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Abstract

Introduction: Prior research supports an association between endogenous sex steroids and breast cancer among
postmenopausal women; the association is less clear among premenopausal women.

Methods: We evaluated the associations between estrogens, androgens, progesterone and sex hormone binding
globulin (SHBG) and breast cancer in a nested case-control study in the Nurses' Health Study Il. Between 1996 and
1999, 29,611 participants provided blood samples; 18,521 provided samples timed in early follicular and mid-luteal
phases of the menstrual cycle. A total of 634 women, premenopausal at blood collection, developed breast cancer
between 1999 and 2009 and were matched to 1,264 controls (514 cases and 1,030 controls with timed samples).
We used conditional logistic regression controlling for breast cancer risk factors for overall analyses; unconditional
logistic regression additionally controlling for matching factors was used for subgroup analyses.

Results: In analyses of premenopausal estrogens including breast cancers diagnosed both before and after
menopause, there was no association between follicular estradiol, estrone and free estradiol and risk of either total
or invasive breast cancer. Luteal estradiol was positively associated with estrogen receptor positive (ER
+)/progesterone receptor positive (PR+) cancers (5™ vs. 15 quintile odds ratio (OR): 1.7 (95% confidence interval
(CN): 1.0 t0 2.9), Pyeng = 0.02). Luteal estrone, free estradiol and progesterone were not associated with risk.
Androgens were suggestively or significantly associated with risk when the sample was restricted to invasive
tumors (for example, testosterone: OR: 1.4 (1.0 to 2.0), Pyeng = 0.23) and ER+/PR+ disease (testosterone: OR: 1.7 (1.1
to 2.6) Pyeng = 0.10; dehydroepiandrosterone sulfate (DHEAS) OR: 1.3 (0.8 to 2.0) Pyeng = 0.05). SHBG was not
associated with breast cancer risk. The results varied by menopausal status at diagnosis, with follicular estradiol
suggestively positively associated with breast cancers in women premenopausal at diagnosis (OR: 1.1 (0.9 to 1.3)
and significantly inversely associated with postmenopausal disease (OR: 0.6 (0.4 to 0.9); Preterogeneiry < 0.01).

Conclusions: Androgens were associated with modestly increased risk of breast cancer in this population, with
stronger associations for invasive and ER+/PR+ disease. Luteal phase estradiol levels were suggestively associated
with ER+/PR+ tumors but no other strong associations were observed with estrogens. Associations with follicular
phase estrogens may vary by menopausal status at diagnosis, but case numbers were limited. Additional studies to
confirm the role of premenopausal hormones in the etiology of both premenopausal and postmenopausal breast
cancer are needed.
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Introduction

Experimental data support an association between estro-
gens and breast cancer risk, and suggest that androgens
also may alter risk. Estrogens are hypothesized to act
through cell proliferation, decreased apoptosis and pos-
sibly DNA damage [1]. The role of androgens is more
complex, with both inhibitory [2,3] and proliferative [3]
effects previously shown in laboratory studies.

In epidemiologic studies, circulating sex steroid hor-
mones are well confirmed to increase risk of postmeno-
pausal breast cancer [4], but data on these associations in
premenopausal women are sparse. A major challenge in
evaluating estrogens and disease risk in premenopausal
women is the fluctuation in estrogen levels across the
menstrual cycle. To date there have been seven small (case
n < 100) [5-11] and three larger prospective studies (case n
range = 197 to 285) [12-15], including our own [13,14], of
the association between circulating premenopausal hor-
mones and breast cancer risk. A positive association
between circulating estrogens and breast cancer risk was
suggested in four of the smaller studies [5,6,9,11], but only
one of the larger studies [13] (a subset of the population
included in this analysis). Data are more consistent for cir-
culating androgens, with higher premenopausal androgen
levels associated with increased risk [5,8,12-15]. Only
three prior studies, including our initial reports, evaluated
results by tumor hormone receptor status [13-15], a parti-
cularly important consideration given the substantial data
suggesting heterogeneity in risk factor associations by
tumor hormone receptor status [16-19].

Given the limitations of the prior literature, we con-
ducted a nested case-control study in the Nurses’ Health
Study II (NHSII) to examine associations among breast
cancer, overall and by hormone receptor subtype, and
plasma estrogens and progesterone by menstrual cycle
phase, as well as androgens and sex hormone binding glo-
bulin (SHBG). The current analyses include six additional
years of follow-up and more than double the number of
cases compared to our initial evaluations [13,14].

Materials and methods

The NHSII began in 1989 when 116,430 female registered
nurses, ages 25 to 42 y, completed a mailed questionnaire.
The participants have been followed biennially to update
exposure information and ascertain disease diagnoses.
Between 1996 and 1999 the blood cohort (z = 29,611), a
subset of the study population, ages 32 to 54 y, provided
blood and urine samples.

Women who had not used oral contraceptives, been
pregnant or breastfed within the past six months (n =
18,521) provided blood samples timed within the early
follicular (days 3 to 5 of the menstrual cycle) and mid-
luteal (seven to nine days prior to the expected start of
the next menstrual cycle) phases of the menstrual cycle;

Page 2 of 11

the remainder provided single untimed samples. Partici-
pants were mailed a sample collection kit with detailed
instructions and a questionnaire. Women providing
timed samples separated, then froze the follicular plasma
8 to 24 hours after collection, and stored this sample in
their home freezer to be shipped with the luteal phase
sample. After collection of the luteal sample, or untimed
sample, samples were sent with an ice pack via overnight
courier to our laboratory where they were processed and
have been subsequently stored in continuously moni-
tored liquid nitrogen freezers at < -130°C. Approximately
93% of samples were received within 26 hours of collec-
tion. The stability of sex steroids using these blood col-
lection methods has been previously validated [20,21].
A total of 97% of the women providing timed samples
returned a postcard with the start date of the next men-
strual cycle, which allows for precise calculation of luteal
phase collection timing using backward dating. Follow-
up of the blood cohort through the 2009 cycle is 94.5%.
This investigation was approved by the Institutional
Review Board of the Brigham and Women’s Hospital.
Informed consent was implied by receipt of completed
questionnaires and blood samples.

Case and control selection

Participants report disease status on the biennial NHSII
questionnaires. Cases included in this analysis were pre-
menopausal at blood collection, reported no prior cancer
diagnosis, and were diagnosed with breast cancer through
the 2009 biennial questionnaire; 634 breast cancer cases
were identified. Breast cancer cases were confirmed
through medical record review by a study physician; inva-
sive vs. in situ and hormone receptor status was abstracted
from the medical record. Of the 634 cases identified, 607
(95.7%) were confirmed through medical record review;
the remaining 27 cases (4.3%) were verbally confirmed by
the nurse but medical records were not available. Given
the high confirmation rate by medical record for breast
cancer in this cohort (99%), all cases are included in this
analysis. Among the 634 cases, 428 were invasive and 295
were ER+/PR+. A total of 425 women were premenopau-
sal at diagnosis, while 144 were postmenopausal at diagno-
sis (timed and untimed samples).

Cases were diagnosed an average of 6.2 years after blood
draw (range 1 month to 13 years). Each case was matched
to two controls on age at blood draw (+ 2 years), meno-
pausal status at the time of the case’s diagnosis, race/ethni-
city (African-American, Asian, Hispanic, Caucasian,
other), luteal day of menstrual cycle (defined as the date of
a woman’s next period minus the date of the luteal blood
draw, * 1 day; timed samples only), and for each blood
collection, fasting status (< 2,2 to 4, 5 to 7, 8 to 11, and
12+ hours), month and year (+ 2 months) and time of day
of blood collection (+ 2 hours).



Fortner et al. Breast Cancer Research 2013, 15:R19
http://breast-cancer-research.com/content/15/2/R19

Laboratory assays

Case-control sets, as well as follicular and luteal samples
from the same person, were assayed together. Samples
were ordered randomly within a set, and laboratories were
masked to both case-control status and repeated samples
within woman. Samples were assayed for estrogens and
testosterone in five batches at either Quest Diagnostics
(San Juan Capistrano, CA, USA) by radioimmunoassay
preceded by organic extraction and celite chromatography
(batches 1 and 2) [22-24] or the Mayo Clinic (Rochester,
MN, USA) by liquid chromatography-tandem mass spec-
trometry (batches 3 to 5). Results from a pilot study
showed a correlation of > 0.9 between these two methods.
The first four of five total batches of progesterone, SHBG,
and dehydroepiandrosterone sulfate (DHEAS) were
assayed at the Royal Marsden Hospital (London, UK) by
chemiluminescence immunoassay and an Immulite autoa-
nalyzer (Diagnostic Products, Gwynedd, UK). Batch 5 of
progesterone and SHBG were assayed at Massachusetts
General Hospital (Boston, MA, USA); progesterone was
assayed using automated immunoassay and SHBG using
an automated two-site chemiluminescent immunometric
assay (ARCHITECT®, Abbott Diagnostics, Chicago, IL).
Batch 5 of DHEAS was assayed at the Mayo Clinic by a
solid-phase, chemiluminescent enzyme immunoassay (Sie-
mens Healthcare Diagnostics, Deerfield, IL, USA). Masked
replicate quality control samples (10% of the samples)
were included in each batch to assess coefficients of varia-
tion (CVs). Average CVs within batch ranged from 5% for
DHEAS to 14% for SHBG, with the exception of proges-
terone for which the CV was 17% in one batch (CVs for
progesterone 7 to 15% in remaining batches). Free estra-
diol and free testosterone were calculated using the for-
mula described by Sodergard et al. [25].

Covariate data

Lifestyle factors and other exposures were collected on the
biennial questionnaire, as well as a questionnaire com-
pleted at the time of blood collection. Covariates included
in this analysis were (year of data collection): age at
menarche (1989), height and weight at age 18 (1989; used
to calculate body mass index (BMI), l(g/mz), parity (bien-
nially), age at first birth (biennially), family history of
breast cancer (1989 and 1997; mother and/or sister), his-
tory of benign breast disease (biennially).

Statistical methods

Statistical outliers were identified on the log, scale for
each hormone by menstrual phase using the extreme
Studentized deviate many-outlier procedure [26], with as
many as 11 values excluded (luteal free estradiol). We
created quintiles of hormones and SHBG using the con-
trol distributions for overall analyses and quartiles based
on the control distribution for analyses of premenopausal

Page 3 of 11

vs. postmenopausal breast cancer. To adjust for between-
batch differences in hormone distributions, we used an
average batch recalibration approach [27], taking into
account batch, age and BMI, as well as luteal day of col-
lection and ovulatory status in the cycle of collection for
luteal samples, and follicular day of collection for follicu-
lar samples. Results using recalibrated data or using
batch-specific quantile cutpoints were comparable, hence
only recalibrated data are presented here. For estradiol,
free estradiol and estrone, menstrual cycle phase-specific
quintile cut-points were used (for example, follicular,
luteal phase). Estimates for doubling of hormone concen-
trations were assessed modeling the data continuously
after log, transformation.

We used conditional logistic regression to estimate
relative risks (RR) and 95% confidence intervals (95% CI)
in analyses including all cancers. For subgroup and strati-
fied analyses, we used unconditional logistic regression
controlling for matching factors. Multivariable models
were adjusted for BMI at age 18, age at menarche, age at
first birth and parity, family history of breast cancer, and
history of benign breast disease. Tests for trend were
conducted using quantile medians and P-values were cal-
culated with the Wald statistic. Heterogeneity by hor-
mone receptor subtype was evaluated using polytomous
logistic regression [28], using the likelihood ratio test to
compare a model with separate slopes by case status
(that is, ER+/PR+, ER-/PR-, control) to a model with the
same slope for each case group. We conducted analyses
correcting for measurement error, using samples from a
within-person reproducibility study [20], to correct for
and explore the effects of random within-person mea-
surement error [29,30]. We assessed whether the associa-
tions between hormone levels and risk varied by
menopausal status at diagnosis, age at blood draw, BMI,
duration of oral contraceptive use, or menstrual cycle
length and pattern by assessing the statistical significance
of an interaction term included in our models. We cross-
classified estradiol levels by phase of the menstrual cycle;
women with low levels (below the median) in both the
follicular and luteal phase were used as the referent
group. Finally, we conducted secondary analyses
restricted to women with ovulatory cycles (defined by
mid-luteal progesterone > 400 ng/dL) at the time of
blood collection, as well as to cases diagnosed (and con-
trols selected) at least two years after blood collection.

All statistical tests are two-sided; P < 0.05 was used to
define statistical significance. Analyses were conducted
in SAS v. 9.2 (Cary, NC, USA).

Results

Cases and controls were similar with regards to most
breast cancer risk factors (Table 1), including age at
menarche, parity, age at first birth and BMI. However,
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Table 1 Age-adjusted characteristics of study participants
by case/control status: Nurses’ Health Study, 1999 to
2009

Cases Controls
(n = 634) (n = 1,264)
Age at blood collection* 435 (4.0 433 (39
BMI (kg/mz) at blood collection 249 (4.8) 25.7 (5.9)
BMI (kg/m?) at age 18 208 (2.9) 21.1 (3.0)
Age at menarche 124 (1.3) 125 (14)
Parous, % 80 81
Age at first birth** 274 (4.5) 26.7 (4.5)
Luteal day, prior to next cycle 84 (3.1) 84 (29)
Follicular day, after cycle start 40 (0.8) 40 (1.3)
Menopausal status at diagnosis
Premenopausal, % 67 69
Postmenopausal, % 23 23
Perimenopausal/Unknown, % 10 8
Family history of breast cancer, % 18 10
History of benign breast disease, % 22 14

Values are means (SD) or percentages and are standardized to the age
distribution of the study population. *Value is not age adjusted. **Among
parous women.

cases were more likely than controls to have a history of
benign breast disease and family history of breast can-
cer. Participants were predominantly premenopausal at
diagnosis (67%).

There were no associations between follicular estra-
diol, estrone and free estradiol and breast cancer risk
overall, or by invasive, in situ or ER+/PR+ subgroup
(Table 2). Luteal estradiol was not associated with all
cancers combined, invasive or in situ cancers, but was
significantly, positively associated with ER+/PR+ cancers
(5™ vs. 1°* quintile OR: 1.7, 95% CI: 1.0 to 2.9, Pyend =
0.02). After exclusion of women anovulatory in the cycle
of blood collection, the OR was somewhat attenuated
and no longer statistically significant (5™ vs. 15 quintile
OR: 1.5, 95% CI: 0.8 to 2.7, data not shown). No signifi-
cant associations were observed for luteal estrone, free
estradiol or progesterone overall or by subgroup.

Testosterone was not associated with breast cancer
overall but was associated with invasive (5™ vs. 1°¢ OR:
1.4, 95% CL: 1.0 to 2.0, Pyeng = 0.23) and ER+/PR+ dis-
ease (5™ vs. 1°* quintile OR: 1.7, 95% CI: 1.1 to 2.6,
Pieng = 0.10) (Table 3). Free testosterone was similarly
associated with ER+/PR+ disease (5™ vs. 1°* OR: 1.5,
95% CI: 1.0 to 2.2, Piyena = 0.09). Tests for trend sug-
gested a positive association between DHEAS and risk
of ER+/PR+ breast cancer (Pieng = 0.05), but the effect
estimates did not reach statistical significance (5™ vs. 1%
quintile OR: ER+/PR+ = 1.3, 95% CI: 0.8 to 2.0). SHBG
was not associated with breast cancer risk.

To examine the importance of menopausal status at diag-
nosis, we repeated the analyses stratifying by menopausal
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status at diagnosis (premenopausal: case n = 425 overall;
n = 373 with timed samples; postmenopausal: case # = 144
overall; n = 104 with timed samples) (Table 4, Additional
file 1). For the estrogens, among women premenopausal at
diagnosis, a doubling of follicular estradiol was suggestively
positively associated with invasive and ER+/PR+ breast can-
cer (invasive, OR: 1.2, 95% CI: 1.0 to 1.4; ER+/PR+, OR: 1.2
95% 0.9 to 1.5). In contrast, for women postmenopausal at
diagnosis, we observed a significant inverse association (all
cancers, OR: 0.6, 95% CI: 0.4 to 0.9; invasive, OR: 0.6, 95%
CL 0.4 to 0.9; ER+/PR+, OR: 0.6, 95% CI: 0.4 to 0.9; Ppetero.
geneity all < 0.01). Associations for follicular free estradiol
were similar to those for total estradiol; follicular estrone
was not associated with disease in pre- or postmenopausal
women. Associations with a doubling of luteal estradiol and
free estradiol were somewhat stronger in premenopausal
disease as compared to postmenopausal disease (that is,
luteal estradiol, invasive premenopausal disease OR: 1.2,
95% CI: 1.0 to 1.6; invasive postmenopausal disease OR:
1.1, 95% CI: 0.7 to 1.6). However, findings for luteal estra-
diol were attenuated after restricting them to women with
ovulatory cycles at blood collection (Additional file 1,
Table S1). For progesterone, there was no association for
premenopausal cancer (invasive, OR: 1.1, 95% CI: 0.9 to
1.2) and an inverse association for postmenopausal cancer
(invasive, OR: 0.8, 95% CI: 0.7 to 1.0), though these differ-
ences were not statistically significant (P, = 0.29) and the
positive association in premenopausal women was attenu-
ated after exclusion of women with anovulatory cycles.

The associations between premenopausal androgens
and breast cancer generally appeared stronger among
women who were postmenopausal at diagnosis, but
these differences by menopausal status were not statisti-
cally significant (Pne; > 0.05). For example, for invasive
breast cancer, premenopausal testosterone was not asso-
ciated with premenopausal disease (OR: 1.1, 95% CI: 0.8
to 1.4), but was significantly associated with postmeno-
pausal disease (OR: 1.8, 95% CI: 1.1 to 2.8) with a simi-
lar pattern for ER+/PR+ cancers, as well as for free
testosterone.

Results were similar when we excluded cases diagnosed
within two years of blood draw. A small number of women
providing untimed samples reported exogenous hormone
use at blood collection (# = 24 cases, 36 controls). Given
the positive association between exogenous hormone use
and SHBG in this population (P < 0.001) we conducted
sub-analyses for SHBG and free testosterone excluding
these women; results were similar to the overall results.
Further, with only a few exceptions, the associations did
not vary significantly by BMI at blood collection, duration
of past oral contraceptive (OC) use, menstrual cycle char-
acteristics (that is, length, regularity), or age at blood draw.
For follicular free estradiol, no significant association was
observed with BMI < 25 (doubling OR: 1.0, 95% CI: 0.8
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Table 2 Premenopausal estrogens and progesterone and breast cancer risk: Nurses’ Health Study II, 1999 to 2009

1st Quintile 2nd Quintile 3rd Quintile 4th Quintile 5th Quintile
OR (95% Cl) OR (95% Cl) OR (95% CI) OR (95% Cl) OR (95% ClI) Pirend

FOLLICULAR
Estradiol

Cutpoints, pg/mL <29 > 29 to 409 >41t0 519 > 52 to 739 > 74

No. cases/No. controls* 84/179 93/183 84/179 109/186 92/182

All cancers 1.0 (referent) 1.1 (0.7 to 1.6) 1.0 (0.7 to 1.5) 2 (08 to 1.7) 1.0 (0.7 to 1.5) 0.76

Invasive 0 (referent) 12 (08 to 1.8) 0 (0.6 to 1.6) 4 (09 to 2.1) 1.0 (0.7 to 1.6) 0.70

ER-+/PR+ 1.0 (referent) 1.1 (0.7 to 1.8) 9 (05 to 1.5) 5 (0.9 to 24) 1.0 (06 to 1.6) 0.68

In situ 0 (referent) 1.0 (0.5 to 1.8) 1(06to 1.9 8 (0.5to 1.5) 1.1 (06 to 2.0) 0.81
Free estradiol

Cutpoints, pg/mL < 039 > 039 to 0519 > 0.52 to 0.669 > 0.67 to 0.909 > 091

No. cases/No. controls 90/178 80/175 104/179 96/176 77/178

All cancers 1.0 (referent) 09 (06 to 1.4) 1 (0.7 to 1.5) 108to1.7) 08 (05to 1.2) 048

Invasive 0 (referent) 0 (06 to 1.5 0 (06 to 1.5) 2(08to0 19 8 (0.5t0 12) 0.50

ER-+/PR+ 0 (referent) 1(0.71t019) 2 (0.7 to 2.0) 3 (0.8 to 2.1) 7(041t012) 0.35

In situ 0 (referent) 9 (05t01.7) 2 (0.7 to 2.1) 8 (0.5t0 1.6) 9(0.5t0 1.7) 0.77
Estrone

Cutpoints, pg/mL <30 > 30 to 369 > 37 to 439 > 44 10 559 > 56

No. cases/No. controls 93/184 86/192 91/176 111/184 88/184

All cancers 1.0 (referent) 09 (0610 1.2) 1.0 (0.7 to 14) 2 (08 to 1.7) 10 (0.7 to 14) 0.62

Invasive 0 (referent) 8 (0.5t0 1.3) 1 (0.7 to 1.7) 1(0.7t017) 9 (06to 1.3) 0.92

ER+/PR+ 0 (referent) 2 (0.7 to 2.0) 3(08t022) 6 (1.0 to 2.7) 2 (0.7 to 2.0) 032

In situ 0 (referent) 1 (0.6 to 2.0) 8 (04 to 1.5) 5 (0.8 to 2.6) 3 (0.7 to 2.3) 022
LUTEAL
Estradiol

Cutpoints, pg/mL <91 > 91 to 1169 > 117/1469 > 147 t0 1869 > 187

No. cases/No. controls 90/197 72/187 123/187 113/195 81/193

All cancers 0 (referent) 0.8 (06 to 1.3) 15 (1.0 to 2.2) 3 (09 to 1.9) 09 (06 to 1.4) 0.65

Invasive 0 (referent) 0 (0.6 to 1.6) 19 (1.3 to 2.9) 5 (1.0 to 2.3) 3 (0.8 to 2.0) 0.08

ER+/PR+ 0 (referent) 2 (0.7 to 2.2) 25(151t042) 9 (1.1 to 3.2) 7 (10to 29 0.02

In situ 0 (referent) 6 (031012 1.1 (06 to 1.9) 0(061t017) 503t 09) 0.17
Free estradiol

Cutpoints, pg/mL <120 > 120 to 149 > 150 to 1.89 > 190 to 2.39 > 240

No. cases/No. controls 94/188 95/190 93/188 100/189 87/189

All cancers 0 (referent) 1 (0.7 to 1.6) 1.0 (0.7 to 1.5) 1.1 (08 1to 1.6) 10 (0.7 to 1.5) 0.99

Invasive 0 (referent) 2 (0810 18) 1.3 (09 to 2.0) 12 (08 t0 1.9 2 (081019 0.36

ER+/PR+ 0 (referent) 3(081to022) 1.5 (09 to 2.6) 1.5 (09 to 2.6) 3 (0.7 to 2.1) 0.28

In situ 0 (referent) 9 (0.5to 1.5) 0.6 (03 to 1.1) 0.8 (0.5 to 1.5) 7 (04 to 14) 0.32
Estrone

Cutpoints, pg/mL < 61 > 61 to 749 > 7510919 >921to0 1139 > 114

No. cases/No. controls 121/198 84/201 90/206 92/201 113/199

All cancers 1.0 (referent) 0.7 (0.5 to 1.0) 0.8 (05 to 1.1) 0.8 (0.5 to 1.1) 0.9 (0.7 to 1.3) 0.89

Invasive 1.0 (referent) 7 (05to 1.1) 8 (05t0 1.2) 8 (0.5to 1.1) 1.1 (0.7 to 16) 0.67

ER+/PR+ 1.0 (referent) 5 (03 to 0.8) 8 (05t0 1.2) 8 (0.5t0 1.3) 09 (06 to 1.5) 0.87

In situ 1.0 (referent) 7 (04t01.2) 8 (04 to 1.3) 8 (0.5 to 14) 0.8 (04 to 1.3) 0.55
Progesterone

Cutpoints, ng/dL <743 > 743 to 12029 > 1203 to 1600.9 > 1601 to 21709 > 2171

No. cases/No. controls 113/204 82/199 86/204 113/200 107/202

All cancers 1.0 (referent) 0.7 (04 to 1.0) 0.8 (05 to 1.1) 0 (0.7 to 14) 9 (06 to 14) 0.82

Invasive 1.0 (referent) 7 (04 to 1.0) 7 (05 to 1.1) 0 (0.7 to 1.5) 0 (0.6 to 1.5) 091

ER+/PR+ 1.0 (referent) 6 (04 to 1.0) 7 (04 to 1.1) 0 (0.6 to 1.6) 9 (0.6 to 1.5) 0.74

In situ 0 (referent) 7 (04 t0 1.2) 8 (04 to 14) 8 (04 to 14) 8 (05to 1.5) 043

All cancers: Conditional logistic regression for all cancers controlling for age at menarche, parity/age at first birth, BMI at age 18, family history of breast cancer, history
of benign breast disease. Invasive, ER+/PR+, in situ tumors: Unconditional logistic regression for invasive, ER+/PR+, and in situ disease controlling for factors listed above
and matching factors. *No. cases/No. controls are for all cancers; Overall No. cases/No. controls for invasive and ER+/PR+ cancers are in Table 4.
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Table 3 Premenopausal androgens and SHBG and breast cancer risk: Nurses’ Health Study II, 1999 to 2009
1st Quintile 2nd Quintile 3rd Quintile 4th Quintile 5th Quintile
OR (95% ClI) OR (95% Cl) OR (95% Cl) OR (95% CI) OR (95% Cl) Pirend
Testosterone
Cutpoints, ng/dL <19 > 19 to 229 > 23t0 279 > 28 to 349 > 35
No. cases/No. controls* 126/259 122/244 107/246 118/240 150/256
All cancers 1.0 (referent) 10 (0.7 to 1.4) 09 (06 to 1.2) 9 (0.7 to 1.3) 2 (09 to 1.7) 032
Invasive 1.0 (referent) 1.2 (08 to 1.7) 10 (0.7 to 14) 9 (0.6 to 1.3) 4 (1.0 to 2.0) 0.23
ER-+/PR+ 1.0 (referent) 15 (1.0 to 2.3) 1.1 (0.7 to 1.8) 0 (06 to 1.5) 7 (1.1 to 26) 0.10
In situ 1.0 (referent) 09 (05 to 1.5) 09 (0.5 to 1.5) 2 (0.7 t0 19) 0 (06 to 1.7) 0.64
Free testosterone
Cutpoints, ng/dL <014 > 0.14 t0 0.179 > (.18 to 0.239 > 0.24 to 0.309 > 0.31
No. cases/No. controls 130/248 108/246 137/249 100/246 142/248
All cancers 1.0 (referent) 8 (0.6 to 1.1) 1.0 (0.7 to 14) 8 (06 to 1.1) 1.1 (0.8 to 1.5) 061
Invasive 1.0 (referent) 9 (0.6 to 1.3) 1.1 (08 1to 1.6) 9 (06 to 1.3) 1.1 (08 1to 1.6) 0.49
ER+/PR+ 1.0 (referent) 0 (0.6 to 1.5) 1.1 (0.7 to 1.7) 0 (0.6 to 1.5) 15 (1.0 to 2.2) 0.09
In situ 1.0 (referent) 9 (0.6 to 1.6) 1.1 (0.7 to 1.8) 7 (04 to 1.3) 13 (081to 2.1) 047
DHEAS
Cutpoints, pg/dL < 55 > 55 to 76.9 > 77 to 100.9 > 101 to 1359 > 136
No. cases/No. controls 123/249 96/253 136/250 146/251 127/251
All cancers 1.0 (referent) 08 (05 to 1.1) 1.1 (0.8 to 1.6) 1.2 (09 to 1.6) 1.0 (0.7 to 1.4) 0.30
Invasive 1.0 (referent) 8 (0.5 to 1.1) 1.1 (08 1to 1.6) 1.1 (0.8 to 1.6) 1.1 (0.7 to 1.5) 0.29
ER+/PR+ 1.0 (referent) 9 (05 to 14) 14 (09to 2.2) 1.5(1.0to 2.2) 1.3 (0.8 to 2.0) 0.05
In situ 1.0 (referent) 8 (0.5t0 14) 1.0 (06 to 1.7) 13 (08 to 2.2) 0.9 (0.5 to 1.6) 0.62
SHBG
Cutpoints, nmol/mL <40 > 40 to 549 > 5510 709 >711t0 919 > 92
No. cases/No. controls 110/253 117/245 131/249 136/249 130/250
All cancers 1.0 (referent) 1 (0.8 to 1.5) 2 (0.8 to 1.6) 12 (09 to 1.7) 2 (0.8 to 1.6) 023
Invasive 1.0 (referent) 2 (08 to 1.8) 4 (1.0 to 2.0) 13 (09 to 1.9 3(09to 1.9 0.13
ER-+/PR+ 1.0 (referent) 1(0.71t017) 3 (0.8 to 2.0) 1.3 (0.9 to 2.0) 2 (0810 1.8) 035
In situ 1.0 (referent) 8 (0.5 to 14) 9 (0.5 to 1.5) 0 (06 to 1.7) 8 (0.5 to 14) 0.72

All cancers: Conditional logistic regression for all cancers controlling for age at menarche, parity/age at first birth, BMI at age 18, family history of breast cancer,
history of benign breast disease. Invasive, ER+/PR+, in situ tumors: Unconditional logistic regression for invasive, ER+/PR+, and in situ disease controlling for factors
listed above and matching factors. *No. cases/No. controls are for all cancers; Overall No. cases/No. controls for invasive and ER+/PR+ cancers are in Table 4.

to 1.3) and an inverse association was observed for women
with BMI > 25 (doubling OR: 0.6, 95% CI: 0.4 to 0.9; Phe; =
0.04). Similarly, there was no association between proges-
terone and breast cancer risk in women age < 45 at blood
draw (doubling ER+/PR+, OR: 1.1, 95% CI: 0.9 to 1.3) and
a suggestively inverse association in women > 45 (doubling
ER+/PR+, OR: 0.8, 95% CI: 0.7 to 1.0).

Estradiol, testosterone and DHEAS appeared more
strongly associated with ER+/PR+ tumors, as compared to
overall associations (Tables 2, 3, 4). However, with one
exception we observed no statistical heterogeneity by
tumor hormone receptor subtypes (ER+/PR+ vs. ER-/PR-,
all Py > 0.05). For follicular estrone, there was a sugges-
tive positive association for ER+/PR+ disease (doubling
OR: 1.2, 95% CI: 0.9 to 1.7) and an inverse association for
ER-/PR- disease (doubling OR: 0.6, 95% CI: 0.3 to 1.3)
(Phet = 0.01), although these results were limited by a
small number of ER-/PR- cases (60 timed samples).

We conducted analyses cross-classifying follicular and
luteal phase estradiol and no clear pattern emerged. For
example, for invasive breast cancer ORs were 1.7 (95%
CI: 0.8 to 1.8) for high follicular/low luteal estradiol, 1.5
(95% CI: 1.0 to 2.3) for low follicular/high luteal estra-
diol, and 1.3 (95% CI: 0.9 to 1.9) for high estradiol in
both phases, all relative to low estradiol in both phases.

We corrected the hormone/breast cancer associations
for within-person variability and laboratory measurement
error using our prior reproducibility study results [13,20].
Results for hormones with either high intraclass correla-
tion coefficients (ICCs) or weak (or null) associations
were largely similar before and after correction. For
example, a doubling of DHEAS (ICC = 0.87) was asso-
ciated with a 10% increase in risk of invasive disease both
before and after measurement error correction (before,
OR: 1.1, 95% CI: 0.9 to 1.2); after, OR: 1.1, 95% CI: 0.9 to
1.3). Results were substantially strengthened for several



Fortner et al. Breast Cancer Research 2013, 15:R19 Page 7 of 11
http://breast-cancer-research.com/content/15/2/R19

Table 4 Doubling of sex steroids and SHBG and breast cancer risk: Nurses’ Health Study II, 1999 to 2009

All Cases* Premenopausal at Diagnosis Postmenopausal at Diagnosis Phet*e
cases/ cases/ cases/
controls OR (95% ClI) controls OR (95% CI) controls OR (95% ClI)
FOLLICULAR
Estradiol
All cancers 462/909 1.0 (09 to 1.2) 340/677 1.1 (09to 1.3) 92/176 06 (0.4 to 0.9) < 001
Invasive 299/909 10 (09to 1.2) 221/677 12 (1.0to 14) 62/176 06 (0.4 to 0.9) < 001
ER+/PR+ 201/909 1.0 (0.8 to 1.2) 152/677 1.2 (09to 1.5 43/176 06 (0.4 to 0.9) 0.01
Free Estradiol
All cancers 447/886 1.0 (08 to 1.1) 330/668 1.1 (09 to 14) 86/162 0.5 (04 to 0.8) < 001
Invasive 288/886 09 (0.8 to 1.1) 214/668 1.2 (09to 1.5 57/162 0.5 (03 t0 0.7) < 001
ER+/PR+ 194/886 09 (0.8 to 1.1) 146/668 1.2 (09to 1.5 41/162 04 (03 t0 0.7) < 001
Estrone
All cancers 469/920 1.0 (0.8 to 1.3) 347/692 1.0 (08 to 1.3) 91/173 1.0 (0.6 to 1.7) 0.83
Invasive 305/920 1.0 (08 to 1.2) 227/692 09 (0.7 to 1.3) 61/173 0.8 (0.5 to 14) 0.85
ER+/PR+ 206/920 1.2 (0910 1.5 156/692 1.1 (0.8 to 1.6) 43/173 10 (06 to 1.8) 0.95
LUTEAL
Estradiol
All cancers 479/959 1.0 (0.8 to 1.2) 347/710 1.0 (08 to 1.3) 98/190 1.1 (0.7 to 1.7) 0.82
Invasive 316/959 1.2 (1.0 to 14) 232/710 12 (10 to 1.6) 67/190 1.1 (0.7 to 1.7) 0.66
ER-+/PR+ 215/959 12 (1.0 to 1.5) 162/710 1.3 (1.0to 1.8) 47/190 1.2 (0.8 to 2.1) 0.80
Free estradiol
All cancers 469/944 1.0 (08 to 1.2) 339/702 1.0 (0.8 to 1.3) 96/183 1.1 (0.7 to 1.7) 0.61
Invasive 309/944 1.1 (09to 14) 227/702 1.2 (09 to 1.5 65/183 1.0 (0.7 to 1.7) 052
ER+/PR+ 209/944 1.2 (09 to 1.5) 157/702 1.2 (09to 1.7) 46/183 1.3 (0.8 to 2.3) 0.88
Estrone
All cancers 500/1005 1.0 (08 t0 1.2) 366/751 09 (0.7 to 1.2) 99/194 1.3 (08 to 2.1) 022
Invasive 328/1005 1.1 (09 to 14) 242/751 1.0 (0.8 to 1.3) 67/194 14 (08 to 2.2) 0.34
ER+/PR+ 221/1005 1.1 (0.8 to 14) 167/751 1.0 (0.7 to 14) 47/194 15 (09 to 2.7) 0.26
Progesterone
All cancers 501/1009 1.0 (09 to 1.1) 368/753 10 (09to0 1.2) 96/193 09 (0.7 to 1.1) 024
Invasive 329/1009 1.0 (09 to 1.1) 243/753 1.1 (09 t0 1.2) 66/193 0.8 (0.7 to 1.0) 0.29
ER+/PR+ 222/1009 1.0 (09 to 1.1) 168/753 1.0 (09 to0 1.2) 46/193 0.8 (0.6 to 1.0) 042
LUTEAL AND UNTIMED
Testosterone
All cancers 623/1245 1.2 (1.0 to 14) 417/858 1.1 (09 to 14) 141/271 1.3 (0.8 to 2.0) 052
Invasive 421/1245 1.2 (1.0 to 1.5) 278/858 1.1 (0.8 to 14) 100/271 1.8 (1.1 to 2.8) 0.16
ER+/PR+ 290/1245 13(1.0to 1.7) 192/858 12 (09 to 1.7) 70/271 1.9 (1.1 to 34) 041
Free testosterone
All cancers 617/1237 1.0 (09 to 1.1) 414/853 1.0 (0.8to 1.2) 138/267 12 (08 to 1.8) 023
Invasive 416/1237 1.0 (0.8 to 1.2) 276/853 09 (0.7 to 1.1) 97/267 13 (09 1to 1.9 0.24
ER+/PR+ 287/1237 1.1 (09 to 1.3) 190/853 1.0 (08 to 1.3) 69/267 1.7 (1.0 to 2.6) 022
DHEAS
All cancers 628/1254 1.1(10to 1.2) 422/861 1.1 (09t0 1.2) 141/276 1.1 (08 1to 14) 071
Invasive 423/1254 1.1 (09 to 1.2) 280/861 1.0 (09to 1.2) 100/276 1.1 (08 to 1.5) 0.38
ER+/PR+ 291/1254 1.2 (10to 14) 193/861 1.1 (09to 14) 70/276 13 (09 to 1.9 022
SHBG
All cancers 624/1246 1.1 (101to 13) 421/859 12 (101to 14) 138/270 09 (0.7 to 14) 0.27
Invasive 420/1246 12 (1.0 to 14) 280/859 12 (1.0 to 1.5) 97/270 1.0 (0.7 to 1.5) 0.66
ER+/PR+ 290/1246 1.1 (09 to 1.3) 193/859 1.2 (09to 1.5 69/270 09 (06 to 1.3) 0.37

*Includes women of all menopausal statuses at diagnosis (premenopausal, postmenopausal and unknown). **Py.., represents heterogeneity between
premenopausal vs. postmenopausal status at diagnosis, among women premenopausal at blood collection. All cancers: Conditional logistic regression for all
cancers controlling for age at menarche, parity/age at first birth, BMI at age 18, family history of breast cancer, history of benign breast disease. Invasive, ER+/PR
+ tumors: Unconditional logistic regression for invasive and ER+/PR+ disease controlling for factors listed above and matching factors.
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of the hormones, such as follicular estradiol and testos-
terone. A doubling of follicular estradiol (ICC = 0.45)
was associated with a 20% increase in risk of invasive pre-
menopausal breast cancer in uncorrected estimates (OR:
1.2, 95% CI: (1.0 to 1.4)), but a 50% increase in risk in
corrected estimates (OR: 1.5, 95% CI: 0.9 to 2.4), though
measurement error adjusted results were no longer sta-
tistically significant. Similarly, a doubling of testosterone
(ICC = 0.69) was associated with an 80% increase in risk
of invasive postmenopausal breast cancer (OR: 1.8, 95%
CI: 1.1 to 2.8) before measurement error correction, and
a 2.5-fold increase in risk after correction (OR = 2.5, 95%
CIL: 1.2 to 5.4).

Discussion

In this prospective study of premenopausal plasma sex
steroids and SHBG and breast cancer risk, we found
positive associations between androgens and risk of
both invasive and ER+/PR+ breast cancer, as well as
luteal estradiol and risk of ER+/PR+ tumors. Several of
the associations varied by menopausal status at breast
cancer diagnosis. Total and free estradiol levels in the
follicular phase were positively, but not significantly,
associated with premenopausal invasive and ER+/PR+
disease but significantly inversely associated with post-
menopausal disease. Testosterone levels also appeared
more strongly associated with postmenopausal breast
cancer, although these differences were not statistically
different. We observed no significant associations when
evaluating all cancers combined.

The positive associations between endogenous estrogens
and androgens and postmenopausal breast cancer risk are
well established in prior epidemiologic studies [4,31-33],
and biologic mechanisms are well described for estrogens
[1,34]. Estrogens are associated with increased prolifera-
tion and decreased apoptosis, and may promote prolifera-
tion of cells with genetic mutations [1]. The biologic
mechanism between androgens and breast cancer is less
established, with androgens demonstrating both growth
inhibitory [2,3] and proliferative [3] effects in breast cancer
cell lines. In animal models, androgens have been shown
to inhibit proliferation [35-37] and the androgen receptor
antagonist flutamide has been shown to increase epithelial
cell proliferation [35]. Breast tissue can convert androgens
to estrogens via aromatase [38] and, therefore, androgens,
through their conversion to estrogen, also may be indir-
ectly associated with breast cancer risk.

There is an inherent complexity in measuring estrogens
in premenopausal women given the variation in estrogen
levels across the menstrual cycle, and prior studies have
accounted for this in different ways. The eight prior pro-
spective studies [5-7,9-13] either did not account for
menstrual cycle day [11], matched cases and controls on
cycle day [5-7,10], matched cases and controls on cycle
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day and used a spline regression model to adjust for cycle
differences [9,12], or, as in our prior analysis, restricted
sample collection to specific windows in the menstrual
cycle and matched on cycle day [13]. Six of the eight
prior studies [5-7,9-11] had fewer than 100 cases, with
four of the six [5,6,9,11] finding non-significant or sug-
gestive positive associations. Kaaks et al. [12], in the lar-
gest prior study (case n = 285) in the European
Prospective Investigation into Cancer and Nutrition
(EPIC) cohort, found no association with invasive breast
cancer risk for either estrone (4™ vs. 1°* quartile OR: 1.2,
95%: 0.7 to 1.9, Pireng = 0.46) or estradiol (OR: 1.0, 95%:
0.7 to 1.5, Pirena = 0.89). A prior analysis in a subset of
the population included in the current analysis [13], in
women predominantly premenopausal at diagnosis (n =
197 cases; n = 192 premenopausal at diagnosis), found a
significant positive association between follicular estra-
diol with breast cancer overall (4™ vs. 1% quartile OR:
2.1, 95% CI: 1.1 to 4.1, Pyeng = 0.08), that appeared some-
what stronger for invasive and ER+/PR+ disease. Results
in the present study, with the addition of 317 timed
cases, are attenuated relative to our prior findings,
though we continue to see the suggestion of a weak posi-
tive association for follicular estradiol and invasive breast
cancer diagnosed in premenopausal women. In our prior
analysis, we saw no clear association between luteal estra-
diol and breast cancer; results in the current analysis are
suggestive of an association between luteal estradiol and
invasive and ER+/PR+ tumors.

The association between circulating premenopausal
androgens and breast cancer risk has been investigated in
seven prospective studies [5,6,8,10-12,15], in addition to
the NHSII [13,14]. In the EPIC cohort (# = 370 cases),
significant positive associations with breast cancer risk
were observed for both testosterone (4™ vs. 15 quartile
OR: 1.7, 95% CI: 1.2 to 2.6, Piyend = 0.01) and DHEAS
(OR = 1.5, 95% CL 1.0 to 2.1, Piyeng = 0.10) [12]. Recent
results from the New York University Women’s Health
Study (NYUWHS) (n = 356 cases) [15], are in agreement,
where an approximately two-fold increase in risk was
observed in the highest quintile of both testosterone (OR:
2.2, 95% CI: 1.3 to 3.5, Pyeng = 0.03) and free testosterone
(OR: 1.9, 95% CI: 1.2 to 2.9, Pyena = 0.01), though a
weaker, non-significant positive association was observed
with DHEAS (OR: 1.3, 95% CI: 0.8 to 2.1, Pyeng = 0.20).
In our initial report in the NHSII, positive associations
were seen for luteal testosterone (OR: 1.6, 95% CI: 0.9 to
2.8, Pena = 0.10), free testosterone (OR: 1.4, 95% CI: 0.8
t0 2.5, Pyrena = 0.14) [13], and DHEAS (OR: 1.3, 95% CI:
0.9 to 2.1, Peng = 0.08) [14]. In the current much larger
study, our findings are somewhat weaker, although a
number of associations remained statistically significant.
Thus, overall, data from prospective studies are quite
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consistent in showing that premenopausal androgen
levels predict later breast cancer risk.

In this updated analysis, with six more years of follow-
up, we observed an attenuation of our previously pub-
lished results, particularly for follicular estradiol. Cases
included in the previous analysis were similar to the
new cases with regards to case characteristics (for exam-
ple, invasive vs. in situ, hormone receptor status, grade,
stage), and risk factor status (for example, family history
of breast cancer). Data from our prior reproducibility
study [20] suggest androgens and SHBG are quite stable
over at least three years (ICC range: 0.73 (testosterone)
to 0.89 (SHBG)) and do not change substantially at
menopause while ICCs for the estrogens are lower (ICC
range: 0.33 (estrone) to 0.45 (estradiol)), and levels
change markedly around menopause. It is possible, par-
ticularly for the estrogens, that steroid hormones mea-
sured closer to diagnosis are a stronger predictor of
disease, or are most relevant to risk as promoters of
early stage tumorigenesis.

There are little prior data to suggest a differential effect
of premenopausal sex steroids in relation to pre- vs. post-
menopausal disease. In the current analysis, follicular
estradiol was associated with a suggestively increased risk
of premenopausal breast cancer and significantly inverse
risk of postmenopausal disease. Given this novel finding,
and the considerably different hormonal milieu in pre-
vs. postmenopausal women, further investigation is war-
ranted. Although speculative, because estradiol levels are
substantially lower after menopause, women with higher
premenopausal follicular estradiol may experience the
greatest change in estradiol levels from pre- to post
menopause, which may in turn confer a lower risk, at
least over the short term. There is some indirect evidence
to support a role for changes in endogenous estrogen
levels in breast cancer etiology. For example, discontinua-
tion of exogenous postmenopausal hormones (PMH) is
associated with reduced proliferation in ER+ tumors [39]
and postmenopausal weight loss, which is associated with
a decrease in estrogen levels, is associated with lower
breast cancer risk [40,41].

Our androgen/breast cancer associations appeared
stronger in women postmenopausal at diagnosis,
although the differences by menopausal status were not
statistically significant. This has been evaluated in few
other cohorts. In the NYUWHS, the association between
testosterone and breast cancer risk was suggestively
stronger in women postmenopausal at diagnosis (for
doubling of testosterone: premenopausal, OR: 1.4, 95%
CI: 0.8 to 2.3, P ena = 0.23; postmenopausal, OR: 1.7,
95% CI: 1.1 to 2.6, Pyenq = 0.02), although this difference
also was not statistically significant (P for interaction >
0.15) [15]. Similarly, in the Columbia, Missouri cohort,
results for total testosterone and bioavailable testosterone
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were stronger among women ages 55 and older at diag-
nosis (for example, 4™ vs. 1% quartile, overall results for
testosterone, OR: 3.3, 95% CI: 1.5 to 7.5, P.cnq = 0.006;
among women > 55 at diagnosis, OR: 4.5, 95% CI: 1.6 to
13.0, Preng = 0.009) [5]. However, in contrast to these
findings, in the EPIC study associations were somewhat
stronger for both testosterone and DHEAS in women
ages < 49 years at diagnosis [12]. Clearly, additional stu-
dies are necessary to address this potential heterogeneity.
The influence of androgens on breast tissue in a high
estrogen environment may differ from those in a low
estrogen environment though this hypothesis has not
been adequately explored. Androgen levels do not change
substantially at menopause [42,43], and prior prospective
studies consistently link postmenopausal androgens to
breast cancer risk [4]. Therefore, it is possible that pre-
menopausal androgen levels are a marker for postmeno-
pausal levels, which are then determinants of
postmenopausal breast cancer risk.

Among prior prospective assessments of premenopau-
sal progesterone levels and breast cancer risk, three
[6,8,10] of four small studies (case n < 100) found non-
significant inverse associations, and the larger EPIC
cohort reported a significant inverse association [12]. In
our prior analyses in the NHSII, we observed no associa-
tion between progesterone and breast cancer risk [13],
and this was confirmed in the current expanded analysis.
The ICC over three years for progesterone is 0.29, evi-
dence that it is not well measured with one sample. Prior
prospective studies [5-8,12,13,15] did not find a statisti-
cally significant association between premenopausal
SHBG and breast cancer risk, in agreement with our
findings.

Our study has both strengths and limitations. This is
the largest prospective study to date, although we had
limited power in analyses stratified by menopausal status
at diagnosis (particularly postmenopausal cases). Our
samples were carefully timed in the menstrual cycle. We
used highly specific and sensitive assays, and laboratory
CVs were excellent. Additionally, we are among the first
to present data for premenopausal hormones and breast
cancer by tumor hormone receptor status. Although we
are limited to samples collected during one menstrual
cycle, a prior reproducibility study provides evidence of
reasonable stability across a three-year period (follicular
estradiol: 0.38 to DHEAS: 0.86), except for luteal proges-
terone (ICC = 0.29) [20]. We also used these reproduci-
bility data to correct for measurement error and showed
that several of the associations may be substantially
stronger than observed.

Conclusions
In summary, this large, prospective study of circulating
premenopausal hormones and breast cancer risk
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provides some evidence for moderate associations
between plasma hormones and breast cancer risk. We
provide suggestive evidence of a role for premenopausal
estrogens and androgens in postmenopausal disease,
with premenopausal estrogens inversely and premeno-
pausal androgens positively associated with postmeno-
pausal breast cancer. However, further work is needed
to explore the relationships between premenopausal
hormone levels and postmenopausal disease.
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