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Abstract

Introduction: While Cumulus – a semi-automated method for measuring breast density – is utilised extensively in
research, it is labour-intensive and unsuitable for screening programmes that require an efficient and valid measure
on which to base screening recommendations. We develop an automated method to measure breast density
(AutoDensity) and compare it to Cumulus in terms of association with breast cancer risk and breast cancer screening
outcomes.

Methods: AutoDensity automatically identifies the breast area in the mammogram and classifies breast density in a
similar way to Cumulus, through a fast, stand-alone Windows or Linux program. Our sample comprised 985 women
with screen-detected cancers, 367 women with interval cancers and 4,975 controls (women who did not have cancer),
sampled from first and subsequent screening rounds of a film mammography screening programme. To test the
validity of AutoDensity, we compared the effect estimates using AutoDensity with those using Cumulus from logistic
regression models that tested the association between breast density and breast cancer risk, risk of small and large
screen-detected cancers and interval cancers, and screening programme sensitivity (the proportion of cancers that are
screen-detected). As a secondary analysis, we report on correlation between AutoDensity and Cumulus measures.

Results: AutoDensity performed similarly to Cumulus in all associations tested. For example, using AutoDensity, the odds
ratios for women in the highest decile of breast density compared to women in the lowest quintile for invasive breast
cancer, interval cancers, large and small screen-detected cancers were 3.2 (95% CI 2.5 to 4.1), 4.7 (95% CI 3.0 to 7.4),
6.4 (95% CI 3.7 to 11.1) and 2.2 (95% CI 1.6 to 3.0) respectively. For Cumulus the corresponding odds ratios were:
2.4 (95% CI 1.9 to 3.1), 4.1 (95% CI 2.6 to 6.3), 6.6 (95% CI 3.7 to 11.7) and 1.3 (95% CI 0.9 to 1.8). Correlation between
Cumulus and AutoDensity measures was 0.63 (P < 0.001).

Conclusions: Based on the similarity of the effect estimates for AutoDensity and Cumulus in models of breast density
and breast cancer risk and screening outcomes, we conclude that AutoDensity is a valid automated method for
measuring breast density from digitised film mammograms.
Introduction
Population mammographic screening might be more
effective if screening strategies were tailored according
to mammographic breast density [1,2]. Women with
high breast density are at higher risk of breast cancer
[3] and in population mammographic breast cancer
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screening programmes they experience reduced screening
programme sensitivity (the proportion of cancers that are
screen-detected) [4,5] and larger tumours at diagnosis
[5,6]. This is due to increased cancer risk and because
dense areas on mammograms can obscure cancers [4-9].
Specific strategies for tailoring screening according

to breast density include adding ultrasound to mam-
mography [10-12], using magnetic resonance imaging
(MRI) instead of mammography [13], or more frequent
screening of women with high breast density potentially
offset by less frequent screening of women with low breast
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density [2,14]. Trials of MRI or adjunctive ultrasound for
women with dense breasts suggest improvements in cancer
detection but increases in false positive rates [10,15].
Current methods of measuring breast density are not

suitable for developing tailored screening strategies be-
cause they are manual methods that are time-consuming
and have inadequate reliability. In the USA, radiologists
routinely use the BI-RADS™ (Breast Imaging Reporting and
Data System) visually estimated categories [16], however,
this method has limited within-reader reliability (κ = 0.71)
and between-reader reliability (κ = 0.54) [17], and it is not
sufficiently discriminatory because it has only four categor-
ies of breast density and a majority of women (for example
81% [18], or 92% [19]) are classified in the middle two
categories.
A widely used computer-assisted method is Cumulus

[20]. It measures breast density on a continuous scale
and has high between- and within-reader reliability in
carefully monitored research settings [21], however, this
may not be reliably realised in the routine screening
context, and the method is time-consuming and costly
in terms of staff time.
If breast density is to be routinely measured in screen-

ing programmes, an efficient and high-quality automated
method is required. Ideally, trials of alternate screening
strategies should be based on such a method so that the evi-
dence can be easily translated into screening programmes.
Several automated measurement methods have recently

been published [22-31]. All these methods offer perfect
inter-read reliability. Some methods segment the distinctly
white tissue (essentially automating the Cumulus approach)
[25,26] while others estimate the underlying volumes of
dense and non-dense breast tissue by projecting two-
dimensional information onto three-dimensional space
[27-30]. Some automated methods have shown associa-
tions with breast cancer risk comparable to Cumulus
and BI-RADS™ measures [25,27] but none have yet been
validated against important measures of the effectiveness
of screening programmes such as programme sensitivity,
interval cancer rates and tumour size at diagnosis. Valid-
ation of methods against screening outcomes is required
because the way that breast density affects breast cancer
risk is likely to differ from the way that it affects radiological
reading of mammograms.
In this study, we describe an efficient, automated

method for measuring breast density and compare it
with Cumulus in terms of predicting breast cancer
risk, screening programme sensitivity, risk of small
and large screen-detected cancers and interval cancers,
and tumour size at diagnosis. We utilise an existing study
database of BreastScreen Australia film mammograms
from screening episodes and their associated Cumulus
breast density measurements and clinical and screening
data [21,32,33].
Methods
Participants
BreastScreen Australia is a free population-based breast
screening programme that offers biennial screening to
women aged 40 years and above, specifically targeting
women aged 50 to 69 years. For this study, the source
population comprised all women who attended the
BreastScreen Australia programme in the state of
Victoria (BreastScreen Victoria), either for first round
screening in 1994 or 1995 (and who reported no previous
mammogram), or subsequent round screening in 1995 or
1996 (excluding women in the first round sample).
Women were eligible for the study if they were 79 years
or younger, had no self-reported history of breast cancer
and no ‘significant’ breast cancer symptoms at the time of
screening (breast lump not examined by a doctor or a
blood-stained or watery nipple discharge). We included
only women with a Cumulus breast density reading
from our previous studies. Our database included updated
BreastScreen Victoria data received in October 2005, which
resulted in minor changes in the sample available for this
analysis compared to our previous publications [21,32,33].
Selection of participants followed methods used pre-

viously [33], where cases were all eligible women with
invasive screen-detected or interval breast cancers (675
screen-detected and 183 interval cancer cases at first round
screening and 344 screen-detected and 198 interval cancer
cases at subsequent rounds), women diagnosed with ductal
carcinoma in situ (DCIS) were not included in the study,
and controls consisted of a sample of screened women
with no cancer diagnosis (either true-negative or false-
positive screening outcomes) selected randomly from
both first and subsequent screening rounds (2,051 women
from first round screening and 3,267 women from subse-
quent rounds, corresponding to sampling fractions of
1.55% and 3.25% respectively).

Cancer ascertainment and classification
Screen-detected cancers were recorded by BreastScreen
Victoria and interval cancers were identified by linking the
population-based Victorian Cancer Registry to BreastScreen
Victoria records, providing near-complete ascertainment of
interval cancers [21,34]. Tumour size was recorded as the
widest cross-section of the largest lesion as reported in the
pathology report. Consistent with national protocols,
tumours coded as microinvasive were assigned a size of
0.1 mm and screen-detected cancers were categorised as
small (≤15 mm) or large (>15 mm) [34].

Questionnaire data
Participants completed a questionnaire at the time of
their screening appointment that included questions on
family history of breast cancer (a first-degree relative
versus no first-degree relative), current hormone therapy
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use (yes/no), country of birth and symptoms (none, or no
‘significant’ symptoms defined as any breast symptoms
other than a breast lump or blood-stained or watery nipple
discharge).

Digitised mammograms
Mammograms were originally taken on a range of
analogue (film) mammography machines. Cranio-caudal
(CC) views were scanned in the late 1990s using a single
digitiser (digitiser specifications and settings not known).
Each scanned image included various background artefacts
such as tags indicating breast laterality and radiological
view, nameplates, and bright borders generated during
scanning.

Cumulus measurements
Cumulus was used previously to measure breast density
from the digitised images, with measurements available
for 93% of available cases included in previous analyses
[24,33]. We used measurements from the cancer-affected
breast where possible for cases, and from a random side
breast for women without cancer as done by others [35].
It is common practice in more recent studies to measure
breast density from the contralateral (unaffected) breast
for cases to avoid including the tumour in dense tissue
estimation [36-39]; however, in practice breast density
readings taken from ipsilateral and contralateral breasts
have very similar distributions and similar estimates of
breast cancer risk prediction [40], and Cumulus measures
were highly correlated between breasts within this dataset
[21]. Further, for this study we use the same mammogram
for Cumulus and AutoDensity readings and so if there was
bias in the measurement of exposure (breast density) it
would affect both measures equally. The measurements
were taken by one of four readers (a radiologist, a radiology
registrar, and two research assistants), with high inter- and
intra-reader reliability [21].

Automated measurement of breast density
We developed an executable program (‘AutoDensity’) which
automatically identifies the breast area in the mammogram
(breast segmentation) and then classifies breast density in a
similar way to Cumulus by identifying distinctly white tis-
sue to be classified as ‘dense’ (breast density segmentation).
Our approach to dense tissue segmentation does not

require standardisation across images; the method finds
an optimal threshold for each mammogram independently
from any other mammogram in a dataset. We first im-
proved the contrast and reduced the noise of individual
images by smoothing the breast area with the median
filter of radius one and then applying histogram contrast
stretching [41]. Then, to automatically segment dense
tissue within the breast area, we modified a recently
published method by Kim et al. that had been developed
on digital mammograms [42]. This method computes an
optimal intensity threshold between dense and fatty
tissues, which outlines the dense area on the breast as
shown in Figure 1. Our methods are described in more
detail in Additional file 1.
AutoDensity operates on Windows and Linux platforms

and takes on average 2.9 seconds per image to produce
measurements of breast density. AutoDensity outputs an
indexed table of results along with images showing the
original mammograms marked up with breast and breast
density segmentations.

Statistical analysis
Women were excluded from the analysis if they had any
missing data on hormone therapy use at the time of screen-
ing, personal history of breast cancer, breast symptoms
and family history of breast cancer. Women for whom
AutoDensity could not produce breast density readings
due to failures in the breast segmentation algorithm to
outline the breast area were also excluded.
For all analyses we assessed dense area and percent

density measures of breast density. These produced
similar associations with outcomes. Evidence is mixed
about whether dense area or percent density are stron-
ger predictors of risk [43-45]: we report on dense area as
done in our more recent publications [32,33] (results
using percent density are available on request).
Statistical tests for interaction between screening round

and breast density were performed for each screening
outcome to determine whether the analyses should be
conducted separately for first and subsequent screen-
ing rounds. There was no evidence of an interaction,
therefore we categorised each breast density measure
into whole-screened-population percentiles (weighting
controls according to study sampling fractions to repro-
duce whole-population distributions). We then categorised
breast density into the four lowest quintiles and the
two upper deciles of their distributions (‘quintile-decile
groups’) as done for our previous evaluations using
Cumulus [32,33]. Age was categorised into groups 40 to
49, 50 to 54, 55 to 59, 60 to 64, 65 to 69 and 70 to 79
years.
We examined associations of Cumulus and AutoDensity

with factors known to be associated with breast density
(age, hormone therapy use, region of birth (Australia,
Europe/North America, Asia and other), family history
of breast cancer, breast symptoms, screening round and
clinical outcome (small or large screen-detected cancer,
interval cancer, no cancer)). We applied the Cuzick
non-parametric test for trends across ordinal categories
and Kruskal-Wallis non-parametric tests for differences
between nominal groups. To illustrate the observed char-
acteristics of tumours diagnosed in different breast density
groups, we plotted histograms of the relative frequency of
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Figure 1 Examples of the AutoDensity breast density segmentation process on three cranio-caudal-view digitised film mammograms.
Examples shown are from three women with different breast densities, from each of the lowest quintile (Q1), third quintile (Q3) and upper decile
(D10) of the population distribution of dense area. For each woman, the breast density segmentation process is illustrated using (A) the input
mammogram, (B) the dense area outline, and (C) the dense area mask.
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quintiles of tumour size according to breast density quin-
tiles (using quintile categories due to inadequate power to
assess by decile) and mode of detection (screen-detected
or interval cancers).
To compare how well Cumulus or AutoDensity could

be used to discriminate women’s clinical outcomes based
on information from their screening mammograms, we
generated receiver operating characteristic (ROC) curves
and calculated the area under the curves (AUC). We
repeated this exercise for small screen-detected cancers,
large screen-detected cancers and interval cancers versus
controls, and for interval cancers versus screen-detected
cancers.
To assess the association between breast density and

clinical outcomes, we conducted a range of analyses includ-
ing several previously published from this dataset using
Cumulus measures [21,32,33]. We used unconditional
logistic regression to estimate odds ratios of all invasive
breast cancers, small screen-detected, large screen-detected
and interval cancers (versus no cancer) for quintile-decile
groups of breast density. We also modelled the relative
odds of an interval cancer (versus a screen-detected cancer)
in order to estimate programme sensitivity. All models
were adjusted for age, hormone therapy use, family history
of breast cancer, symptoms and screening round. Since
there was no evidence of an interaction between screening
round and breast density, all results are presented for com-
bined screening rounds.
As a secondary analysis, we compared Cumulus and

AutoDensity measures by examining pairwise correlation
coefficients, scatterplots of percentiles, Bland-Altman
plots of agreement and quantile-quantile (Q-Q) plots
of a 20% random sample of breast density values, and
cross-classification tables of quintile-decile groups (Q-Q
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plots compare two distributions by plotting their quantiles
against each other). All analyses were conducted in Stata
12.1 [46].

Approvals and consent
This study was approved by the University of Melbourne
Health Science Human Ethics Sub-Committee (Ethics
ID 0932609) on 15 December 2009. All BreastScreen
Victoria clients provide signed consent for use of their
data for research purposes under the governance of the
BreastScreen Victoria Board of Management, which
approved this study on 22 September 2009.
Table 1 Distribution of screened population percentiles of Cu
density correlates

Variable Categories

Age group (years) 40-49

50-54

55-59

60-64

65-69

70-79

Hormone therapy use at screening No

Yes

Family history of breast cancer No

Yes

Region of birth Australia

Europe/North America

Asia

Other

Breast symptoms None

No significant symptoms

Screening round First

Subsequent

Screening outcome Small screen-detected cancers

Large screen-detected cancers

Interval cancers

No cancer (controls)

#A median value above 50 indicates that the subgroup has higher median breast d
non-parametric test for trends across categories; †Kruskal-Wallis non-parametric tes
Results
We excluded 161 women (2%) in the study group who
had missing questionnaire data. A further 247 women
(4%) were excluded because AutoDensity failed to segment
the breast area of their mammograms. Compared to
successful AutoDensity reads, failed AutoDensity reads
had higher Cumulus values for breast area (median
260,990 versus 204,084 pixels, t test P < 0.001) and dense
area (29,376 versus 26,446 pixels, t test P = 0.08), and
lower Cumulus values for percent density (13% versus
15%, t test P = 0.03). There were no failures in the breast
density segmentation step.
mulus and AutoDensity according to known breast

n (%) Percentiles of dense area

Median (IQR)#

Cumulus AutoDensity

581 (9%) 76 (53, 91) 69 (46, 86)

1,201 (19%) 63 (36, 82) 60 (36, 81)

1,282 (20%) 52 (27, 77) 51 (25, 75)

1,214 (19%) 45 (23, 69) 44 (22, 70)

1,192 (19%) 39 (19, 64) 41 (20, 69)

857 (14%) 40 (18, 64) 41 (21, 69)

z = −21.0, P < 0.001* z = −16.0, P < 0.001*

4,909 (78%) 47 (23, 72) 47 (23, 73)

1,418 (23%) 64 (37, 83) 62 (37, 81)

χ2 = 179.9, p < 0.001† χ2 = 127.0, p < 0.001†

6,111 (97%) 51 (25, 76) 50 (25, 75)

216 (3%) 50 (27, 74) 56 (27, 76)

χ2 = 0.2, P = 0.630† χ2 = 1.4, P = 0.235†

4,109 (65%) 50 (25, 76) 51 (26, 76)

1,782 (28%) 51 (26, 75) 49 (23, 75)

237 (4%) 58 (30, 78) 54 (40, 71)

198 (3%) 53 (27, 80) 52 (40, 71)

χ2 = 4.7, P = 0.194† χ2 = 4.8, P = 0.187†

5,964 (94%) 50 (25, 75) 50 (25, 75)

363 (13%) 62 (35, 81) 59 (29, 79)

χ2 = 20.4, P <0.001† χ2 = 6.0, P = 0.014†

2,818 (45%) 50 (25, 76) 51 (26, 77)

3,509 (55%) 51 (26, 75) 50 (24, 75)

χ2 = 0.1, P = 0.715† χ2 = 3.6, P = 0.059†

653 (10%) 46 (23, 74) 47 (25, 78)

332 (5%) 58 (37, 79) 53 (36, 80)

367 (6%) 67 (44, 86) 70 (47, 88)

4,975 (79%) 49 (24, 74) 49 (23, 74)

χ2 = 109.5, P < 0.001† χ2 = 123.1, P < 0.001†

ensity than the whole screened population (and vice versa); *Cuzick
t for differences between groups. IQR interquartile range.
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The final sample for analysis included 6,327 women,
comprising 2,818 women from first-round screening (411
small screen-detected cancers, 247 large screen-detected
cancers, 174 interval cancers and 1,986 controls) and
3,509 women from subsequent round screening (242 small
screen-detected cancers, 85 large screen-detected cancers,
193 interval cancers and 2,989 controls).
Cumulus and AutoDensity were similarly distributed

according to age, hormone therapy use, region of birth,
breast symptoms, and screening test outcome (Table 1).
Histograms of tumour characteristics (size and mode of
detection) according to breast density highlighted the
shift from predominantly small screen-detected tumours in
women with low breast density to larger screen-detected
and interval cancers in women with high breast density,
for both Cumulus and AutoDensity classifications of breast
density (Figure 2).
ROC curves and their AUCs (Figure 3) showed that

Cumulus and AutoDensity had a similar ability to dis-
criminate between women who developed breast cancer
and women who did not. Discrimination was strongest
between women with interval cancers and controls (for
example AUC = 0.66 for AutoDensity) and lowest between
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Figure 2 Distribution of tumour size and mode of detection accordin
AutoDensity. Screen-detected and interval cancers (marked as dark and lig
distribution of all cancers detected in each breast density quintile as well a
this distribution. The dashed line represents the expected tumour size distr
size did not vary according to breast density.
small screen-detected cancers and controls (for example
AUC = 0.52 for AutoDensity).
Cumulus and AutoDensity breast density measures

showed a similar association with the odds of invasive
breast cancers, large-screen detected cancers and interval
cancers (Figure 4).
From models of odds ratios of interval versus screen-

detected cancers, we predicted similar, graded associations
between breast density and screening programme sensitiv-
ity for both Cumulus and AutoDensity (Table 2), showing
that AutoDensity could differentiate expected programme
sensitivity. For example, for women aged 50 to 54 years
attending their first screening appointment with no symp-
toms, hormone therapy or strong family history of breast
cancer, a woman in the lowest quintile of AutoDensity had
an expected programme sensitivity of 76% (95% confi-
dence interval (CI) 57% to 89%) whereas a woman in the
highest decile of AutoDensity had an expected programme
sensitivity of 68% (95% CI 46% to 84%).
There was a strong correlation between Cumulus

and AutoDensity segmentation of the breast area (r = 0.98,
P < 0.001), however the correlation between measures
of breast density was modest (r = 0.63, P < 0.001),
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(A) (B)

(C) (D)

All cancers versus controls Small screen-detected 
cancers versus controls

Interval cancers versus controlsLarge screen-detected 
cancers versus controls

First screening round:
Interval versus screen-
detected cancers 

Subsequent screening round:
Interval versus screen-
detected cancers 

(E)

(F)

AUCC = 0.64 
AUCA = 0.62

AUCC = 0.49 
AUCA = 0.52

AUCC = 0.60 
AUCA = 0.63

AUCC = 0.56 
AUCA = 0.57

AUCC = 0.59 
AUCA = 0.58

AUCC = 0.64
AUCA = 0.66

Figure 3 Receiver operating characteristic (ROC) curves and area under the curve (AUC) values to assess the discriminatory
performance of Cumulus and AutoDensity dense area. ROC curves and AUC values are shown for various outcomes, including (A) all cancers
versus controls, (B) small screen-detected cancers versus controls, (C) large screen-detected cancers versus controls, (D) interval cancers versus
controls, (E) interval cancers versus screen-detected cancers for first round screening, and (F) interval cancers versus screen-detected cancers for
subsequent round screening. Cumulus values are shown in black, AutoDensity values are shown in grey. The dashed line represents no
predictive value.
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with discordant values for both low and high values of
breast density (Figure 5a). AutoDensity dense area tended
to be higher than Cumulus (median 21,293 versus 18,400
pixels), particularly for more dense breasts (Figure 5b and c).
Using quintile-decile groups, 41% of Cumulus and
AutoDensity breast density measurements were in perfect
agreement and 40% were in near agreement (within one
neighbouring category) (Figure 5d).

Discussion
Automated breast density measurements from film screen-
ing mammograms using AutoDensity were comparable to
(and often better than) Cumulus in terms of predicting
breast cancer risk and key screening programme outcomes
(Figure 4).
These findings suggest that AutoDensity is a valid tool

for identifying groups of women at increased risk of
breast cancer and at high risk of large screen-detected
cancers or interval cancers, and therefore most likely to
benefit most from more intensive screening modalities
such as MRI, adjunctive ultrasound or shorter screening
intervals. Quite low AUC values (Figure 3) show that
using AutoDensity alone to classify individual women’s
risk of various clinical outcomes is of limited benefit (as
for Cumulus). As noted in a review paper by Vachon et al.
[47], efforts to incorporate breast density into existing
breast cancer risk models modestly improve classification
of women’s risk but the models remain better suited to
identifying risk groups for targeted health services, rather
than providing absolute risk estimates to individuals. Breast
segmentation was highly correlated between Cumulus and
AutoDensity measures (r = 0.98, P < 0.001), showing that
AutoDensity can successfully delineate the breast area of
interest even in images with complex background features.
As a limitation, automated breast segmentation failed

for 4% of mammograms in the dataset; this tended to
occur when breast images overlapped with background
artefacts or the image border, which was more likely
with larger breasts. We are continuing to develop our
algorithm to reduce this failure rate.
The correlation between AutoDensity measures and

Cumulus was moderate (r = 0.63, P < 0.001), despite



n Odds ratio (95% CI)

AutoDensity
n Odds ratio (95% CI)

Cumulus

1 3 102 1 3 102

160
289
251
282
150
220

All invasive cancers
Q1 181
Q2 257
Q3 263
Q4 317
D9 161
D10 173

1.0
1.5 (1.2, 1.8)
1.5 (1.2, 1.9)
2.0 (1.6, 2.5)
2.2 (1.7, 2.8)
2.4 (1.9, 3.1)

1.0 
1.8 (1.5, 2.2)
1.7 (1.4, 2.1)
2.0 (1.6, 2.4)
2.2 (1.7, 2.9)
3.2 (2.5, 4.1)

111
163
115
110
60
94

Small screen- detected cancers
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Figure 4 Multivariate logistic regression of cancer risk and screening outcomes according to Cumulus and AutoDensity. Breast density
was measured as dense area and categorised into quintile-decile groups. Regression models were adjusted for age, hormone therapy use, family
history of breast cancer, symptoms and screening round.
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each measure showing a similar distribution according
to age, hormone therapy use, region of birth, family his-
tory of breast cancer, breast symptoms at screening and
clinical outcomes (Table 1 and Figure 2). This finding
Table 2 Predicted programme sensitivity according to
Cumulus and AutoDensity

Programme
sensitivity (95% CI)

Dense area
categories

Cumulus AutoDensity

First screening round Q1 82 (62, 92) 76 (57, 89)

Q2 82 (63, 92) 80 (61, 91)

Q3 77 (57, 90) 76 (55, 89)

Q4 73 (53, 87) 75 (54, 88)

D9 74 (52, 88) 68 (46, 84)

D10 65 (43, 83) 68 (46, 84)

Subsequent screening rounds Q1 65 (41, 84) 59 (36, 79)

Q2 66 (42, 83) 66 (42, 84)

Q3 59 (36, 79) 58 (36, 78)

Q4 54 (32, 74) 56 (34, 76)

D9 54 (31, 76) 50 (29, 72)

D10 44 (22, 67) 52 (30, 73)

Breast density was measured as dense area and categorised into quintile-decile
groups. Predicted values are generated from regression modelling. We show the
predicted programme sensitivity for 50- to 54-year-old women with no significant
breast symptoms, not on hormone therapy and with no family history of
breast cancer.
does not reduce the validity of our primary finding that
both measures predict breast cancer risk and breast
cancer screening outcomes with a similar effect. While
Cumulus is in common use, it is not the gold standard
measure of breast density: both measures have error in
terms of describing the breast composition of dense
and fatty tissue. Indeed, further investigation of visual
features that produced non-correlated measures may
enable further improvement of AutoDensity; this will be
the focus of future work.
This study has a number of strengths. We used a large,

unique dataset from a well-organised population screen-
ing programme that includes interval cancers identified
through linkage to the cancer registry and good informa-
tion on tumour size as well as personal characteristics of
screening participants, which enabled us to adjust our
models for potential confounders. We assessed an auto-
mated method that does not require modifications at the
time of image capture as required by some other methods,
such as the collection of pre-processed (raw) images from
mammography machines [29,31] or the use of step wedges
[27,30,31]. AutoDensity is not limited to specific machine
brands and models of analogue mammogram machines
because it flexibly identifies and removes the range of
background artefacts generated by different film cassettes,
and it replicates the Cumulus reader-driven approach of
classifying as dense tissue the relatively bright components
of the breast image. While Cumulus requires trained
readers, is time-consuming and would have limited
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reliability in clinical practice, AutoDensity automatically
completes readings in an average of 2.9 seconds, with
perfect between-reader reliability (by definition, since it
is fully automated). The program generates simple data
tables of measurements and output images showing
how the program has outlined the breast and the dense
tissue.
The study did not include body mass index (BMI),

which may modify the association between breast density
measures and breast cancer risk [48]; our dataset was lim-
ited to information routinely collected by the BreastScreen
programme, which does not include BMI; however, the
primary aim of this study was to compare effect estimates
from AutoDensity and Cumulus in the same models; and
any bias in the model arising from excluding BMI should
be the same for both breast density measures.
Our current analysis was confined to film mammograms

taken during the period 1994 to 1996, utilising a large re-
search dataset with existing Cumulus readings. AutoDensity
is likely to be useful for research studies that require breast
density estimation from older film mammograms, such as
studies of long-term breast cancer risk. However, many
screening services have adopted or will soon migrate to
digital mammography. The breast density segmentation
method implemented in this study was originally devel-
oped on digital mammograms and so it will need little
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modification for digital mammography; future work will
aim to validate AutoDensity on data from BreastScreen
Australia digital mammography services.

Conclusions
This study demonstrates that, despite only modest correl-
ation with Cumulus measures, automated measurement of
breast density from digitised screening mammograms using
AutoDensity performs similarly to Cumulus in terms of
helping to identify groups of screening participants known
to be at higher risk of breast cancer, interval and large
screen-detected cancers, lower programme sensitivity,
and larger tumour size at diagnosis. AutoDensity is a fast,
stand-alone Windows or Linux program that is a validated
breast density measurement tool suitable for digitised film
mammograms.
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Additional file 1: Additional materials.
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