSF1+ breast cancers were
significantly more likely to be ER negative (52.63%), PR
negative (58.62%), Grade 3 (58.11%) and p53 mutant
(55.17%) than FOTS-/TGCT/CSF1- breast cancers with



Figure 5 Kaplan-Meier plot with Log-rank (Mantel-Cox) test for the combined signatures. The plots and tests were performed between
four categories of EF±/DTF ± (A, B, C) or FOTS±/TGCT/CSF1 ± (D, E, F) breast cancers with overall survival (A, D), disease specific survival (B, E),
and disease free survival (C, F) (TGCT/CSF1 group is abbreviated to CSF1).
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ER negative (6.45%), PR negative (12.5%), Grade 3
(9.06%) and p53 mutant (5.24%). These FOTS+/TGCT/
CSF1+ breast cancers were also more likely to be Basal
subtype (17 in 34), while FOTS-/TGCT/CSF1- breast
cancers were more likely to be Luminal A subtype (94 in
270). EF+/DTF + breast cancers were less likely to be ER
negative (7%), PR negative (11.76%), Grade 3 (7.61%)
and p53 mutant (8.96%) than EF-/DTF- breast can-
cers that were ER negative (24.51%), PR negative
(31.82%), Grade 3 (40.48%) and p53 mutant (32.88%)
(see Additional file 11).

Discussion
Stromal components within the TME are known to be
involved in cancer initiation, progression and prognosis
[1-4,6,7,9,22-27]. In many studies, the different cellular
components of the TME are treated as relatively
invariable factors that are assumed to play a similar
role in tumor samples from different patients. How-
ever, through systematic analysis of breast cancer
H&E images with a novel machine learning based
method, C-Path, we have recently shown that the
morphological features of the tumor stroma vary
markedly between tumor samples and that they are not
only significantly associated with survival in breast cancer,
but that their impact on outcome is even stronger than
the features of the epithelial component itself [9].
By clustering breast carcinoma expression profile data-

sets using only the genes that are specific for distinct
fibroblastic tumors, we can observe subsets of cancer that
contain different fibroblastic subtypes in the tumor stroma.
In contrast, hierarchical clustering that uses all genes in
the dataset obtained from an entire tumor specimen usu-
ally groups samples together based predominantly on the
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gene expression pattern in carcinoma cells as these cells
often represent the majority of the cells within a tumor
and often show the most variation in expression patterns.
Thus, their transcript levels represent the strongest
signal in the sample. As a result, differences between
tumors based on their stromal expression patterns are
often not observed in datasets where the entire gene
expression profile of the sample is used.
It is difficult to obtain gene expression profiles from

normal fibroblast subtypes as in normal and tumor
tissue they are typically closely associated with other cell
types, such as epithelial cells, and techniques, such as
micro-dissection, are laborious. Our approach rests on
the hypothesis that, similar to lymphomas where each
tumor is a clonal outgrowth of a particular lymphoid cell
type, each fibroblast tumor type can be regarded as a
clonal outgrowth of a particular connective tissue cell
type [28]. Fibroblastic tumors thus represent neoplasms
of different normal fibroblast subtypes and differentially
express genes typical for various fibroblast functions.
Moreover, each fibroblastic tumor type represents a
largely homogenous population of cells and can be
robustly profiled. By using this approach, our group has
previously demonstrated that a specific stromal gene
expression pattern, the DTF fibroblast signature, could
robustly and reproducibly define a subgroup of breast
cancer patients with good prognosis [2,8] and that a
second stromal pattern, the TGCT/CSF1 macrophage
signature, is associated with breast cancers of a higher
tumor grade, with decreased expression of ER/PR, and
increased mutations of TP53 [1]. Subsequent studies
have shown that these different TME variants can even
be identified in cases of pre-invasive ductal carcinoma
[6]. These findings indicated that the type of TME can
vary between patients and that expression profiles
obtained from STTs form a useful tool to distinguish
these TME variants.
Our prior studies allowed us to identify distinct TME

subtypes in up to 50% of breast cancers. In order to
extend our findings we determined the gene expression
profile for an additional eight fibroblastic tumors. Previ-
ous studies required fresh frozen tumor samples, but for
many of the fibroblastic lesions we intended to analyze
only FFPE material was available. We therefore used a
novel gene expression profiling approach (3SEQ) that
uses next generation sequencing of RNA fragments
purified by oligo-dT selection from FFPE material
(Additional file 12). Applying eight novel fibrous signa-
tures to four publicly available breast cancer expression
profiling datasets, we found that three of these signatures
were not expressed in the breast cancers in a coordinated
manner. Of the five remaining signatures, three did not
show differences in outcome analysis. In contrast, the EF
and FOTS signatures could stratify the breast cancer
samples into two groups, through highly coordinated gene
expression with consistent association with outcome in all
the four breast cancer datasets. The EF signature positive
breast cancers demonstrated good outcome, while the
FOTS signature positive breast cancers showed bad
outcome. In this study, the SFT signature is significantly
associated with worse outcome only in the NKI dataset,
but there is no clear pattern in the other three datasets,
consistent with our previous findings [2]. The current
DTF-(3SEQ) signature, which is similar to the DTF signa-
ture previously defined against SFT [2,8], is associated
with good outcome in three of the four breast cancer data-
sets, though the association in this analysis is not statisti-
cally significant. The difference in the significances of old
and new signatures related to outcome can be explained
by the fact that the genes differentially expressed for a
particular lesion is to a great extent determined by the
other samples in the dataset to which it is compared. The
original DTF was determined through a comparison with
SFT only while the currently defined DTF-(3SEQ) signa-
ture was determined through a comparison with a much
larger number of distinct fibrous tumor types. As a result,
the current DTF-(3SEQ) signature contains 42 genes from
the comparison between DTF and the other nine types of
fibrous tumors including SFT, while the original DTF
signature contains 237 genes from the comparison be-
tween DTF and only one other type of fibrous tumor, SFT.
The EF and the previously identified DTF fibroblast

signature both identify good outcome in breast cancer,
while the FOTS and the previously identified TGCT/
CSF1 macrophage signature both identify bad outcome
in breast cancer. In order to explore the relationships
between the good or bad signatures, we compared the
breast cancer sample assignments between them. The
comparison results showed that 11 to 16% of breast
cancers were positive for both EF and DTF core gene
sets, while 44 to 47% of breast cancers were negative for
both, 23 to 33% of breast cancers were EF-/DTF+, and 9
to 20% of breast cancers were EF+/DTF-. In addition, 6 to
12% of breast cancers were positive for both of FOTS and
TGCT/CSF1 core gene sets, 41 to 65% of breast cancers
were negative for both FOTS and TGCT/CSF1 core gene
sets, 5 to 24% of breast cancers were FOTS+/TGCT/
CSF1-, and 23 to 24% of breast cancers were FOTS-/
TGCT/CSF1+. EF+/DTF + breast cancer cases were more
likely to be ER+/PR+, low grade, with less lymph node
than EF-/DTF- breast cancers. FOTS+/TGCT/CSF1+
breast cancers are more likely to be ER-/PR-, high grade,
base-like breast cancers than FOTS-/TGCT/CSF1- breast
cancer cases.
In order to test the prognosis power of the com-

bined core gene sets of EF, FOTS, DTF and TGCT/
CSF1, we pooled the outcome data from four breast
cancer datasets in overall survival (OS), disease
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specific survival (DSS) and disease free survival (DFS).
Kaplan-Meier analysis for the combined core gene
sets in the pooled dataset showed that EF-/DTF-
breast cancers were associated with worst outcome in
OS, DSS and DFS, while EF + breast cancers, no mat-
ter whether they are DTF- or DTF+, were associated
with better outcome in OS, DSS and DFS. FOTS-/
TGCT/CSF1- breast cancers were associated with bet-
ter outcome in OS, DSS and DFS, while FOTS
+/TGCT/CSF1- breast cancers were associated with
worse outcome in OS, DSS and DFS.
To better understand the potential functions of the

two new stromal core gene set signatures (EF and
FOTS) in breast cancer, Gene Ontology (GO) and
KEGG PATHWAY analysis were performed, which
show that the 41 EF core genes are significantly
enriched in biological processes including ‘response to
wounding’ and BMP signaling. Within the 41 EF core
genes, almost one fourth of them (9/41), such as
AOC3, AOX1, C6, CFD, CFH, CLU, GSN, LYVE1 and
MECOM, were related to ‘response to wounding’. The
association with wound healing has been previously
identified in a study of prognostic gene signatures in
breast cancer [29]. However, a comparison between the
EF gene list and the previously identified gene signa-
tures of the “minimum number core serum response”
(CSR) genes [29] necessary for tumor classification, we
found that only one gene, GSN, was shared between EF
core signature and CSR genes (from quiescent samples,
in contrast to activated samples). The BMP pathway is
well known to modulate cross-talk between stromal
cells and epithelial cells [30-32], and three genes
(CHRDL1, GREM2 and MSX1) involving BMP signaling
were comprised of the EF core signature. For the FOTS
core gene set, biological processes, including glycolysis,
were enriched based on the 16 core genes. This sug-
gests that the increase in glycolysis, which serves a crit-
ical role in cancer cell growth and invasion [33], may
also influence stromal fibroblast. FOXM1 is an example
of FOTS core genes involved in both of epithelial can-
cer cells and the cancer associated fibroblasts. By com-
paring the gene expression between isolated breast
cancer-associated fibroblasts (CAFs) and normal mam-
mary fibroblasts (NFs) isolated from the same patient,
Mercier et al. found that FOXM1 was up-regulated in
CAFs rather than the NFs [34]. TPI1 gene in FOTS
core signature was up-regulated in the CL4 fibroblast,
which could supply epithelial cancer cells with pyru-
vate/lactate as “fuel” to help epithelial cancer cells to es-
cape the anti-angiogenic treatment [35]; therefore, the
TPI1 targeted therapy (or FOTS gene targeted therapy)
for cancer-associated fibroblast will be an actionable way
to control the progression of cancer in conjunction with
anti-angiogenic therapy.
Conclusions
Our study explores the TME space as defined by the
fibroblastic component, by using a wide range of fibro-
blastic tumors as tools for the definition of distinct
tumor stromal responses. Our data confirm the signifi-
cance of the TME in breast cancer behavior and are con-
sistent with our previous observations on the variability
of the TME in breast cancer. By using these two novel
signatures in addition to two previously identified DTF
and TGCT/CSF1 signatures, we could characterize the
stromal expression profile for the tumor microenviron-
ment in 74% to 90% of all breast cancers. Through their
association with clinical outcome, the genes within the
two core gene sets of FOTS and EF indicate that they play
a functional role in the progression of breast cancers. In
the future, recognition of the distinct TME types in breast
cancer could lead to targeted therapy that is specific for
the distinct TME-based subtypes of breast cancer.
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