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Abstract

Introduction: Latent TGFβ binding proteins (LTBPs) govern TGFβ presentation and activation and are important for
elastogenesis. Although TGFβ is well-known as a tumor suppressor and metastasis promoter, and LTBP1 is elevated
in two distinct breast cancer metastasis signatures, LTBPs have not been studied in the normal mammary gland.

Methods: To address this we have examined Ltbp1 promoter activity throughout mammary development using
an Ltbp1L-LacZ reporter as well as expression of both Ltbp1L and 1S mRNA and protein by qRT-PCR,
immunofluorescence and flow cytometry.

Results: Our data show that Ltbp1L is transcribed coincident with lumen formation, providing a rare marker
distinguishing ductal from alveolar luminal lineages. Ltbp1L and Ltbp1S are silent during lactation but robustly
induced during involution, peaking at the stage when the remodeling process becomes irreversible. Ltbp1L is also
induced within the embryonic mammary mesenchyme and maintained within nipple smooth muscle cells and
myofibroblasts. Ltbp1 protein exclusively ensheaths ducts and side branches.

Conclusions: These data show Ltbp1 is transcriptionally regulated in a dynamic manner that is likely to impose
significant spatial restriction on TGFβ bioavailability during mammary development. We hypothesize that Ltbp1
functions in a mechanosensory capacity to establish and maintain ductal luminal cell fate, support and detect
ductal distension, trigger irreversible involution, and facilitate nipple sphincter function.
Introduction
Latent transforming growth factor β (TGFβ) binding pro-
teins (LTBPs) are regulators of elastogenesis and TGFβ
[1]. Their critical role in tissue development, homeostasis
and resilience is demonstrated by the fact that LTBP loss-
of-function mutations underpin a growing list of human
genetic syndromes [2-4]. Gain of LTBP gene expression
also has pathological consequences: LTBP1 is upregulated
in two breast cancer metastasis signatures and is one of
only six genes found in common to both [5,6].
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Ltbp genes encode a family of secreted proteins,
Ltbp1-4, that show extensive sequence homology to
fibrillins, which polymerize to form microfibrils and coat
elastic fibers [1,7]. Ltbp proteins are initially deposited
onto fibronectin and later transferred to microfibrils by
interaction with fibrillins [8]. Their importance for the
structural integrity and tensile function of the extracellu-
lar matrix (ECM) is illustrated by the pathologies seen in
Ltbp4S-null mice resulting from defective elastic-fiber
formation in the intestine, lung and pulmonary artery
and in humans with Urban-Rifkin-Davis syndrome
[4,9,10].
In addition to their contribution to ECM structure,

Ltbp1, Ltbp3 and to a lesser extent Ltbp4 govern the
spatial patterning and activation of TGFβ. TGFβs are se-
creted in a latent form, encapsulated by their cleaved
latency-associated propeptide (LAP), and deposited
within the ECM for subsequent activation. Ltbps post-
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translationally regulate TGFβ in three ways. First, they
chaperone the association of TGFβ with LAP and
through preferential binding affinities control which of
three TGFβ isoforms emerge from the cell [11]. Second,
Ltbps incorporate latent TGFβ within the ECM thereby
determining where TGFβ is presented to its receptors
[12]. Third, Ltbps provide a key link between the ECM
and the cell surface that is essential for stretch activation
of TGFβ [13-15]. Both integrins and Ltbp bind to LAP.
Thus, when Ltbp1 is anchored in a stiff ECM and stress
fibers exert tension on integrins, conformational changes
occur in LAP that lead to release of the active TGFβ
[13,14,16]. One major response to TGFβ signaling is
synthesis of new matrix proteins [17]. Thus, Ltbps create
a mechanosensory system that generates a highly local-
ized feedback response to cell traction or tension within
the microenvironment [1,18].
Mouse mutants have illuminated the roles of Ltbps in

tissue homeostasis and their involvement in human path-
ology. Ltbp1 hypomorphs show facial dysmorphia [19]
and Ltbp1L loss leads to embryonic lethality due to heart
malformation [20], Ltbp2 loss-of-function mutations cause
glaucoma in humans and lens defects in mice [21], Ltbp3
loss-of-function mutation results in severe bone malfor-
mation [3,22,23] and Ltbp4S-null mice show multiple
organ defects [4,9,10]. In some mutants the prevailing
pathology reflects compromised elastogenesis [10,24]. In
others the phenotype can be ameliorated by concurrent
deletion or pharmacological antagonism of TGFβ, sup-
porting the central role of Ltbps in TGFβ biology and
pathology [10].
Three TGFβ isoforms are differentially expressed and

exert multiple effects during mammary development
[25]. Loss- and gain-of-function studies have shown that
TGFβ signaling restrains pubertal ductal extension and
side branching by stimulating Wnt5a expression [26-31].
TGFβ1 influences stem cell regenerative potency and
cell-fate determination and has been proposed to sup-
press precocious alveologenesis in the adult gland prior
to pregnancy [27,32-36]. Weaning massively induces
TGFβ3 expression, and this surge is essential for the de-
mise of the differentiated glandular epithelium and re-
modeling events during mammary involution [37,38].
TGFβ1 has also been the object of intense investigation
due to its pathological relevance for breast cancer
[39,40] where it acts as a tumor suppressor in premalig-
nant lesions and at later stages promotes metastasis
through induction of epithelial-to-mesenchymal transi-
tion (EMT).
Knowledge of Ltbp's temporal and spatial expression

pattern is central to understanding TGFβ signaling both
in the physiological setting of the normal mammary
gland and in breast cancer. Yet to date there have been
no studies on Ltbp within the normal mammary gland.
Here we show that Ltbp1 is induced in a highly specific
temporal and spatial pattern throughout mammary de-
velopment, supporting the concept that dynamic tran-
scriptional regulation of Ltbp1 provides a mechanism to
impose considerable restriction on TGFβ bioavailability.
Ltbp1L is upregulated early during embryonic mammary
mesenchyme specification and is sustained in smooth
muscles of the nipple sphincter. Within the mammary
gland, Ltbp1L is induced exclusively in the ductal lu-
minal epithelium but is silent in alveoli and therefore
provides a rare biomarker distinguishing ductal from al-
veolar luminal lineages. Ltbp1 protein is deposited
around basal cells of all ducts and side branches, and lies
in close proximity to elastic fibers that exclusively encase
the permanent ductal system. Ltbp1 is prominently up-
regulated during involution, with kinetics similar to that
reported for TGFβ3, suggesting important functions in
gland remodeling.

Methods
Mice
Ltbp1Llz/+ mice, were generated by Regeneron Pharmaceu-
ticals, Inc., Tarrytown, NY. VelociGene methods [41] were
used to recombineer a bacterial artificial chromosome
(BAC) clone, such that a region extending from the 165th
codon of murine Ltbp1L in exon 2 through the remainder
of exon 2 and 7.8 kb into the downstream intron, was
replaced by homologous recombination with an expres-
sion cassette comprising the transmembrane domain of
ROR1 fused in-frame with the upstream coding se-
quence of Ltbp1L, followed by a stop-transfer sequence,
a modified β-galactosidase coding sequence (lacZ), a
polyadenylation signal and an antibiotic selection cassette
flanked by loxP sites [42] (see Figure 1). The modified
BAC, was linearized, producing 5′ and 3′ homology arms
of approximately 150 kb and 30 kb flanking the deletion,
and electroporated into SvEv129/C57Bl6/F1-derived hybrid
embryonic stem (ES) cells. Targeting of ES cells and the
germline transmission were confirmed by a quantitative re-
verse transcriptase PCR (qRT-PCR) assay that scored for
the loss of one of the native Ltbp1L alleles [41]. The neoR

cassette was removed by crossing with mice expressing
Cre recombinase in the germ-cell lineage and the knock-
out was confirmed by northern and western analysis [20].
Ltbp1Llz/+ mice on a mixed C57Bl6/129 background were
rederived into the Skirball animal facility and crossed onto
an FVBN strain background by breeding through nine gen-
erations. All animal protocols were approved by the Insti-
tutional Animal Care and Use Committee (IACUC) of
New York University School of Medicine.
Carmine staining of mammary whole mounts revealed

no differences between Ltbp1Llz/+ mice and wild-type lit-
termates in ductal elongation, branching, alveolar devel-
opment or involution. Pups from both genotypes faired
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Figure 1 Latent TGFβ binding protein (Ltbp) function and reporter construct. (A) Ltbp1 sequesters TGFβ ligand encased by its latency
associated propeptide (LAP) within the extracellular matrix (ECM). Integrins also interact with LAP. Cytoskeletal tension on integrins stretches LAP
and releases TGFβ locally to activate the TGFβ receptor II (TβRII). (B) Two Ltbp1 isoforms (1L and 1S) are transcribed from distinct promoters
(black arrows, top). The first four exons (red boxes) encode sequence unique to Ltbp1L. The promoter, transcription start site and unique signal
peptide sequence for Ltbp1S (green line and box) lie within the 4th intron of Ltbp1L. Black lines indicate introns. The targeted deletion of Ltbp1L
replaces codon 165 in exon 2 through 7.8 kb of intron 2 with a cassette comprising the ROR1 transmembrane domain (pink box), a modified lacZ
gene and polyadenylation signal (blue box) as well as a floxed neomycin gene (orange box) driven by the human ubiquitin binding complex
promoter (hUBC) that was removed by cre recombination in embryonic stem cells. Orange and blue arrowheads indicate primers used for
genotyping. 1L and 1S isoforms contain a signal peptide (SP), 4-Cys (blue), 8-Cys (red) and epidermal growth factor (EGF)-like repeats (gray and
green), and unique 8-cys/EGF hybrid domains (brown). The Ltbp1L-LacZ reporter comprises the signal peptide and the first 165 amino acids of
Ltbp1L protein followed by the ROR1 transmembrane domain fused in-frame with β-galactosidase and lacks all functional LTBP1 domains.
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equally well in terms of weight gain (data not shown).
We concluded that Ltbp1Llz/+ mice show no evidence of
haploinsufficiency and justified their use to study the
regulated expression of Ltbp1L during mammary devel-
opment. Staging of pregnancy and embryos were per-
formed by daily checking of vaginal plugs, with noon of
the day of the plug considered day 0.5. Embryonic stages
were confirmed by determining the degree of limb de-
velopment as indicated in Theiler’s classification of
mouse development (The Atlas of Mouse Development,
MH Kaufman).

Genotyping
Mice and embryos were screened by 5-bromo-4-chloro-
3-indolyl-β-D-galactoside (X-Gal) staining of tails and
confirmed by PCR analysis. Genomic DNA was prepared
from 0.5 cm of tail by digesting overnight in 0.5 ml di-
gestion buffer (50 mM Tris–HCl pH 7.4, 100 mM ethyl-
enediaminetetraacetic acid (EDTA), 100 mM NaCl, 0.5%
SDS, 200 μg/ml proteinase K). Then 150 μl of 5 M NaCl
was added and the digest was agitated for 15 minutes on
a rotator: 500 μl of supernatant was collected after cen-
trifugation at 14,000 G for 15 minutes, and subjected to
two rounds of ethanol precipitation. The final pellet was
resuspended in 200 μl TE (10 mM Tris–HCl pH 7.4,
1 mM EDTA) and 1 μl was added to a 20-μl PCR. Thirty
cycles of PCR (94°C, 58°C and 72°C for 1 minute each)
were carried out. The wild-type Ltbp1L allele was detected
by amplification of a 430-bp band using forward 5′-CT
TAGTTCCTCCATCCTTCC-3′ and reverse 5′-CAGA
CTTCACCTTCCCAGGG-3′ primers. The Ltbp1Llz/+

knock-in allele was detected in a separate reaction using
the forward primer listed above and a reverse primer 5-
GTCTGTCCTAGCTTCCTCACTG-3′ (see Figure 1B ar-
rowheads) to amplify a 440-bp product. The gender of
embryos was determined by amplification of the Sry gene
on the Y chromosome (forward primer: 5′-GAGAGCATG
GAGGGCCAT-3′ and reverse primer: 5′-CCACTCCTC
TGTGACACT-3′). Amplification products were resolved
by electrophoresis on 2% agarose gels run for 30 mi-
nutes in TAE electrophoresis buffer (40 mM Tris-acetate,
1 mM EDTA).

X-Gal staining of embryos and mammary gland whole
mounts
Embryonic day (E) 10.0 to E15.5 embryos were dissected
and fixed in 4% paraformaldehyde (PFA) (Sigma Aldrich,
St Louis, MO, USA) prepared in PBS for 20 to 50 mi-
nutes depending on the stage. Skin with attached mam-
mary fat pads was removed from E16.5 to E18.5
embryos and stretched carefully on cardboard, and
mammary glands from adult mice were dissected and
flattened onto glass slides then fixed in 4% PFA for
30 minutes. Following fixation, samples were washed 4 ×
15 minutes with rinse buffer (2 mM MgCl2, 0.1% sodium
deoxycholate, 0.2% NP40 prepared in PBS) and stained
in X-Gal staining solution (5 mM potassium ferricyan-
ide, 5 mM potassium ferrocyanide, 1 mg/ml 5-bromo-4-
chloro-3-indolyl-b-D-galactopyranoside (X-Gal, Denville
Scientific, South Plainfield, NJ, USA) prepared in rinse
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buffer) at room temperature for 2 to 3 h. After staining,
samples were rinsed twice in PBS and post-fixed in 4%
PFA overnight at 4°C, dehydrated through an ethanol
gradient (2 × 10 minutes in 70%, 95%, and 100% etha-
nol), then placed in Carnoys’s fixative (60% ethanol,
30% chloroform, 10% glacial acetic acid) followed by
Citrisolv reagent (Fisher Scientific, Pittsburgh, PA,
USA) to clear the fat.

Whole-mount carmine staining
X-Gal stained mammary glands were rehydrated in a
reverse-graded series of ethanol washed in water and then
stained for 1 h in carmine solution diluted 1:5 in water.
Carmine was prepared by boiling 1 g carmine alum and
2.5 g aluminium potassium sulphate in 500 ml of water
for 20 minutes followed by filtration. The glands were
dehydrated in a graded ethanol series, cleared in Carnoy’s
solution, placed in Citrisolv for 30 minutes, and mounted
in Cytoseal (VWR, Radnor, PA, USA). Glands were then
viewed using a Zeiss Axiovert (Oberkochen, FRG) bright-
field microscope.

Histology and immunodetection
E10.5-stage embryos were embedded in 10% gelatin, sec-
tioned at 70 μm with a vibratome, and mounted with
Fluoromount G (Southern Biotech, Birmingham, AL,
USA). Older embryos and mammary glands were proc-
essed for X-Gal staining and fixation as described above.
Isopropanol was substituted for xylene to prevent diffu-
sion of the X-Gal stain during processing and tissues were
embedded in paraffin and sectioned. Sections (4 μm) were
placed on Superfrost Plus slides, baked 1 h at 60°C and
deparaffinized for 5 minutes in Citrisolv for X-Gal-stained
tissues. Tissues were then rehydrated through a reverse
gradient of ethanol solutions. For histology, sections were
stained with 0.1% solution of Nuclear Fast Red (NFR)
(Polyscientific, Bayshore, NY, USA) for 1 minute. Tissues
were then dehydrated and dipped in xylene (or Citrisolv in
the case of X-Gal-stained tissues) before being mounted in
Cytoseal (VWR). For immunohistochemistry (IHC), citric
acid antigen retrieval was performed by submerging the
slide containing deparaffinized 4-μm sections in 10 mM
sodium citrate solution (pH 6.0) and boiling in a micro-
wave at 90% power for 30 minutes, followed by quenching
of endogenous peroxidase using 3% hydrogen peroxide.
Primary mouse antibodies against smooth-muscle actin
(SMA) 1 (1:500, DAKO, Carpinteria, CA, USA), estro-
gen receptor (1:500, DAKO), p63 (1:1,000 LabVision,
Kalamazoo, MI, USA), and rabbit antibodies against
Cytokeratin 14 (1:8,000, Covance, Princeton, NJ, USA),
Lef-1 (1:100 Cell Signaling, Danvers, MA, USA), andro-
gen receptor (1:500, Santa Cruz Biotechnologies, Santa
Cruz, CA, USA) and guinea pig antibodies against
Vimentin (1:1,000, Progen) were added overnight at 4°C.
For IHC, biotin-labeled secondary antibodies (1:1,000) and
streptavidin-horseradish peroxidase (HRP) (1:200, Vector
Laboratories, Burlingame, CA, USA) were added for 30 mi-
nutes each, and colorimetrically detected with diamino-
benzidine (Vector Labs). Frozen 5-μm sections were
stained with rabbit antibodies against LTBP (Ab39 [43],
1:200, a gift from Dr Carl-Henrik Heldin, Uppsala Univer-
sity, Sweden, and rL1C [44], 1:100, a gift from Dr Lynn
Sakai, Portland Shriners Research Center, Portland, OR,
USA), tropoelastin (1:500, Elastin Products Company, Inc.,
Owensville, MO, USA), and mouse anti-SMA, described
above, were detected by Cy3-labeled donkey anti-rabbit
(Fisher Scientific) and Alexafluor-488-labeled donkey
anti-mouse secondary antibodies (Life Technologies Inc,
Carlsbad, CA, USA). Bioreagent (4′,6-diamidino-2-pheny-
lindole dihydrochloride (DAPI) from Sigma Aldrich) was
used for immunofluorescent localization of nuclei in con-
focal images. Elastic fibers were also detected by staining
with Wiegert’s resorcin-fuchsin for 1 minute [45].

Mammary epithelial cell preparation and flow cytometry
The third, fourth and fifth mammary glands from 8- to
16-week-old virgins were dissected, inguinal lymph
nodes were discarded, and the mammary glands were
minced between two scalpels into a fine paste. The tis-
sue was dissociated for 6 h at 37°C in collagenase/hyal-
uronidase solution (catalog number 07912, Stem Cell
Technologies Inc., Vancouver, BC, Canada), and further
dissociated with 0.25% Trypsin-EDTA and 10 mg/ml
dispase (catalog number 07913, Stem Cell Technologies)
with 1 mg/ml DNase, before filtering through a 40-μm
mesh. Endothelial and hematopoietic lineages were de-
pleted using antibodies to TER119, CD45, CD140a, and
CD31 (1:100, Becton Dickenson (BD), Franklin Lakes,
NJ), with three separations on an EasySep magnet. Pri-
mary antibodies CD49f-PerCP-Cy5.5 (1:200, BD),
CD24-PE (1:400, BD), CD29-Pacific Blue (1:200, Biole-
gend, San Diego, CA, USA), CD61-APC (1:200, CalTag
MedSystems, Buckingham, UK), stem cell antigen 1
(Sca1)-phycoerythrin (PE) (1:400, BD) were added for
30 minutes at 4°C. Fluorescein Di-β-D-Galactopyrano-
side (FDG-gal) loading was performed after primary
antibody staining, according to the manufacturer’s instruc-
tions (FluoReporter Kit, Life Technologies, Green Island,
NY, USA). Flow cytometry was performed on a BD LSRII
or BD FacsCalibur, and analyzed using FlowJo v8.7.

RNA isolation and qRT-PCR analysis
The fourth and fifth pair of mammary glands were har-
vested from wild-type mice at different stages of postnatal
mammary development, dissected and snap-frozen in li-
quid nitrogen. A block of tissue approximately 0.5 × 0.5 ×
0.5 cm was homogenized for 5 minutes in 1 ml of TRI-
Reagent (Life Technologies) using a hand-held tissue
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Figure 2 Latent TGFβ binding protein (Ltbp)1L-LacZ appears
early in embryonic mammary development. The 5-bromo-4-
chloro-3-indolyl-β-D-galactoside (X-Gal)-stained embryonic day (E)
10.5 embryo (A) and vibratome section (B) show a broad stripe of
Ltbp1L-LacZ (blue stain) that localizes to viscera (black arrow). Faint
staining (red arrow) is seen at the dorsal border of the mammary
line (asterisk) overlying the somitic tips (S). (C) X-Gal-stained E12.0 to
E12.5 embryos show reporter expression in a streak along the
forelimb axilla (white arrow) and surrounding placodes 1 to 3 (red
arrows). (D) Nuclear fast red-counterstained section of the same
region shows a gradient of Ltbp1L-LacZ in the mesenchyme (white
arrow) oriented towards mammary gland 1 (MG1). F = forelimb. Scale
bars represent distance in microns.
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homogenizer (Kinematica, Lucerne, Switzerland), then
mixed with 200 μl of chloroform and centrifuged at
14,000 G for 15 minutes to eliminate protein debris. The
upper aqueous phase was mixed with an equal volume of
70% ethanol and passed through a Qiagen RNeasy mini
spin column by a brief 15 sec centrifugation at 8,000 G at
room temperature. Total RNA bound to the column filters
was washed in 350 μl of ethanol-containing buffer (RW1
buffer; Qiagen, Valencia, CA, USA) to remove contami-
nants and incubated in 10 μl of RNase-free DNase I en-
zyme (273 Kunitz units; Qiagen) for 15 minutes at room
temperature to ensure digestion of any residual genomic
DNA fragments. The columns were washed according to
the manufacturer’s instructions in ethanol-containing
buffers (RW1 and RPE buffers; Qiagen). Total RNA was
eluted in 50 μl of RNase-free water, and its concentration
was analyzed by Nanodrop measurement. Reverse tran-
scription was performed using 2 μl of RNA (10 ng/μl)
from tissue using the QuantiTect Probe RT-PCR Kit
(Qiagen; catalog number 204443). Real-time analysis was
performed using the Taqman Gene Expression Assay
(Applied Biosystems by Life Technologies; catalog number
4331182) for mouse Ltbp1 (Mm00498255_m1), Ltbp1L
(Mm01226402_m1 spanning exons 1 and 2), and Ltbp1S
(custom assay with forward primer: 5′-TTCCAAGGCAA
GTTCATGGATA-3′, within intron 4; reverse primer: 5′-
AGGAGTAGAGGCAGACAGAGAAAGA-3′, within the
fifth exon of Ltbp1 genomic sequence and MGB probe:
5′-6FAM-TAAGCTGATGTGTTTGTTG-3′-MGBNFQ)
and mouse β2-microglobulin (Mm00437762_m1). Real-
time analysis was performed in the Applied Biosystems
ViiA™ 7. Total Ltbp1, Ltbp1L and 1S mRNA levels were
normalized to those of mouse β2-microglobulin and plot-
ted as levels relative to tissue from 12-week-old virgins.

Results
Ltbp1L-LacZ expression underlies a route for axillary cell
migration and is an early marker of the mammary
mesenchyme
We utilized an Ltbp1Llz/+ reporter mouse (Figure 1) in
an attempt to understand potential physiological roles of
LTBP1L [20]. Mammary development begins in mice at
E10.5 with the formation of ectodermal ridges between
the limbs, termed mammary lines that fragment to form
placodes 3 and 4 [46]. Although Ltbp1L-LacZ expression
was found between the limbs at this stage in Ltbp1Llz/+

embryos (Figure 2A black arrow), in sections it localized
principally to internal viscera (Figure 2B black arrow).
Robust Ltbp1L-LacZ expression first appeared at E11.5
to E12.0 in a subaxillary mesenchymal streak (Figure 2C
and D, white arrow) abutting mammary placodes 1 and
2 (Figure 2C, red arrows). Intriguingly, ectodermal cells
have been shown to migrate along a similar path to form
pectoral and thoracic placodes 1 to 3 [47]. Later Ltbp1L-
LacZ became intensely expressed around all five buds
(Figure 3A-C) and colocalized with well-characterized
mammary mesenchyme markers, such as androgen re-
ceptor (AR), estrogen receptor (ER), tenascin C and
lymphoid enhancer-binding factor 1 (Lef1) (Figure 3D-
G) [46]. Thus, during early embryonic mammary devel-
opment Ltbp1L expression underlies a migratory route
for epithelial cells and is one of the earliest markers of
the inductive mammary mesenchyme.

Mesenchymal Ltbp1L activity accompanies nipple
induction and persists in smooth-muscle cells and
myofibroblasts in the adult
In males, stimulation of androgen receptors at E14.5 in-
duces mammary mesenchymal constriction and atrophy
leading to bud loss and failure of nipple formation [48]. In
contrast, in females, mammary mesenchyme signaling
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induces ductal morphogenesis, differentiation of nipple
epithelium and suppression of hair follicles within the
areola [49]. Reflecting this sexual dimorphism, Ltbp1L-LacZ
expression was diminished in E14.5 males (Figure 3B) and
lost by E15.5 but was maintained in females (Figure 3A),
and robustly expressed during nipple induction at E16.5
(Figure 4A, B). Once the nipple shield had formed, re-
porter expression became restricted to muscle cells of the
areola (Figure 4C, D).
Nipples undergo significant postnatal connective tissue re-

modeling. In virgin and early pregnant mice, the nipple,
delimited by germinative epidermal ingrowths, encloses
predominantly collagenous connective tissue. During late
pregnancy, nipple stromal cells proliferate and synthesize
elastin, leading to elastic fiber hypertrophy [50]. Ltbp1L-
LacZ was strongly expressed in smooth muscle of the nipple
sphincter, located at the base of the areola (Figure 5A-C),
which were surrounded by elastic fibers (Figure 5D). Ltbp1L
was silent within the nipple stroma at most developmental
stages (Figure 5A, G, H). However, robust Ltbp1L reporter
expression appeared briefly during mid-pregnancy P13.5
within vimentin-positive stromal cells (Figure 5E, F) at
the base of the lactiferous duct and directly adjacent to the
clefting germinative epithelium. Thus the temporal-spatial
expression of Ltbp1L appears coincident with the formation
of the nipple sphincter and during elastin synthesis by stro-
mal myofibroblasts.

Ltbp1L promoter activity coincides with ductal lumena
formation within the embryonic mammary tree
At E16 mammary mesenchymal signaling induces prolifer-
ation of a solid cord of cells to form the mammary sprout
[46,49]. Ltbp1L remained silent within the epithelium at
this stage (Figure 4B) but became robustly expressed at
around E17.5, in luminal cells coincident with the appear-
ance of microlumen (Figure 6B, D). Intriguingly, reporter
expression was absent from the multilayered ductal tips
(arrowheads, Figure 6E) and from portions of the lactifer-
ous duct within the nipple that comprise stratified epithe-
lium (Figure 6D). Thus, Ltbp1L is induced only when the
lactiferous duct enters the fat pad and differentiates into a
bi-layered tube comprising a simple epithelial luminal lin-
ing surrounded by molecularly distinct basal cells.

Ltbp1 mRNA is dynamically modulated during postnatal
development
Mammary development continues postnatally during
puberty and is completed only after a first pregnancy.
To determine if Ltbp1 was expressed during the postna-
tal period we isolated total RNA from mammary glands
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of virgin, pregnant and lactating mice as well as from
those undergoing post-parous remodeling (involution),
and performed qRT-PCR. Total Ltbp1 mRNA was
expressed at modest levels in virgin mice, decreased
during pregnancy, lost during lactation and robustly
upregulated during early involution, peaking at day 3
and returning to that found in virgins after 5 to 7 days
(Figure 7A). Ltbp1S and 1 L showed a similar trend,
however Ltbp1L rose in a more pronounced fashion at
day 3 (Figure 7B).

Ltbp1L is induced in ductal luminal cells and distinguishes
them from alveolar lineages
To determine more precisely where the Ltbp1L promoter
is activated during postnatal mammary development, we
examined Ltbp1L-LacZ expression in whole mounts and
histological sections. In pubertal mice a balance of prolif-
eration and apoptosis within outer cap and inner multi-
layered body cells of the bulbous terminal end buds
(TEBs) generates the permanent ductal tree and creates a
lumen in the subtending ductal system. X-Gal-stained
whole mounts revealed Ltbp1L-LacZ expression lining the
lumen of the TEB (Figure 7C). Reporter expression was
notably absent from the vast majority of body cells, which
are considered to be actively proliferating luminal precur-
sors (Figure 7D).
Ltbp1L-LacZ was expressed prominently in luminal

cells of the permanent ductal system (Figure 8A, B). To
further characterize Ltbp1L activity within the luminal
lineage we utilized a fluorescent β-Galactosidase sub-
strate, FDG-Gal to detect Ltbp1L-positive cells by flow
cytometry. Mammary stromal, basal, and luminal sub-
populations can be separated by their differential expres-
sion of CD24, CD49f and CD29 (Figure 8C top panel)
[51]: 65% of CD24highCD49flow and CD29low luminal
cells (Figure 8C middle panel and 8D respectively) were
FDG+ and therefore expressed Ltbp1L-LacZ. Interest-
ingly, 35% of the luminal cell population was negative
(Figure 8C bottom panel), consistent with our observa-
tion of a punctate X-Gal staining pattern in some whole
mounts (Figure 8A). Luminal cells can be further defined
into mature and progenitor populations by their expres-
sion of CD61, a marker of integrin β3 that is highly
expressed in luminal progenitors and Sca1 [51]. The
majority of FDG+ cells were Sca1+ (Figure 8E) and
CD61- (Figure 8F), but a small percentage was CD61+.
Collectively these data indicate that Ltbp1L is induced in
a subset of luminal progenitors and mature luminal cells
of the permanent ductal system.
Pregnancy initially induces extensive arborization of

the mammary ductal tree. Alveolar clusters form on the
tip of each side-branch during mid-pregnancy and
undergo secretory differentiation during late pregnancy
in preparation for lactation. Mammary whole mounts
taken during early, mid and late pregnancy showed
Ltbp1L-LacZ expression throughout the permanent
ductal system and within the newly developing transient
side branches (Figure 9A-D). In striking contrast, Ltbp1L
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mouse are shown from below (B) and above (B’). (C) Immunohistochemical detection of SMA 1 (brown stain) colocalizes with Ltbp1L-LacZ in
areola smooth muscle, P13.5. Secondary antibody control (C’). (D) Resorcin-fuchsin stain detects elastin fibrils (black arrow to deep purple stain)
encompassing Ltbp1L-LacZ-expressing smooth muscle. (E) NFR-stained section shows Ltbp1L-LacZ upregulation in nipple stromal cells during
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nipple sections from mice during (G) pregnancy P16.5 and (H) involution. Note the absence of X-Gal staining in the region of the lactiferous duct (LD)
within the nipple in G and H and acquisition of reporter expression as the LD enters the fat pad at the base of the nipple (see black arrow in G). Scale
bars represent distance in microns.
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remained silent within developing and differentiating al-
veoli throughout pregnancy (Figure 9C, D). Histological
sections through p16.5 alveolar clusters confirmed that
Ltbp1L-LacZ expression was restricted to ducts and
side branches (Figure 9E, F) and absent from alveolar
milk-producing cells that contained large lipid droplets
(Figure 9F). Thus Ltbp1L is a rare and highly specific
marker distinguishing ductal from alveolar luminal lineages.
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Ltbp1L activity is dramatically upregulated during
involution
During lactation luminal cells of both ducts and alveoli
undergo secretory differentiation. Ltbp1L-LacZ expression
was undetectable in whole mounts and sections at this
stage (Figure 10A, B) consistent with the relative diminish-
ment of Ltbp1 mRNA expression at this stage in qRT-PCR
analysis (Figure 7A, B). Milk stasis and ductal distension
trigger an initial phase of involution involving cell death
that is reversible if suckling resumes [37,52]. After 48 h,
however, involution proceeds irreversibly with collapse and
removal of transient alveolar and side-branch structures.
Throughout this process the permanent ductal system and
resident stem cells are protected from destruction. Within
24 hours of pup weaning Ltbp1L-LacZ expression ap-
peared along the main ducts and distended primary side
branches (Figure 10C, D). In sections, the reporter expres-
sion appeared in a discontinuous pattern within a subset of
luminal cells (Figure 10D) and was absent from alveoli,
which remained morphologically distended. By 72 h, as the
alveoli collapsed and were undergoing clearance, Ltbp1L-
LacZ became robustly expressed within remaining luminal
epithelia (Figure 10E, F). This sharp increase in LTBP1
expression around the transition to irreversible involution
was confirmed by qRT-PCR where Ltbp1, 1 L and 1S
mRNA peaked at 72 h (Figure 7A, B). Collectively these re-
sults show that both forms of Ltbp1 are transcriptionally
regulated throughout mammary development in a highly
dynamic temporal and spatial manner and are maximal
during involution.

Ltbp1 and elastin encase the mammary ductal system
Having identified the spatial pattern of Ltbp1L promoter ac-
tivity and expression levels of both Ltbp1 mRNAs we next
sought to determine the localization of the secreted Ltbp1L
protein. We first examined sections of involuting glands
by immunofluorescence and found Ltbp1L localized in mi-
crofibrillar strands surrounding ducts (Figure 10G).
Resorcin-fuchsin detected elastic fibers in a similar periduc-
tal organization (Figure 10H). We next examined Ltbp1L



C

Carmine/X-Gal

TEB

Cap cells

Body
cells

Lumen

NFR/X-Gal
50 100

V P14 P17.5 L I3 I5 I9 I21

-2.0

D

Lt
bp

1L
an

d
1S

m
R

N
A

le
ve

ls
(r

el
at

iv
e

to
vi

rg
in

av
er

ag
e)

Ltbp1L

Ltbp1S

0.0

2.0

4.0

6.0

8.0

10.0

12.0

B

A

Lt
bp

1
m

R
N

A
le

ve
ls

(r
el

at
iv

e
to

vi
rg

in
av

er
a g

e)

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V P14 P17.5 L I3 I5 I9 I21
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and elastin organization at earlier stages (Figure 11). In
pubertal glands SMA antibodies detected the basal cell layer
of ducts (Figure 11A, B) but was absent from the contiguous
cap cell layer of TEBs. Ltbp1 antibodies showed extensive
regions of colocalization with SMA-positive basal cells along
ducts but was also absent from the SMA-negative cap cell
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layer of TEBs indicating that Ltbp1 is deposited in close ap-
position to differentiated myoepithelial cells (Figure 11A-B).
Weak Ltbp1 staining was seen in a few body cells of the
TEB. The ductal system was also encased by a thick mesh of
elastic fibers detected by anti-tropoelastin (Figure 11C). The
elastic fibers, however, localized more distantly from the
basal cell layer than Ltbp1. In glands from pregnant mice,
Ltbp1 surrounded both the permanent ductal system and
temporary side branches but was absent from alveolar clus-
ters (Figure 11D). In contrast elastic fibers were restricted to
the permanent ductal system (Figure 11E).
Discussion
The importance of TGFβ signaling for mammary physi-
ology and pathology has been well documented however
the factors that regulate TGFβ presentation and activation
are less well-understood [53]. Although LTBPs determine
the spatial deposition of latent TGFβ and thus define the
coordinates for its subsequent activation, surprisingly noth-
ing is known about them in normal mammary gland. Here
we show that Ltbp1 is dynamically and focally regulated
throughout mammary development. The major findings of
our study are that 1) Within the mammary epithelium,
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Ltbp1L is transcribed exclusively by ductal luminal cells
and distinguishes them from the alveolar luminal lineage;
2) Ltbp1 protein and elastic fibers exclusively encase the
ductal system; 3) Ltbp1L and 1S are upregulated during in-
volution, a developmental window linked to high risk for
breast cancer promotion; and 4) Ltbp1L is induced in
mammary mesenchyme and sustained in the smooth-
muscle cells of the nipple sphincter.

Ltbp1L is induced in embryonic mammary mesenchyme
and persists in nipple sphincter cells
Ltbp1L-LacZ is first expressed in an arc around the fore-
limb. This pattern is intriguing in light of reports that
mammary precursors destined for placodes 1 to 3 mi-
grate along a similar path [47]. It is well known that
TGFβ signaling promotes EMT and motogenesis. Thus,
Ltbp1L expression may designate a migratory route and
potentially stimulate ectodermal cell migration by pre-
senting a focal source of TGFβ. Ltbp1L is next upregu-
lated in the specialized mammary mesenchyme, which
plays a pivotal role in inducing mammary morphogen-
esis and specifying the embryonic nipple and areola [49].
To date there have been no reports of TGFβ involve-
ment in these inductive processes, although other mem-
bers of the TGFβ family, such as bone morphogenic
protein (BMP)4, are known to play critical roles [54,55].
We find that the expression of mammary mesenchymal
markers remains unperturbed and embryonic mammary
development proceeds normally in Ltbp1Llz/lz embryos,
indicating that Ltbp1L is not essential for mammary
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mesenchyme specification or inductive function. These
results do not, however, preclude the possibility that the
products of Ltbp1S, which is expressed from an inde-
pendent promoter, or other Ltbp genes may compensate
[56]. Alternatively Ltbp1L may function at later stages in
the differentiation of these cell types. Ltbp1L-LacZ ex-
pression persists within smooth muscle cells aligned in
radial arrays under the areola, which facilitate nipple
projection and regulate the nipple sphincter during milk
let-down. There have been no studies on TGFβ in the
nipple, however, misexpression of Wnt5a, a target gene
of TGFβ, has been shown to impair milk ejection,
supporting the concept that specific levels of TGFβ
signaling may be critical for nipple function [57]. We
also observe strong Ltbp1L-LacZ expression in myofi-
broblasts during mid-pregnancy when the stroma syn-
thesizes elastin to provide structural support for the
lactiferous duct [58]. Whether Ltbp1L functions to
reinforce the surrounding elastic fibers, and/or serves in
a mechanosensory capacity between TGFβ signaling and
the establishment of the unique nipple stroma, remains
to be determined.

Ltbp1 and ductal cell fate
Ltbp1L activity is a consistent marker of the ductal lu-
minal lineage, appearing in the embryo at the first sign
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of ductal canalization. This specificity is maintained
throughout pubertal development and pregnancy where
it serves as a rare marker distinguishing ductal from al-
veolar luminal cells. Transplantation studies have sug-
gested that ductal and alveolar progenitors are distinct,
but little is known about differences between mature
ductal and alveolar luminal cell-types [59]. Ltbp1L is ac-
tive in approximately 65% of luminal cells but silent
within the inner body cells of the TEB, which are
thought to be a proliferative progenitor population. It
is upregulated within mature CD61-Sca1+ cells in the
subtending duct and within a small subpopulation of
CD61+ luminal progenitors, which we speculate may
generate side branches during pregnancy. Previous
studies have implicated TGFβ signaling in suppressing
proliferation of luminal populations and maintaining
the potency of basal stem cell populations [34,36,60].
Our results show that Ltbp1 protein is deposited in
close apposition to basal cells encasing the ductal
system and thereby positioning TGFβ to carry out
these functions.

Ltbp1 in the physiology of ductal dilation and distension
The appearance of Ltbp1L-LacZ expression coincident
with lumen formation in the embryonic mammary rudi-
ment and in the pubertal TEB suggests Ltbp1 may pos-
ition TGFβ to generate lumen by inducing apoptosis
[61]. TGFβ is a well-known pro-apoptotic cytokine and
multiple studies have demonstrated a role for apoptotic
factors in lumen formation in vitro and in vivo [34,37].
However the periductal restriction of Ltbp1 protein in
close association with elastic fibers makes this function
unlikely and moreover indicates that they participate in
some ductal versus alveolar specific process. A distin-
guishing feature of ducts is that their lumen remain
open at all times. Whether Ltbp1 serves to physically
support the open ducts by reinforcing their elastic fiber
encasement and/or positions TGFβ to monitor ductal
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lumenal diameter in a mechanosensory fashion remains
to be determined.

Ltbp1L is silenced during lactation and dramatically
induced during involution
The most dramatic changes in Ltbp1 activity occurred
with the onset and cessation of lactation. Ltbp1, 1L and
1S mRNA were undetectable during lactation, and
Ltbp1L-LacZ expression was lost even from the ducts as
the entire epithelium assumed a secretory phenotype
and the lumen became engorged with milk. This loss of
Ltbp1L and 1S expression coincides with a change in the
trafficking of latent TGFβ from basolateral secretion as a
large latent complex destined for incorporation into the
ECM in an Ltbp-dependent manner to apical secretion
of small latent complex into milk, which functions to
promote IgA production and induce oral tolerance in
the newborn [62].
Ltbp1L is dramatically induced during involution. Invo-

lution is a biphasic event, marked by distinct biological
processes. For up to 48 h after weaning the process is re-
versible and characterized by alveolar apoptosis. After this
point it becomes irreversible, as protease-mediated matrix
remodeling leads to alveolar collapse and rebuilding of the
ECM, to return the gland to a virgin-like state [63]. Teat-
sealing experiments have shown that ductal distension
triggers involution even in the presence of circulating
lactogenic hormones, highlighting the role of local factors
[37]. Our results show that Ltbp1L and 1S are induced
within 24 h and peak at day 3 of involution, remaining ele-
vated for some days. This pattern is similar to that re-
ported for TGFβ3 in several microarray studies [64,65].
TGFβ3 is upregulated 6-fold within 3 h of weaning and
has been implicated as a local factor triggering alveolar
apoptosis, however, the mechanism for its activation has
not been studied [37]. Whether Ltbp1 is expressed early
enough to facilitate TGFβ3’s role in apoptosis remains to
be determined. The peak of Ltbp1 and TGFβ3 induction
correlates with the transition to the irreversible stage of in-
volution, suggesting that elevated TGFβ signaling may
contribute to this transition. Little is known about the role
of TGFβ3 in later involution, though it has been hypothe-
sized to promote fibroblast migration and ECM gener-
ation based on the upregulation of wound healing and
ECM genes that are targets of TGFβ signaling during this
phase [17,63,65]. Alternatively, the localization of Ltbp1
protein along ducts suggests it may function to protect the
permanent ductal system and its ductal stem cells from
destruction by integrating integrin and TGFβ signaling,
which promote cell survival and stem cell potency, re-
spectively [66]. Lastly, our finding that Ltbp1 expression is
dramatically elevated during involution, when taken col-
lectively with the fact that LTBP1 appears in two meta-
static signatures [5,6] and regulates TGFβ, a factor
inducing EMT, suggests that LTBP1 may be a prometa-
static element in pregnancy-associated breast cancer
(PABC). Detected postpartum, PABC is highly aggres-
sive and this feature is thought to result from the ac-
tion of prometastatic factors in the microenvironment
of involuting glands [67]. Thus LTBP1 levels may be
worthy of investigation as a risk factor.

Conclusions
In conclusion, our results establish that Ltbp1 is dynam-
ically regulated during mammary development. The pat-
tern of Ltbp1L activity and Ltbp1 protein localization
suggest roles in reinforcing elastic support and mechan-
osensory feedback for mammary ducts and nipple. Cur-
rently nothing is known of the role of this important
TGFβ regulator in human breast. Its elevation during in-
volution suggests LTBP1 is worthy of further investiga-
tion as a prometastatic candidate in PABC.
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Lef1: Lymphoid enhancer-binding factor 1; LLC: Large latent complex;
LTBP: Latent TGFβ binding protein; MGB: Dihydrocyclopyrroloindole tripeptide
minor groove binder; NFR: Nuclear fast red; PABC: Pregnancy-associated
breast cancer; PBS: Phosphate buffered saline; PFA: Paraformaldehyde;
qRT-PCR: Quantitative reverse transcriptase-polymerase chain reaction;
RER: Rough endoplasmic reticulum; RGD: Arginine-glycine-aspartic acid;
Sca1: Stem cell antigen 1; SLC: Small latent complex; SMA: Smooth muscle
actin; SP: Signal peptide; TEB: Terminal end bud; TGFβ: Transforming growth
factor β; TGF-βR: Transforming growth factor β Receptor; X-Gal: 5-bromo-
4-chloro-3-indolyl-β-D-galactoside.
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