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VIEWPOINT
Refining the role of BRCA1 in combating
oxidative stress
Jeffrey R Marks
Abstract

The BRCA1 hereditary susceptibility gene has been
studied in great depth, befitting its clear role in
promoting basal type breast cancer and serous type
ovarian (fallopian tube) cancer in women carrying
germline mutations. The BRCA1 protein has long been
implicated in maintaining genome integrity through
DNA repair processes. However, a number of studies
have demonstrated that BRCA1 is also involved in the
response to oxidative stress. A recent paper by Gorrini
and colleagues extends our mechanistic understanding
of how BRCA1 regulates this pathway. The relative
contribution of this activity in BRCA1-associated tumori-
genesis and DNA damage response remains unknown.
NRF2 was not an obvious transcriptional target of
Germline BRCA1 mutation leads to the pronounced and
specific phenotype of serous ovarian and basal breast
cancer [1,2]. There is also strong evidence indicating
that BRCA1 mutated cancers are particularly susceptible
to genotoxic and oxidative agents such as PARP (poly
ADP ribose polymerase) inhibitors and platinum [3].
Both of these properties of BRCA1 are thought to be asso-
ciated with mechanisms of DNA repair, including hom-
ologous recombination, non-homologous end-joining,
nucleotide excision repair, and transcription-coupled
repair. However, an equally plausible explanation for
BRCA1-associated biological effects may lie in its control
over the oxidative stress response.
The response to oxidative stress is in large part regu-

lated by a master transcription factor, NRF2 (NFE2L2),
that induces expression of a large set of genes that act to
restore redox balance and mitigate the damage from
reactive oxygen species (ROS). NRF2 activity is con-
trolled post-translationally by an E3 ubiquitin ligase,
KEAP1. The KEAP1 protein senses oxidative stress by
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undergoing a conformational change that prevents asso-
ciation with NRF2, allowing NRF2 to accumulate and
translocate to the nucleus, thereby inducing transcrip-
tion via anti-oxidant response elements located in a large
set of genes that participate in balancing the redox state
and repairing oxidative damage. This pathway appears
central in maintaining oxidative homeostasis in many
types of cells [4]. Further, somatic mutations in NRF2
pathway genes play a role in certain human cancers [5].
BRCA1 had been implicated previously in this cascade,

initially by Bae and colleagues [6], who found that wild-
type BRCA1 induced the transcription of a number of
genes in the anti-oxidant response pathway conferring
relative resistance to oxidative stress. Evidence was pre-
sented implicating increased activity of NRF2; however,

BRCA1. The recent paper by Gorrini and colleagues fills
in the missing mechanistic detail, demonstrating that
BRCA1 can physically associate with NRF2 and this
prevents binding and ubiquitination by KEAP1 [7], thus
stabilizing NRF2 and activating downstream target genes
and the anti-stress response. BRCA1 itself may be a
transcriptional target of NRF2 and this could serve as a
positive feedback loop to enhance the response to oxida-
tive stress. Importantly, in BRCA1 deficient mammary
cells, activation of NRF2 through small interfering RNA
inhibition of KEAP1 rescued the survival defect associ-
ated with loss of BRCA1 and restored ROS levels, indi-
cating that this mechanism is physiologically relevant.
Overall, these data are consistent with previous reports
[8,9] and extend our biochemical understanding of
BRCA1 in these processes.
Of note is another hereditary susceptibility gene that

also appears to regulate the same pathway. PALB2 (part-
ner and localizer of BRCA2; also termed Fanconi Anemia
complementation group N) is a major BRCA2 binding
partner (and a relatively minor BRCA1 interactor) that is
also mutated in familial breast and pancreatic cancer [10].
Ma and colleagues [11] recently showed that wild-type
PALB2 binds to the E3 ligase KEAP1, thus preventing
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NRF2 from undergoing ubiquitination and degradation,
resulting in the same net effect as wild-type BRCA1 in
regulating oxidative homeostasis. It is unknown whether
or how BRCA2 participates in this complex or how
PALB2 activity may be regulated in response to stress.
The relative contribution of BRCA1 versus PALB2/
BRCA2 in controlling this pathway is also unknown.
Like many other central response pathways, oxidative

stress is modulated by a myriad of positive and negative
signals that are transduced primarily via the levels of
NRF2 in the nucleus. That BRCA1 and BRCA2 (by in-
ference from PALB2) may both be involved in regulating
this signal strongly implicates this pathway in the func-
tion of these hereditary cancer genes. By function, I spe-
cifically refer to both the cancer-promoting properties
and the increased susceptibility of these cancers to geno-
toxic and oxidative agents, an intense focus of thera-
peutic testing and development [12].
Considering BRCA1 by itself, many hundreds of pro-

teins have been shown to physically or genetically interact
with it, implicating it in many pathways that could be con-
sidered fundamental to cancer development and drug re-
sponse [13]. Which of these pathways is most important
for the molecular pathophysiology of BRCA1 or is it a
combination of several (for example, homologous recom-
bination plus oxidative stress) that leads to the high pene-
trance of cancer and the sensitivity to DNA damaging
agents associated with its loss of function? Further, we are
still no closer to understanding the tissue-specific nature
of the hereditary syndrome characterized by the selective
neoplastic transformation of luminal progenitor cells in
the breast and epithelial cells in the fimbria of the fallo-
pian tube. One or more of these BRCA1-associated path-
ways will eventually forge an important mechanistic link
between these two susceptible cell types.

Abbreviation
ROS: Reactive oxygen species.
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