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Abstract

Introduction: Population-based studies of breast cancer have estimated that some PALB2 mutations confer a
breast cancer risk (penetrance) comparable to the average pathogenic mutation in BRCA2. As this risk is of clinical
relevance, we sought to identify mono-allelic PALB2 mutations and determine their frequencies in multiple-case
breast cancer families attending Familial Cancer Clinics in Australia and New Zealand.

Methods: The youngest affected woman, not known to carry a mutation in BRCAT or BRCA2, from 747 multiple-
case breast cancer families participating in kConFab were selected for PALB2 mutation screening. The coding and
flanking intronic regions of PALB2 in DNA extracted from blood were screened using high-resolution melt curve
analysis with Sanger sequencing confirmation. Where possible, relatives of women found to carry PALB2 mutations
were genotyped for the family-specific mutation, mutant transcripts were characterised and breast tumours arising
in mutation carriers were recalled and reviewed. Missense mutations were assessed for potential to disrupt protein
function via SIFT, Align GVGD and Polyphen-2.

Results: The mutation screen identified two nonsense mutations (PALB2 c.3113G>A in eight women and PALB2
c.196C>T in one woman), two frameshift mutations (PALB2 ¢.1947_1948insA and PALB2 ¢.2982_2983insT each in
one woman), 10 missense variants, eight synonymous variants and four variants in intronic regions. Of the four
PALB2 mutations identified that were predicted to produce truncated protein products, only PALB2
€.1947_1948insA had not previously been reported. PALB2 c.3113G>A and PALB2 c.196C>T were previously
identified in the Australian population whereas PALB2 c2982_2983insT was previously reported in the UK
population. Transcripts derived from three of these mutant PALB2 alleles were vulnerable to nonsense-mediated
decay. One missense mutation (PALB2 c.2993G>A) was predicted to disrupt protein function via the three in silico
assessment methods applied. The majority of breast cancers arising in carriers that were available for review were
high-grade invasive ductal carcinomas. Conclusions: About 1.5% (95% Cl 0.6to 2.4) of Australasian multiple-case
breast cancer families attending clinics are segregating protein-truncating mutations in PALB2, most being PALB2
c3113G>A, p.Trp1038*. Given the prevalence, breast cancer risk, and tumour grade associated with this mutation,
consideration of clinical PALB2 testing is warranted.

Introduction

Genetic testing for mutations in breast cancer susceptibil-
ity genes offers some women and their families the oppor-
tunity for risk-reducing intervention, medical risk
reduction and gene-targeted therapeutics [1,2]. Testing
in Australia and New Zealand is usually limited to
BRCA1 (MIM#113705), BRCA2 (MIM#600185) mutations
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and possibly those of STK11 (MIM#602216), PTEN
(MIM#601728) and TP53 (MIM#191170) if relevant clini-
cal syndromic indications are observed. However, due to
the rarity of these mutations in known breast cancer sus-
ceptibility genes and the fact that they account for less
than 30% of the familial breast cancer risk [3], the majority
of individuals at high risk of breast cancer do not carry
these mutations and the families are clinically managed
solely on the assessment of their cancer family history [4].
The search for additional breast cancer susceptibility
genes has been of great interest and has successfully led
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to the identification and characterisation of ATM
(MIM#607585) [5], BRIP1 (MIM#605882) [6], CHEK2
(MIM#604373) [7], and PALB2 (MIM#610355) [8].
Mutations in these genes are rare and early reports sug-
gested that, on average, they are associated with moder-
ate risks of breast cancer (lower than the high breast
cancer risks associated with BRCA1 and BRCA2 muta-
tions) [5,6,8,9]. However, large population-based studies
of breast cancer have demonstrated that at least some
mutations in these genes are associated with breast can-
cer risks that are comparable to the average risk asso-
ciated with BRCA2 mutations [5,9-13].

PALB2, partner and localiser of BRCA2, is a BRCAI-
and BRCA2-interacting protein critical for the homolo-
gous recombination-based repair of DNA double-strand
breaks and checkpoint control functions [14-16]. Bi-alle-
lic mutations in PALB2 explain an unrecognised Fanconi
anemia complementation group, designated subtype N
(FANCN), and have been found to convey high risk of
childhood cancer [17,18]. Heterozygous germline loss-of-
function mutations in PALB2 are associated with
increased risk of breast cancer. The first PALB2 associa-
tion study, which involved familial breast cancer cases
and unaffected controls from the UK population,
reported that the average estimated risk conferred by five
PALB2 mutations is 2.3 (95% CI 1.4 to 3.9) [8] but subse-
quent population-based studies have estimated the risk
associated with at least some PALB2 mutations to be
much higher [12,13]. For example, PALB2 ¢.1592delT
was identified in 18/1,918 (0.9%) Finnish breast cancer
cases, unselected for family history, compared to 6/2,501
(0.2%) in controls (OR 3.94; 95% CI 1.5 to 12.1). Based
on families of the 10 affected carriers, PALB2 c.1592delT
was estimated to be associated with a 40% (95%CI 17 to
77) risk to age 70 [12]. Similarly, PALB2 c.3113G>A was
identified in 5/1,403 (0.4%) unselected breast cancer
cases and 0/764 (0%) unaffected controls in the Austra-
lian population. The cumulative risk estimated for
PALB2 ¢.3113G>A, using the families of the five carrier
cases, was 91% (95% CI 44 to 100) to age 70 [13]. These
risks are comparable to the average breast cancer risk
associated with carrying a BRCA2 mutation with pene-
trance to age 70 of 45% (95%CI 31 to 56) [9].

In this study, we screened for germline PALB2 muta-
tions in a sample of 747 women affected with breast
cancer (known not to carry a mutation in BRCAI or
BRCA2) from multiple-case breast cancer families parti-
cipating in the Kathleen Cuningham Foundation Con-
sortium for Research in Familial Breast Cancer
(kConFab). This sample represents women and their
families who attend Familial Cancer Clinics throughout
Australia and New Zealand. We sought to ascertain the
prevalence of PALB2 mutations in these women due to
the high estimated breast cancer risk associated with at
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least some PALB2 mutations and to further consider if
clinical testing for these mutations is warranted.

Materials and methods

Participants

Women and their families participating in the kConFab
resource [19] were selected for this study. The youngest
affected female members (designated the proband) of a
multiple-case breast cancer family who had provided
blood samples (for DNA preparation) and who were
known not to carry a mutation in BRCAI or BRCA2 were
included. These participants would have undergone a vari-
ety of mutation testing strategies in research and diagnos-
tic settings including Sanger sequencing through Myriad
Genetics (Salt Lake City, UT, USA) [19,20]. The eligibility
criteria for recruitment of families into kConFab was
intended to maximise the number of living potentially
high-risk individuals, including carriers of high-penetrance
alleles, regardless of breast cancer status. The reports of
cancer in the families were verified through medical
records or by state-based cancer registries. Where possi-
ble, a copy of the final pathology report was obtained with
the locations of archival and diagnostic tumour specimens
for future requests of paraffin blocks and slides. A patholo-
gist (EP) conducted pathology reviews of the available
tumour material, which provided the information on
tumour pathology presented in this paper. Histological
grade was scored based on the Bloom-Richardson grading
system modified by Elston and Ellis [21].

Data on estrogen receptor (ER), progesterone receptor
(PR) and human epidermal growth factor-2 (HER2) status
of the PALB2 mutation-associated tumours were collected,
if available, from diagnostic laboratories and pathology
reports. HER2 status was classified in accordance with
clinical guidelines [22] and was considered to be positive if
immunohistochemical test results were ranked 3+ (higher
than normal amount of HER2 protein was present) or if
HER?2 gene amplification was demonstrated using fluores-
cence in situ hybridisation. An immunohistochemical test
result of 1+ (normal amount of HER2 protein was present)
was classified as negative for HER2 expression while an
immunohistochemical test result of 2+ (moderate amount
of HER2 protein was present) without a confirmatory
fluorescence in situ hybridisation test was classified as
equivocal.

All participants provided written informed consent for
participation in the study. This study was approved by
The University of Melbourne Human Research Ethics
Committee.

High-resolution melt curve analysis and Sanger sequencing
analysis of PALB2 coding variants

High-resolution melt (HRM) and Sanger sequencing
were performed as previously described in Southey et al.
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(2010) [13]. The coding sequences and the flanking
intronic sequences of PALB2 [Q86YC2.1] were screened
for genetic variants by HRM curve analysis and the var-
iants were confirmed via Sanger sequencing. Genotyping
of relatives of the probands found to carry PALB2 muta-
tions was carried out via Sanger sequencing.

In silico analysis

The in silico analyses of PALB2 variants were performed
using Sorting Intolerant From Tolerant (SIFT) (J. Craig
Venter Institute, Maryland, CA, USA) [23-25], Align
Grantham Variation Grantham Deviation (Align GVGD)
(International Agency for Research on Cancer, Lyon,
France) [26-29] and Polymorphism Phenotyping version
2 (Polyphen-2) [30,31], which are freely available web-
based programs. Protein multiple sequence alignment
(PMSA) of PALB2 was made available through a recent
publication [32] and was used in SIFT and Align GVGD.

SIFT calculates the probability that an amino acid at a
position is tolerated conditional on the most frequent
amino acid being tolerated by interrogating the amino
acids appearing at each position in the alignment. If the
normalised probability is less than the cutoff score of
0.05, the substitution is predicted to be deleterious [25].

The outputs of Align GVGD are combined to provide
a seven-tiered genetic risk classifier: C0, C15, C25, C35,
C45, C55, and C65 where CO describes the category of
variants least likely to be deleterious and C65 describes
the category of variants most likely to be deleterious
[28,29].

The HumDiv-trained data set of Polyphen-2 [31] was
used for this research. The investigated mutation is cate-
gorised as probably damaging (probability score more
than 0.85), possibly damaging (probability score between
0.16 and 0.85) or benign (probability score less than or
equal to 0.15).

Reverse transcription PCR
Epstein-Barr virus (EBV)-transformed lymphoblastoid
cell lines (LCL) were cultured and prepared for RNA
extraction as described by Southey et al. (2003) [33].
LCLs were divided into two equal portions for treatment
with 100 mg/ml of cycloheximide to stabilise the tran-
scripts for analysis [34] or no treatment. Both portions
were then incubated for four hours at 37°C. Total RNA
was isolated from the LCLs using the RNAqueous-4PCR
kit (Ambion/Life Technologies, Carlsbad, CA, USA).
Deoxyribonuclease 1 (Ambion/Life Technologies) was
added to all extracted total RNA prior to their use in
reverse transcription (RT) to remove any genomic DNA
that could have been eluted with the RNA during the
extraction process.

Primers for RT-PCR were designed using the default
conditions on the Primer3 software (Whitehead Institute
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and Howard Hughes Medical Institute). The primers
were also designed to ensure the 3’ end of both the for-
ward and reverse primers ended with a ‘GC clamp’ (one
G or C base). To further guard against the amplification
of genomic DNA, all primers except one (due to restric-
tions in length) were designed to span exon-exon
boundaries. A PALB2 gene-specific primer (GSP) was
used for cDNA synthesis via RT for all cell lines (Addi-
tional file 1). Primers were ordered from Geneworks
(Hindmarsh, South Australia, Australia).

c¢DNA was synthesised via RT according to the specifi-
cations of the Thermoscript RT-PCR system kit (Life
Technologies) using 800 ng of total RNA and the PALB2
GSP. RT was performed at 55°C for 50 mins followed by
addition of RNase H and incubation for 20 mins at 37°C.
Two pl of synthesised cDNA product was subsequently
amplified using two units of Amplitaq Gold DNA Poly-
merase (Life Technologies) in the presence of 1x PCR
Buffer II (Life Technologies), 1.5 mM MgCl, (Life Tech-
nologies), 0.2 mM dNTP (Ambion/Life Technologies),
0.2 uM each of forward and reverse primers in a 50 pl
reaction volume. PCR was performed using the PCR con-
ditions suggested by the Thermoscript RT-PCR system
kit (Life Technologies). PCR annealing temperature was
chosen to be 51°C. No RT controls (extracted total RNA
added in place of cDNA during RT-PCR) were added to
control for contamination from genomic DNA. Platinum
Supermix High Fidelity (Life Technologies) was used to
limit the extent to which longer PCR products, resulting
from the inclusion of intronic sequences, were not
under-represented. RT-PCR was carried out in triplicate
for each condition for each LCL. Multiple LCLs (derived
from different study participants) carrying each of the
mutations was included in the assays whenever possible
and one ‘non-carrier’ LCL was included as an additional
control.

RT-PCR products were separated using agarose gel
electrophoresis on 2%, 3% or 4% agarose gels. Bands
were excised from the gel and purified using the QIA-
quick Gel Extraction Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions prior to
Sanger sequencing analysis.

The relative amounts of DNA product amplified in each
RT-PCR reaction were measured by comparing the chro-
matogram peak heights (fluorescence signal intensities;
FSI) of the variant nucleotides of the mutant alleles to the
corresponding wild-type nucleotides of the wild-type
alleles. After Sanger sequencing, Sequencing Analysis
Software (Life Technologies) provides FSIs of each nucleo-
tide of the target amplicon. FSIs of the variant and wild-
type nucleotides at the heterozygous PALB2 c.196C>T
position were recorded. FSIs of three wild-type nucleotides
and their corresponding variant nucleotides in regions of
frameshift resulting from PALB2 c.1947_1948insA or
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PALB2 ¢.2982_2983insT were recorded for each condition
(cycloheximide treated or non-cycloheximide treated).
FSIs of six wild-type nucleotides and their corresponding
six variant nucleotides in regions of frameshift resulting
from PALB2 ¢.3113G>A were recorded for each treatment
condition. The same three or six nucleotides in the regions
of frameshift were interrogated for each mutant transcript
in the same sequencing direction. A proportion of the FSI
of the variant nucleotide to that of the corresponding
wild-type nucleotide was obtained. In the situations where
three or six nucleotides were interrogated per treatment
condition, the FSI proportions of the three or six nucleo-
tides were averaged within a treatment condition. The FSI
proportions of the technical replicates of each treatment
condition were averaged. The difference in the mean FSI
proportions in the cycloheximide-treated and non-cyclo-
heximide-treated conditions indicated the semi-quantita-
tive change in relative gene expression levels of the
mutant transcripts in each treatment condition.

Results

PALB2 mutation screening

HRM screening of the PALB2 coding and flanking intronic
regions in the selected sample of 747 DNAs identified 26
different PALB2 genetic variants. Of the 22 exonic var-
iants, two were nonsense mutations resulting in predicted
stop codons (PALB2 c.196C>T, p.Gln66*; PALB2
¢.3113G>A, p.Trp1038*), two were frameshift mutations
resulting in premature termination codons (PTC; PALB2
¢.1947_1948insA, p.Glu650fs*13; PALB2 ¢.2982_2983insT,
p-Ala995£s*16), 10 were missense variants, and the remain-
ing eight were synonymous variants. Four variants were
identified in the intronic region of PALB2, three of these
were single-base changes and one was an insertion of
three bases towards the 5" end of intron 4. 10 of the 26
variants had not been previously reported (Table 1).

The four nonsense and frameshift PALB2 mutations
were observed in 11 (1.5%) of the 747 probands. Eight pro-
bands (0.9%) were found to carry PALB2 c.3113G>A while
PALB2 c.196C>T, PALB2 c.1947_1948insA and PALB2
€.2982_2983insT were each carried by a single proband.
PALB2 ¢.1947_1948insA has not been previously reported
in published literature or in the National Centre for
Biotechnology Information (NCBI [35]) or the e!Ensembl
[36] genome databases. PALB2 ¢.2982_2983insT had not
been previously reported in the Australian or New Zeal-
and population.

In silico analysis

The 10 exonic missense variants were analysed for their
predicted effect on protein function using SIFT [23-25],
Align GVGD [26,37], and Polyphen-2 [30,31] programs.
PALB2 ¢.2993G>A, p.Gly998Glu was the only PALB2
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variant predicted to be deleterious to protein function
by all three programs (Table 2).

Transcript analysis

Figure 1 shows the outcome of the RT-PCR assays and
the semi-qualitative analysis of nonsense-mediated
decay (NMD) observed for the four PALB2 nonsense
and insertion mutations identified in this study. The
results of each mutation are discussed in the following
sections.

PALB2 ¢.3113G>A
PALB2 ¢.3113G>A is a nonsense mutation located at the
last nucleotide of exon 10. Two alternate transcripts
were observed in the RT-PCR assays. One alternate
transcript involved the deletion of exon 10 (117bp;
PALB2 r.2997_3113del, p.Gly1000_Gly1038del), and the
other included a 31bp deletion in exon 10 (PALB2
1r.3083_3113del, p.Gly1028fs*3) that resulted in a shift of
reading frame and a premature termination codon
(PTC) (at codon 1030). These two transcripts were also
observed to travel in the agarose gel as heteroduplexes
with the wild-type allele (Figure 1la, agarose gel bands A
and B). Cycloheximide treatment of LCLs carrying this
mutation demonstrated that PALB2 r.2997 3113del does
not undergo extensive NMD whereas PALB2
r.3083_3113del appears to be susceptible to NMD (Fig-
ure la).

PALB2 c.196C>T

PALB2 c.196C>T is a nonsense mutation predicted to
produce a truncated protein (p.Gln66*). Figure 1b shows
that no alternate transcripts resulted from this mutation
and that the cycloheximide treatment of all LCLs (both
wild-type and those carrying PALB2 ¢.196C>T) had con-
siderable impact on transcript stabilization compared to
the untreated LCLs as visualised on the agarose gel.
Comparison of the FSI of the mutant and wild-type
alleles derived from Sanger sequencing of the RT-PCR
products (semi-quantitative analysis) suggests that the
wild-type transcript might be more sensitive to cyclo-
heximide treatment than the mutant allele. Taken
together, the data suggest that PALB2 ¢.196C>T is not
vulnerable to NMD.

PALB2 c.1947_1948insA and PALB2 c.2982_2983insT

Both PALB2 ¢.1947_1948insA and PALB2 c.2982_
2983insT are frameshift mutations predicted to produce a
PTC each (p.Glu650fs*13 and p.Ala995fs*16, respectively)
and are not located in splice-site consensus sites. The rela-
tive levels of expression of the PALB2 ¢.1947_1948insA
and PALB2 ¢.2982_2983insT mutant alleles in the non-
cycloheximide-treated LCLs were 56% less and 63% less,
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Table 1 PALB2 variants identified in female participants of the kConFab resource.

Nucleotide change Protein change rs number Frequency (n = 747) % References

Exonic variants

Nonsense c.196C>T p. GIn66* rs180177083 1 0.1 Casadei et al. [38];
Wong et al. [39]
c3113G>A p.Trp1038* 1s180177132 7 0.9 Rahman et al. [8];
Casadei et al. [38];
Wong et al. [39]
Frameshift €.1947_1948insA p. Glu650fs*13 - 1 0.1 -
€.2982_2983insT p. Ala995fs*16 rs180177127 1 0.1 Rahman et al. [8];
Bogdanova et al.[70]
Missense c90G>T p.Lys30Asn - 1 0.1 -
c94C>G p.Leu32val rs151316635 1 0.1 -
c.596A>G p.Asp219Gly 1s45594034 1 0.1 Rahman et al. [8];
Hellebrand et al. [40];
Dansonka-Mieskowska et al.[61]
c956C>A p.Ser319Tyr - 1 0.1 -
c.1010T>C p.Leu337Ser 1545494092 25 33 Rahman et al. [8];
Hellebrand et al. [40];
c1475G>T p.Gly492Val - 1 0.1 -
c.1676A>G p.GIn559Arg rs152451 72 96 Rahman et al. [8];
Hellebrand et al. [40];
Garcia et al. [63];
Bogdanova et al.[70]
c.2014G>C p.Glu672GIn rs45532440 51 6.8 Rahman et al. [8];
Hellebrand et al. [40];
Garcia et al. [63];
Bogdanova et al[70];
Dansonka-Mieskowska et al[61]
€.2590C>T p.Pro864Ser rs45568339 1 0.1 Rahman et al. [8];
Hellebrand et al. [40];
Garcia et al. [63];
€.2993G>A p.Gly998glu rs45551636 17 23 Rahman et al. [8];
Hellebrand et al. [40];
Garcia et al. [63];
Bogdanova et al[70]
Synonymous c1431CT p.Thr477Thr - 1 0.1 -
c.1470C>T p.Pro490Pro rs45612837 1 0.1 Rahman et al. [8];
Bogdanova et al.[70]
c.1572A>G p.Ser524Ser 1545472400 4 0.5 Rahman et al. [8];
Hellebrand et al. [40];
Garcia et al. [63];
Bogdanova et al.[70]
c.1935G>A p.Glu645Glu 1141707455 1 0.1 Hellebrand et al. [40];
C.2469C>A p.Leu823Leu - 1 0.1 -
c2823C>A plled4ille - 1 0.1 -
€.3300T>G p.Thr1100Thr rs45516100 45 6 Rahman et al. [8];
Hellebrand et al. [40];
Erkko et al. [71];
Garcia et al. [63];
Bogdanova et al.[70]
Dansonka-Mieskowska et al[61]
C.3321G>A p.Leu1107Leu - 1 0.1 -
Intronic
variants
c-47G>A - rs8053188 17 23 Hellebrand et al. [40];
Garcia et al. [63];
€212-58A>C - rs80291632 37 5 Garcia et al. [63];
Dansonka-Mieskowska et al.[61]
C.1684+41_42insTGA - - 2 03 -
€.2834+12C>T - - 1 0.1 -
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Table 2 Predicting the effects of PALB2 missense variants on protein function using three in silico methods.

Nucleotide change Protein change Carrier frequency (%) SIFT @ Align GVGD P Polyphen ©
c90G>T p.Lys30Asn 1(0.1) Affect protein function; P = 0.04 Class CO Probably damaging 0.999
c94C>G p.Leu32val 1(0.1) Tolerated; P = 0.37 Class CO Probably damaging 1.000
c.596A>G p.Asp219Gly 1(0.1) Tolerated; P = 0.65 Class CO Benign 0.000
Cc956C>A p.Ser319Tyr 1(0.1) Tolerated; P = 091 Class CO Possibly damaging 0.589
c.1010T>C p.Leu337Ser 25 (3.3) Tolerated; P = 0.59 Class CO Benign 0.291
c.1475G>T p.Gly492Val 1(0.1) Tolerated; P = 0.17 Class CO Benign 0.161
c.1676A>G p.GIn559Arg 72 (9.6) Tolerated; P = 0.57 Class CO Benign 0.000
c.2014G>C p.Glu672GIn 51 (6.8) Tolerated; P = 048 Class CO Benign 0.225
€.2590C>T p.Pro864Ser 1(0.1) Tolerated; P = 0.68 Class CO Possibly damaging 0.578
€.2993G>A " p.Gly998Glu 17 (0.9) Affect protein function; p = 0.00 Class C65 Probably damaging 1.000

“Predicted to affect protein function by all three programs. *Kumar et al.(2009) [24]; Ng et al (2003) [25]. PTavtigian et al. (2006) [27]; Mathe et al. (2006) [28];

Tavtigian et al. (2008) [29]. “Adzhubei et al. (2010) [31].

respectively, than the corresponding mutant allele in the
cycloheximide-treated LCLs. This suggests that transcripts
arising from both these mutant alleles are subjected to
NMD (Figure 1c and 1d). RT-PCR comparison of the
mutant and wild-type transcripts (data not shown) indi-
cated that neither of these PALB2 mutations resulted in
alternate transcripts.

Family histories and tumour characteristics

The relatives of women who were identified as carriers of
PALB2 ¢.3113G>A, PALB2 ¢.196C>T, PALB2 c.1947_
1948insA, and PALB2 ¢.2982_2983insT, were genotyped
for the respective family mutations. Several more carriers
were identified (Table 3).

PALB2 ¢.3113G>A was identified in eight probands. The
median age at diagnosis (not including second primary
diagnosis of breast cancer) of these probands was 48.5
years (range: 32 to 79 years). Tumour material was not
available for the proband of pedigree A (Table 3a). The
other seven probands were of histological grade two or
three. Five of seven probands were found to have invasive
ductal carcinoma as the primary histological type. One of
seven probands had tubular carcinoma and the remaining
proband had lobular carcinoma. The ER, PR and HER2 sta-
tus of the tumours of two of these probands were available,
one was ER+/PR+/HER2+ and one was ER+/PR+/HER2-
(Table 3a). The families of the eight probands had at least
one additional breast cancer diagnoses. Four families had
six diagnoses of breast cancer. Three families were affected
with several other types of cancers (Table 3a).

The proband who was found to carry PALB2 ¢.196C>T
had a histological grade three, invasive ductal carcinoma
diagnosed at the age of 43 years. The tumour was found
to be positive for ER and PR expression but the HER2
expression status was unknown. The family had nine
diagnoses of breast cancer and was also affected with six
other types of cancers (Table 3b).

The proband that was identified as a carrier of PALB2
€.1947_1948insA had a histological grade two, pleo-
morphic lobular carcinoma (ER+/PR+/HER2+) diag-
nosed at age 42 years. There were nine additional
diagnoses of breast cancers in the family and seven
other types of cancers were also reported (Table 3c).

The proband that carried PALB2 ¢.2982_2983insT had
a histological grade three, invasive ductal carcinoma
diagnosed at age 45 years (Table 3d). Information on
ER, PR and HER2 expression was not available for this
individual. The family reported five breast cancers in
three individuals. Other cancers in the family included
sarcoma, pancreatic cancer and lymphoma.

Where possible, tumour material was also collected for
some family members affected with breast cancer. In
summary, PALB2-associated tumours are mostly high
histological grade invasive ductal carcinoma (11/15;
73%). A total of 2/15 (13%) were pleomorphic lobular
carcinomas, 1/15 (7%) was a lobular (classical) carcinoma
and 1/15 (7%) was a tubular carcinoma.

Discussion

High throughput screening of the PALB2 coding and
flanking intronic regions in 747 affected women from
multiple-case breast cancer families identified 26 differ-
ent PALB2 genetic variants.

The four mutations that were predicted to produce
truncated protein product were identified in a total of 11
(1.5%) of the 747 women screened. Eight of these women
were found to carry PALB2 ¢.3113G>A that has pre-
viously been identified in British, Australian and Ameri-
can women affected with breast cancer [8,13,38,39] and
is associated with an estimated 91% (95% CI 44 to 100)
cumulative risk of breast cancer to age 70. We report this
and the carrier frequency of PALB2 ¢.3113G>A in the
kConFab resource in Southey et al., (2010) [13]. PALB2
€.2982_2983insT has previously been identified in one of
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Figure 1 Characterisation of PALB2 mutation transcripts via RT-PCR. (a) Image of transcripts from PALB2 c.3113G>A visualised on 3%
agarose gel. (A) Heteroduplex of the RT-PCR products of the wild-type and the PALB2 r.2997_3113del transcripts. (B) Heteroduplex of the RT-PCR
products of the wild-type and PALB2 r.3083_3113del transcripts. (C) RT-PCR product of the wild-type transcript. (D) RT-PCR product of the PALB2
r3083_3113del transcript. (E) RT-PCR product of the PALB2 r.2997_3113del transcript. FSls of six wild-type and their corresponding six variant
nucleotides at heterozygous positions were recorded for each condition (CT and NCT). Averaged proportions of FSI of the six variant nucleotides
to the FSI of the six corresponding wild-type nucleotides for each condition are shown. (b) Image of wild-type transcripts and transcripts from
PALB2 c.196C>T visualised on 4% agarose gel. FSIs were recorded for the variant and corresponding wild-type nucleotide at the heterozygous
position. (c) Image of transcripts resulting from PALB2 ¢.1947_1948insA visualised on 2% agarose gel. FSls were recorded for three variant
nucleotides and their corresponding wild-type nucleotides at the heterozygous positions. (d) Image of transcripts from PALB2 c.2982_2983insT
visualised on 2% agarose gel. FSIs were recorded for three variant nucleotides and their corresponding wild-type nucleotides at the
heterozygous positions. NCT-CT: the difference in FSI proportions in the CT and NCT conditions indicates the semi-quantitative change in relative
gene expression levels of the mutant transcripts in each condition. CT, cycloheximide treated; FSI, fluorescence signal intensity; NCT, non-
cycloheximide treated; NT, nucleotide; WT, wild-type.
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Table 3 Family cancer histories of probands, carriers of PALB2 mutations, and the histopathology features of PALB2-

associated tumours.

Mutation Pedigree Breast cancer diagnoses Grade Histological type (1°)

ER

PR

HER2

a) PALB2 c3113G>A A Proband +

P.FCOR +

P.cousin -

P.aunt

B Proband + 3 IDC

pos

neg

Eqv

P.aunt

P.cousin -

P.cousin

P.g.mother

C Proband + 1 Tubular

pos

pos

neg

Sister + 3 IDC

pos

neg

P.aunt

M.aunt

M.cousin

D Proband + 2 IDC*

Sister + 1 IDC

P.cousin +

P.cousin

P.aunt

P.aunt

E Proband + 3 IDC

neg

neg

Eqv

Sister

M.cousin +

M.cousin

M.cousin + 2 Pl. lobular

pos

pos

M.aunt

Proband + 3 IDC

pos

pos

pos

G Proband + 2 Lobular

Sister

H Proband + 2 IDC

pos

neg

Eqv

Sister + 2 IDC

pos

pos

Mother -

M.g.mother

b) PALB2 c196C>T Proband + 3 IDC

pos

pos

Mother -

P.cousin

P.cousin

P.g.-g.mother

P.g.aunt

P.g.aunt

P.g.aunt

C) PALB2 c.1947_1948insA J Proband + 2 Pl. lobular

pos

pos

pos

Sister

M.cousin

M.cousin
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Table 3 Family cancer histories of probands, carriers of PALB2 mutations, and the histopathology features of PALB2-

associated tumours. (Continued)

M.FCOR

M.g.Aunt

P.cousin

Sister in law

d) PALB2 c.2982_2983insT K Proband +

3 IDC

Sister +

2-3 IDC pos neg pos

M.aunt

Histopathology and carrier status information were presented where available. *Secondary histological type is lobular carcinoma. Dx, diagnosis; 1°, primary; ER,
estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor-2; P, paternal; M, maternal; G, grand; G-G, great-grand; FCOR, first cousin
once removed; IDC, invasive ductal carcinoma; Pos, positive; Neg, negative; +, genotyped and identified to be a carrier of the respective PALB2 mutation; -,
genotyped and found to not be a carrier of a PALB2 mutation; Pl, pleomorphic; Uk, unknown; Eqv, equivocal, tested to be 2+ by immunohistochemistry but not

confirmed by fluorescence in situ hybridisation

923 women from multiple-case breast cancer families
screened for PALB2 mutations in a UK study (and not in
1,084 unaffected women) [8]. PALB2 c.196C>T has pre-
viously been reported to be carried by 2/972 (0.2%) and
1/70 (1.4%) familial breast cancer cases (and none in con-
trols) in Australian and USA studies, respectively [38,39].
The PALB2 ¢.1947_1948insA mutation has not been pre-
viously reported.

Only one of 10 missense variants identified in this study
was predicted to be deleterious by SIFT, Align GVGD and
Polyphen-2. This variant, PALB2 c.2993G>A, has pre-
viously been identified in studies examining the role of
PALB?2 in multiple-case breast cancer families that are not
known to carry BRCAI or BRCA2 mutations. A study
involving individuals in the UK population found the
minor allele frequency of PALB2 ¢.2993G>A to be 33/
1846 (1.8%) for familial breast cancer cases and 44/2168
(2.0%) for unaffected controls [8]. Similar carrier frequen-
cies of this PALB2 variant in breast cancer cases and unaf-
fected controls were also observed in the Finnish
population [40]. The results of these studies provide no
evidence to suggest that PALB2 ¢.2993G>A is associated
with breast cancer risk. These finding are consistent with
the report of Tischkowitz et al. (2012) in that we find no
evidence that rare PALB2 missense mutations strongly
influence breast cancer risk [32].

The four mutations that were predicted to produce
truncated protein products were assessed for their effects
on splicing and gene expression. PALB2 ¢.3113G>A was
observed to lead to altered splicing of transcripts. In this
study, we identified two mutant transcripts that disrupt
the tenth coding exon of PALB2. Casadei et al. (2011)
conducted a similar analysis and detected a third tran-
script (designated p.Trp1038*) in extremely low abun-
dance (4%) [38]. The reason for the apparent discrepancy
between the two studies could lie in the methodological
approaches utilized as EBV transformation of LCLs, RT-
PCR, gel electrophoresis and Sanger sequencing all have
small inherent margins to miss transcripts that are

present in low quantities. It is also possible that distinct
genetic background inherent to the different LCLs
(derived from different people) could contribute to the dif-
ferent sensitivities of transcript detection between the two
studies. PALB2 c.196C>T, PALB2 c.1947_1948insA, and
PALB2 ¢.2982_2983insT were not found to alter splicing.

The transcripts that contained PTCs occurring more
than 55 nucleotides from the 3’ exon-exon junction
resulted in decreased gene expression via NMD with the
exception of PALB2 c.196C>T. The current model for
mammalian NMD postulates that NMD targets are
recognised through exon junction complex (EJC) of pro-
teins that are deposited approximately 20 to 24 nucleo-
tides upstream of exon-exon junctions and are not
removed by the ribosome after the first round of transla-
tion [41-44]. NMD-resistant PTC-containing mRNAs
based on the recognition of EJCs have previously been
reported for several genes [45-47]. It has since been pos-
tulated that mammalian EJCs evolved to function as
NMD enhancers and that the basic EJC-independent
mechanism proposed for NMD in Saccharomyces cerevi-
siae, in which the close proximity of poly(A)-binding pro-
teins inhibit NMD [48,49], is still conserved in higher
eukaryotes [50,51]. The basic EJC-independent mechan-
ism has been observed in humans [52]. The proximity of
the PTC and the poly(A) tail depends on the number of
nucleotides and/or the physical distance between them.
The latter depends on the three-dimensional structure of
the 3’ untranslated region and/or the mRNA molecule
that could be affected by intramolecular base pairing, the
interaction of the mRNA with RNA-binding proteins
and/or the interactions between the proteins involved in
translation events. In the context of this study, the three-
dimensional structure of mutant PALB2 transcripts could
result in the close proximity of the poly(A) tail and the
PTC resulting from PALB2 c.196C>T, therefore, attenu-
ating NMD. The presence of truncated proteins in cells
from mutation carriers requires further experimental
validation.
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Previous studies localised amino acids 21 to 39 of
BRCA2 as the region which interacted with PALB2
amino acids 1022 to 1186 [14,53,54]. The evolutionarily
conserved coiled-coil domain at the N-terminus of
PALB2 (amino acids 6 to 90; Figure 2) interacts with a
region of BRCA1 (amino acid 1393 to 1476), which also
contains a conserved coiled-coil domain [15,16]. RAD51
and MORF4L1 are also binding partners of PALB2
[55-57]. Amino acid residues in the regions of 101 to 184
and 850 to 1186 of PALB2 bind to RAD51 and, in the
presence of BRCA2, guide it to chromosomal lesions and
enhance its performance in initiating DNA repair [56].
MORF4L1 binds to a region included in amino acid resi-
dues 611 to 764 of PALB2 [55,57] and has been suggested
to mediate DNA damage response functions of the BRCA
complex in chromatin [57]. PALB2 ¢.196C>T, PALB2
¢.1947 _1948insA, PALB2 c.2982 2983insT and PALB2
¢.3113G>A would affect the binding between PALB2 and
at least one of its binding partners (if they encode stable
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prematurely truncated proteins). Subsequent potential
consequences include impaired homologous recombina-
tion repair of DNA double-strand breaks [14-16,56,57].
Functional assays are required to elucidate the full extent
of the disruption caused by PALB2 mutations to the
function(s) of PALB2 and on their impact on homolo-
gous recombination repair.

The families of several probands identified in this
study as carriers of frameshift or nonsense mutations of
PALB2 were observed to include numerous diagnoses of
other cancers. Leukaemia, lymphoma, melanoma, and
cancers of the bowel, colon, endometrium, lung, ovary,
pancreas, and prostate were repeatedly observed (three
diagnoses or more) in and across families (data not
shown). PALB2 mutations have been associated with
predisposition to pancreatic [58-60] and ovarian cancers
[61,62], which were both observed in families identified
in our study. The possible implication of PALB2 as a
predisposition gene in other cancers would need to be
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diagram of the PALB2 protein showing its predicted functional domains, binding sites of its protein partners and the mutant transcripts
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further investigated. Given the rarity of PALB2 mutations,
studies that involve large numbers of PALB2 mutation car-
riers would be required and could be facilitated though
international efforts to combine data sets.

The tumour pathology of breast cancers arising in
women who carry germline nonsense or frameshift muta-
tions in PALB2 was examined. Our study found that the
majority of tumours that were available for analysis were
high histological grade invasive ductal carcinomas (11/15;
73%), two (13%) were pleomorphic lobular carcinomas,
one (7%) was a lobular (classical) carcinoma and one
(7%) was a tubular-type carcinoma. Although previous
studies had noted that breast cancers arising in PALB2
mutation carriers were more likely to be ER-/PR-/HER2-
(triple negative) [61,63-65], the triple-negative receptor
status was not observed in our study. Further work is
warranted to examine the pathology of breast cancers
arising in PALB2 mutation carriers.

PALB2 mutation detection was conducted with the
application of HRM analysis involving all coding and
flanking intronic regions of the gene. Methods specific
for the detection of large genomic rearrangements were
not applied. Prior reports demonstrate that such muta-
tions in PALB2 are extremely rare and thus omission of
such an analysis is unlikely to significantly impact on
this study [60].

Conclusion

We report the identification of two nonsense and two
frameshift mutations of PALB2 in 1.5% of familial breast
cancer cases recruited from Familial Cancer Clinics in
Australia and New Zealand. Although rare, PALB2 muta-
tions have been shown to confer high risks for the devel-
opment of breast cancer [12,13,66]. Our data, together
with that of many others [8,32,38,67-69] have shown that
the prevalence of PALB2 mutations in the context of
multiple-case breast cancer families is potentially relevant
to their clinical management. Data support the inclusion
of PALB2 in multi-gene panels, screened by targeted
massively parallel sequencing, which are gradually being
introduced as part of genetic testing. This will enable
PALB2 mutations carriers to be provided with the best
available prevention and clinical management, including
screening recommendations.

Additional material

Additional file 1: Primer sequences used for reverse transcription
PCR. Tabular data, Excel spreadsheet, xls.
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