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Abstract

target for anti-Nodal therapy in breast cancer.

Introduction: The re-emergence of the tumour growth factor-beta (TGF-beta)-related embryonic morphogen
Nodal has recently been reported in several different human cancers. In this study, we examined the expression of
Nodal in a series of benign and malignant human breast tissues to determine the clinical significance of this
expression and whether Nodal could represent a potential therapeutic target in breast cancer.

Methods: Tissue sections from 431 therapeutically naive patients diagnosed with benign or malignant breast
disease were stained for Nodal by immunohistochemistry and analysed in a blinded manner. The degree of Nodal
staining was subsequently correlated with available clinical data, such as diagnoses and disease stage. These tissue
findings were further explored in breast cancer cell lines MDA-MB-231 and MDA-MB-468 treated with a Nodal
blocking antibody to determine biological effects for target validation.

Results: A variable degree of Nodal staining was detected in all samples. The intensity of Nodal staining was
significantly greater in undifferentiated, advanced stage, invasive breast cancer compared with benign breast
disease or early stage breast cancer. Treatment of human breast cancer cells in vitro with Nodal blocking antibody
significantly reduced proliferation and colony-forming ability in soft agar, concomitant with increased apoptosis.

Conclusions: These data suggest a potential role for Nodal as a biomarker for disease progression and a promising

Introduction

Various classification schemes have been developed to
categorize the heterogeneity of breast cancer in an
attempt to better predict disease stage, progression
potential and outcome. Traditionally, the diagnosis of
breast cancer has been based on histological criteria [1].
Moreover, defined architectural features like those
described in the Nottingham Grading system for inva-
sive breast cancer, which includes tubule formation,
mitoses and nuclear pleomorphism, are used to classify
the differentiation status of breast cancer - with poor
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differentiation being the hallmark of high grade, more
aggressive disease [2]. Over the years, with advances in
molecular medicine, the incorporation of markers, such
as oestrogen receptor (ER), progesterone receptor (PR)
and human epidermal growth factor receptor 2 (HER2),
have proven to be especially valuable not only for strati-
fying certain types of breast cancers in distinct func-
tional groups [3], but also for planning and predicting
the outcome with respect to specific treatment options
[4,5]. Due to the heterogeneity within specific subgroups
of breast cancer and the interobserver variability with
detection frequencies, not all breast cancers can be suc-
cessfully classified into specific risk groups based on the
expression profile of these traditional markers alone [3].
For instance, adenoid cystic carcinoma and secretory
carcinoma are generally hormone receptor negative, but
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have favourable prognosis and low recurrence rates
[6,7]. Further confounding, the expression profile of
these markers not only varies within areas of the same
lesion but also during the course of disease in the same
patient [8]. Additional studies are needed, therefore, to
identify novel biomarkers, based on the molecular
underpinnings of disease progression that can be used
to predict outcome and response to therapy in a larger
population of patients, especially those in the high risk
category.

Data from gene expression microarrays have led to the
molecular stratification of breast cancer into subgroups,
such as luminal and non-luminal tumours [9]. Even
with this approach, it is difficult to obtain unequivocal
consensus on breast cancer classification among obser-
vers [10]. Given the heterogeneous subpopulations com-
prising breast cancer tissue, a major concern is whether
results from this type of broad gene expression analysis
can be confidently designated as the ‘genetic signature’
of a specific breast cancer type and whether this
approach can be applied to all breast cancer patients.
With the introduction of the cancer stem cell theory,
different markers have been reported to identify cancer
stem cells (CSCs) with the prospect of exploiting these
putative CSCs markers as therapeutic targets [11]. In
breast cancer, the role of the ‘CD44high/CD24low’
expression profile, proposed by some to represent a
unique subpopulation of breast CSCs [12], has been
challenged by others who postulate that not every breast
cancer cell with this particular expression profile pos-
sesses the properties of CSCs [13]. This may be due to
the genetic heterogeneity within the ‘CD44high/
CD24low’ population [14], which suggests a much
broader functional variability for this population. Never-
theless, advances in the field of CSC research have
enabled us to characterize the re-emergence of specific
embryonic signalling pathways in cancer cells, thus con-
tributing to our understanding of the molecular
mechanisms that regulate cancer cell plasticity and
aggressiveness [15].

One of the embryonic pathways recently described by
our group to have profound implications in cancer pro-
gression is Nodal [16,17]. Nodal, a member of the TGF-
beta superfamily, plays a major role in the maintenance
of pluripotency in embryonic stem cells and subsequent
organ development [18-20]. Typically, Nodal binds to
the Cripto-1-Alk4/7-ActRIIB receptor complex resulting
in Smad2/3/4-dependent gene activation [18]. The
Nodal co-receptor, Cripto-1, has been shown to enhance
the proliferation, migration and invasion of human
breast cancer cells and non-transformed mouse mam-
mary epithelial cells in vitro and in vivo [21]. In human
breast cancers, Cripto-1 expression was also found to
correlate with progressive disease [22]. There is also a
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growing body of evidence which indicates that Nodal
expression re-emerges in a number of human cancers,
such as melanoma, glioma, breast, endometrial and
prostate cancers [16,17,23-25]. Interestingly, in some of
these reports, Nodal expression was detected in the con-
text of very low or barely detectable Cripto-1, raising the
question as to whether Cripto-1 and Nodal can exert
their cancer promoting effects independently of each
other [17,26]. Nevertheless, the clinical significance of
Nodal expression in cancer has yet to be thoroughly
explored. In this study, we examined the expression of
Nodal in tissue samples from patients with benign and
malignant breast disease and compared the levels of
Nodal with the available patient data to determine clini-
cal correlations. These immunohistochemical findings
were further explored in human breast cancer cell lines
treated with a Nodal blocking antibody to determine
biological effects for target validation. Collectively, these
data suggest the potential for Nodal as a biomarker for
invasive disease and a novel therapeutic target in breast
cancer.

Materials and methods

Patient samples

Archival formalin-fixed and paraffin-embedded breast
tissue sections from 431 patients diagnosed with benign
breast disease or breast cancer were obtained from the
Mayo Clinic. Patients with a prior diagnosis of any can-
cer except for basal/squamous skin cancer or concurrent
cancer or with a prior history of chemotherapy or radia-
tion therapy were excluded from this study. Slides were
labelled with numerical codes and accessed only at the
end of the study for statistical analyses with correspond-
ing clinical data. All samples were deprived of any
patient identifiers in compliance with the institutional
IRB approved study protocol.

Immunohistochemistry

Four micron thick, formalin-fixed, paraffin-embedded
tissue sections were prepared and immunohistochemis-
try was carried out on a Microm HMS 710i autostainer
(Thermo Scientific Lab Vision, Waltham, MA, USA) as
previously described [17]. Briefly, following antigen
retrieval and blocking steps, sections were incubated in
mouse anti-human Nodal antibody (Abcam #55676,
Cambridge, MA, USA) at 5 ug/ml for 60 minutes, fol-
lowed by biotinylated anti-mouse secondary antibody
(Biocare Medical, LLC, Concord, CA, USA), and then
streptavidin-horseradish peroxidase (Thermo Scientific
Lab Vision). Colour was developed with 3,3’-diamino-
benzidine substrate (Thermo Scientific Lab Vision) and
sections were counterstained with hematoxylin (Biocare
Medical, LLC). As a negative control, adjacent serial sec-
tions were incubated with ChromPure mouse IgG
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(Jackson Immunoresearch Labs, West Grove, PA, USA)
at the same concentration. Nodal staining was scored as
previously described [27] on a scale of 0 to 3 at 10 x
and 63 x magnification to determine, respectively, per-
centage and intensity of Nodal staining within the area
of interest (0, no staining; 1 = < 10% or weak; 2 = 10 to
50% or moderate; 3 = > 50% or strong). The two scores
were then multiplied to obtain a Nodal Scoring Index
(SI). Scoring was performed blinded with respect to clin-
ical information.

Statistical analyses and clinical correlations

The disease characteristics from each patient’s biopsy
were classified into different groups: benign versus
malignant and benign versus atypia/hyperplasia or ver-
sus invasive disease. We assessed the association of
patient characteristics of all 431 patients and the patho-
logical characteristics of tumours available from a sub-
group of 138 surgical patients. Chi-Square and trend
tests across the various groups were used to assess the
correlation of Nodal expression with patient’s demo-
graphic and pathologic characteristics.

Cell culture and antibody treatment

Human breast cancer cell lines MDA-MB-231 and
MDA-MB-468 were obtained from ATCC and cultured
in RPMI containing 10% foetal calf serum as previously
described [17]. The cell lines were genotyped by short
tandem repeat (STR) PCR amplification at the Molecu-
lar Diagnostic/HLA Typing Core at Children’s Memorial
Hospital and authentication confirmed by comparison
with ATCC profiles. MDA-MB-231 or MDA-MB-468
cells were treated with a function-blocking rabbit anti-
Nodal antibody (Santa Cruz Biotechnology, Santa Cruz,
CA, USA; H-110) at 2 pg/ml or 4 pg/ml or with rabbit
whole molecule IgG (Jackson Immunoresearch Labs) at
4 ug/ml. For most experiments, antibody was diluted in
complete RPMI and added to cells daily for a period of
72 or 96 hours.

Immunofluorescence

For immunofluorescence experiments, MDA-MB-231
and MDA-MB-468 cells grown on glass coverslips were
fixed in ice-cold methanol, blocked with 5% bovine
serum albumin in PBS and incubated in rabbit anti-
Nodal primary antibody (Santa Cruz Biotechnology; H-
110) overnight at 10 pg/ml. Cells were washed with PBS
and incubated in donkey anti-rabbit Alexafluor-488 sec-
ondary antibody (Invitrogen/Life Technologies, Grand
Island, NY, USA) at 4 pg/ml. Coverslips were mounted
on glass slides using VectorShield mounting medium
containing DAPI (Vector Labs, Burlingame, CA, USA).
Staining was visualized on a Zeiss Meta 700 confocal
microscope with a 25X Zeiss LD Lci Planapo 25x/0.8
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Imm Corr objective and images were captured using
Zeiss ZEN software (Carl Zeiss, Inc., Thornwood, NY,
USA). Nodal-positive cells were counted in eight ran-
dom fields of view and the subpopulation calculated as
a percentage of DAPI-positive nuclei (+/- SD).

Western blot analysis

Protein lysates of the cell lines were collected, quantified
and subjected to SDS-PAGE gel electrophoresis and
Western blotting using standard protocols [17]. Serum-
free medium preconditioned for 24 hours was collected
from cells cultured in T75 flasks. Medium was concen-
trated 100-fold using an Amicon Ultra centrifugal filter
unit with a 3KD cut-off (EMD Millipore, Billerica, MA,
USA). Protein concentrations were quantified and sam-
ples examined using standard SDS-PAGE gel electro-
phoresis and Western blotting methods [17]. All
antibodies and working dilutions were as previously
described [17,28]. Antigen-antibody complexes were
removed from membranes between probing with Wes-
tern blot stripping buffer (Pierce Thermo Fisher Scienti-
fic, Rockford, IL, USA). Protein expression relative to
loading control was calculated from an average of three
independent experiments using densitometric analysis
(NIH Image] for Windows software; National Institutes
of Health, Rockville, MD, USA).

Flow cytometry

MDA-MB-231 or MDA-MB-468 cells were plated in
six-well dishes (1 x 10° cells per well) either in the pre-
sence of anti-Nodal antibody or IgG as described above
or left untreated. Antibody or IgG diluted in RPMI was
added to the existing volume in each well every 24
hours for a total period of 72 hours. Parallel wells were
harvested at 24-hour time-points and subjected to Via-
count (cell number) or Annexin V (apoptosis) assays
(Guava Technologies/Millipore, Billerica, MA, USA)
according to the manufacturer’s instructions. Parameters
were gated on untreated cells. Within one experiment,
each data point was calculated from an average of tripli-
cate samples. Experiments were performed three inde-
pendent times, and the mean values from three
experiments +/- standard error of the mean (SEM) were
represented graphically.

Colony forming assays

Colony forming assays were prepared in triplicate wells
with MDA-MB-231 or MDA-MB-468 cells as previously
described [17]. Briefly, for each well, 5,000 cells were
suspended in 0.35% agarose in complete RPMI or in
complete RPMI containing rabbit IgG or anti-Nodal
antibody. Suspensions were pipetted onto a solidified
layer of 0.5% agarose in complete RPMI in six-well
dishes. Cells were cultured for three weeks, then clusters
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of > 50 cells were scored and photographed using a
Zeiss model 25 inverted microscope (Carl Zeiss, Inc.)
and Hitachi HV-C20 CCD camera (Hitachi Denshi Ltd.,
Woodbury, NY, USA).

Results

Study group characteristics and Nodal expression in
breast tissues

Tissue sections from 431 patients determined to have
benign or malignant breast disease were studied using
immunohistochemistry to evaluate Nodal expression.
Patient demographics, including age, race, menopausal
and smoking status, are summarized in Table 1. Hema-
toxylin and eosin (H&E) stained sections were examined
at low power magnification and areas of pathologic
interest chosen. Nodal Scoring Index (SI) ranged from 0
to 9 as shown in representative images of benign breast
disease, non-invasive and invasive breast cancer in Fig-
ures 1A-C and grouped into three categories according
to the calculated Nodal SI as follows: 0 to 3, 4 to 6 and
9, respectively. Immunohistochemistry staining for
Nodal was generally detected in the cytoplasm in a
punctate pattern and on the cell membranes of positive
cells (Figure 1D). Occasionally, in cases of very strong
staining (SI = 9), Nodal was also detected in the sur-
rounding stroma (Figure 1E), suggesting that Nodal may
be secreted from Nodal expressing breast cancer cells.

Table 1 Patient characteristics (N = 431)

Characteristic IHC Nodal scoring index Chi-square
category P-value
0to3 4to6 9
N (%) N (%) N (%)
143 (33) 213 (49) 75(17)
Age group (N = 430)
< 40 0 (29) 21 (60) 4(11) 0.741
40-49 2 (35) 43 (47) 16 (18)
50-59 9 (32) 61 (50) 23 (19)
60-69 3(33) 54 (54) 13 (13)
>=70 8 (35) 34 (42) 19 (23)
*Missing (100)
Race
White (N = 413) 136 (33) 206 (50) 71 (17) 0.96
Other (N = 18) 7 (39) 7 (39) 4 (22)
Menopausal status
Postmenopausal (N =290) 98 (34) 139 (48) 53 (18) 0.64
Other (N = 141) 45 (32) 74 (52) 22 (16)
Smoking status (N = 426)
Current 16 (43) 15 (41) 6 (16) 0.011
Former 54 (38) 71 (50) 8 (13)
Never 69 (28) 126 (51) 51 (21)
*Missing 4(80) 1 (20)

" Mantel-Haenszel
* Not included in calculation
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Of the 431 total patient samples stained, 143 (33%)
showed a Nodal SI of 0 to 3; 213 (49%) had a Nodal SI
of 4 to 6; and 75 (17%) a Nodal SI of 9 (Table 1). It is
interesting to note that non-smokers tended to have
higher Nodal scores (P = 0.01).

Correlation between Nodal and available clinical data
Table 2 shows a strong association between Nodal SI
and biopsy results with malignant breast disease (N =
138) showing the greatest percentage for maximum
Nodal SI compared to benign breast disease (N = 293)
(P < 0.0001). Nodal expression correlated with the
degree of breast cancer differentiation, as assessed by
Nottingham Grade (N = 104), with higher Nodal SI
detected in moderately and poorly differentiated breast
cancer tissues compared with well-differentiated breast
cancer tissues (P = 0.0008) (Table 3). Also, correlation
data with tumour stage (N = 125) and lymph node stage
(N = 124) (T-Stage and N-Stage, respectively) showed
that patients with advanced (> 1) T-Stage or with lymph
node-positive disease had higher Nodal SI (T-Stage P =
0.0003 and N-Stage P = 0.009, respectively). No signifi-
cant correlation was observed between Nodal expression
and either ER/PR status (N = 102) (Table 3) or HER2
expression (N = 70) (data not shown).

Effects of targeting Nodal in human breast cancer cells in
vitro

The expression of Nodal has previously been described
in human breast cancer cell lines, including MDA-MB-
231 and MDA-MB-468 [17]. The expression of Nodal in
these cells was confirmed by immunofluorescence stain-
ing and confocal microscopy analysis. Results indicated
Nodal expression in 38.6% +/- 2.8% of MDA-MB-231
cells and in 22.2% +/- 5.1% of MDA-MB-468 cells, and
shared both cell membrane and intracellular staining
patterns (Figure 2A), similar to those described above
for the tumour sections (Figure 1D). To determine
whether Nodal is secreted by these cells, we evaluated
conditioned medium by Western blot analysis for the
presence of Nodal protein. We detected bands at
approximately 36 KD corresponding to the molecular
weight of pro-Nodal [25] in both cell lines, suggesting
that Nodal is secreted from breast cancer cells (Figure
2B). This is in agreement with the immunohistochem-
ical detection of Nodal in the extracellular compartment
of the patient breast cancer samples (Figure 1E).

To address whether Nodal can be directly targeted in
human breast cancer cells, we treated human metastatic
MDA-MB-231 and MDA-MB-468 cells with a function
blocking anti-Nodal antibody, previously shown to
reduce melanoma lung colonization in a Nude mouse
model [29]. As Nodal expression is known to be regu-
lated via a positive feedback loop during embryonic
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Figure 1 Immunohistochemistry localization of Nodal in human breast tissues. Immunohistochemistry staining for Nodal was scored at 10
x and 63 x magnification in samples diagnosed as (A) benign breast disease, (B) non-invasive, and (C) invasive breast cancer. The scores were
multiplied to obtain a final Nodal Scoring Index (SI) that ranged from 1 (A) to 9 (C). Nodal staining was generally intracytoplasmic (D) and
occasionally detected in the surrounding stroma (E; red arrows). (original objective magnification indicated in each panel).

development [30], we evaluated the levels of Nodal pro-
tein in MDA-MB-231 and MDA-MB-468 cells after 72
hours of treatment with increasing concentrations of
anti-Nodal antibody compared with untreated and iso-
type IgG treated cells. Western blot analyses of whole
cell lysates indicate a significant reduction in the abun-
dance of Nodal protein in antibody treated cultures of
both cell lines in a dose-dependent manner (Figure 2C).
In addition, treatment of both breast cancer cell lines
with the Nodal antibody resulted in a significant

reduction in phosphorylated Smad-2 levels as deter-
mined by Western blot analysis, suggesting a reduction
of Nodal downstream signalling in the treated cells
compared to non-treated or IgG treated cells (Figure
20).

To determine if Nodal inhibition altered the growth of
breast cancer cells, MDA-MB-231 and MDA-MB-468
cell populations were monitored daily by flow cytometry
during a period of 72 hours treatment with anti-Nodal
antibody. Compared with untreated and IgG treated
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Table 2 Breakdown of Nodal index score by biopsy result
(N = 431)

Characteristic IHC Nodal scoring index category Chi-square
P-value
Oto3 4to6 9
N (%) N (%) N (%)
Diagnosis
Benign (N = 293) 125 (43) 150 (51) 18 (6) < 00001
Malignant (N = 138) 18 (13) 63 (46) 57 (41)
Biopsy result (N = 402)
Benign 103 (43) 122 (51) 15(6) < 00001’
Atypia/Hyperplasia 22 (42) 27 (52) 3(6)
Invasive 8 (8) 51 (46) 51 (46)
*Missing 10 (34) 13 (45) 6 (21)

" Mantel-Haenszel
* Not included in calculation

control cell populations that essentially doubled (MDA-
MB-468) or tripled (MDA-MB-231) over the course of
the experiment, cell populations treated with anti-Nodal
antibody did not increase substantially, and remained

Table 3 Cancer patient surgery tumour characteristics (N
= 138)

Characteristic IHC Nodal Scoring Index  Chi-Square
Category p-value
0-3 4-6 9
N (%) N (%) N (%)
18 (13) 63 (46) 57 (41)
Pathology (N = 128)
IDC 7(7) 4145 44 (48 028
DCIS 7 (33) 13 (62) 1(5)
Other 0(0) 7 (47) 8 (53)
*Missing 4 (40) 2 (20) 4 (40)
Nottingham Grade (N = 104)
Poor 0 (0) 6 (25) 18 (75) 0.0008’
Moderate 50100 2039 26 (50
Well 2(7) 20 (69 7 (24
*Missing 1132 1700 6(18)
ER/PR Status (N = 102)
ER or PR Positive 4 (5) 38 (45) 43 (51) 043
Negative 3(18) 6 (35) 8 (47)
*Missing 11 (31) 19 (53) 6 (17)
T-Stage (N = 125)
DCIS 5(33) 10(67) 00 0.0003’
Stage 1 7 (9) 39 (48) 36 (44)
Stage > 1 14 12 (43) 15 (54)
*Missing 5(38) 2 (15) 6 (46)
N-Stage (N = 124)
0 11002 5155 3133 0.009
1 2(6) 9(29 20 (65)
*Missing 5 (36) 321 6 (43)

"Mantel-Haenszel
* Not included in calculation
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significantly diminished compared to control cell popu-
lations (Figure 3A). To determine whether this observa-
tion was a consequence of a reduction in cell
proliferation, the proliferation markers phospho-Histone
H3 (pHH3) and proliferating cell nuclear antigen
(PCNA) were evaluated by Western blot analysis (Figure
3B). Complementary to the observed reduction in cell
growth by flow cytometry, anti-Nodal treated cells
exhibited a significant reduction in the cellular levels of
Histone H3 phosphorylation, while total Histone H3
(HH3) remained consistent between treatment groups.
Furthermore, the cellular expression of PCNA was also
significantly reduced in anti-Nodal treated cells from
both breast cancer cell lines.

To evaluate whether cell death concurrently contri-
butes to the impairment of cell growth observed in anti-
Nodal treated cells, apoptosis was measured daily over
72 hours treatment with anti-Nodal antibody using an
Annexin V flow cytometry assay (Figure 4A). Compared
with untreated and IgG treated control cells that dis-
played a consistent low level of apoptosis, cells treated
with anti-Nodal antibody exhibited a gradual increase in
apoptosis over the treatment period that was maximal at
72 hours. While cells treated with the higher dose of
anti-Nodal antibody displayed a significant increase in
apoptosis at 72 hours compared with untreated and IgG
treated control cells, cells treated with the lower dose
exhibited an intermediate response. To complement this
observation, we also examined the expression of the
anti-apoptotic factor BCL2a. by Western blotting (Figure
4B). In lysates of cells exposed to the anti-Nodal anti-
body, the expression of BCL2a was significantly reduced
compared with control cells, indicating a shift towards a
more pro-apoptotic response in treated cells. Collec-
tively, our data indicate that a consequence of inhibiting
Nodal activity in MDA-MB-231 and MDA-MB-468 cells
is a combination of impaired cell proliferation and
increased apoptosis. Lastly, we measured the effect of
Nodal antibody treatment on the ability of human breast
cancer cells to form colonies in a 3D soft agar assay
(Figure 5A). The results indicate that colony formation
by both MDA-MB-231 and MDA-MB-468 cells treated
with anti-Nodal blocking antibody was significantly
reduced as compared to untreated or IgG treated con-
trol cells (Figure 5B), thus demonstrating the efficacy of
targeting the tumorigenic potential of Nodal-expressing
breast cancer cells.

Discussion

In this study, immunohistochemistry was used to detect
the TGF-beta-related morphogen Nodal in breast tissue
samples from over 400 patients (N = 431). The analyses
revealed the strongest Nodal staining in a significantly
greater percentage of patients with malignant breast
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Figure 2 Nodal expression and effects of Nodal blocking antibody on human breast cancer cells. In (A) immunofluorescence staining
confirms Nodal expression in a subpopulation of MDA-MB-231 and MDA-MB-468 human breast cancer cells (bar = 20 um). Western blotting of
conditioned media from MDA-MB-231 and MDA-MB-468 reveals a band in each cell line (red box) corresponding to the molecular weight of
pro-Nodal (approximately 36 KD) (B). Treatment of human breast cancer cell lines MDA-MB-231 and MDA-MB-468 with Nodal blocking antibody
causes a dose dependent reduction in Nodal and P-Smad2 expression, as determined by Western blot analysis, with the most significant
reduction observed using 4 pug/ml of Nodal blocking antibody (C). (*P < 0.05) (OD unit +/- SD = densitometric units +/- standard deviation).
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Figure 3 Effects of Nodal blocking antibody on proliferation of human breast cancer cells. Nodal blocking antibody caused a dose
dependent effect on the proliferation of MDA-MB-231 and MDA-MB-468 breast cancer cells, as determined by flow cytometric analysis (A), with
the most significant effect observed with 4 pg/ml of the Nodal blocking antibody. The effect on cell proliferation was confirmed by Western blot
anlysis of the proliferation markers, phospho-Histone H3 (pHH3) and proliferating cell nuclear antigen (PCNA) (B), resulting in the greatest effect
with 4 pg/ml of Nodal blocking antibody. (*P < 0.05) (OD unit +/- SD = densitometric units +/- standard deviation).

disease compared to patients with benign breast disease
(P < 0.0001). Immunofluorescence analysis confirmed
Nodal expression in a subpopulation of cells in the two
human breast cancer lines studied. Nodal is translated
as a precursor form consisting of a signal peptide and
pro-domain. Studies using mouse Nodal suggest that the
pro-form is subsequently cleaved to a much less stable
mature form by extracellular proprotein convertases
[31]. Both pro-Nodal and mature Nodal are known to
be functionally active [32]. It is impossible to determine
which form of Nodal protein is detected in breast tissues
and cancer cell lines by immunostaining, since both spe-
cies are detected by the commercially available Nodal
antibody utilized in this study. However, Western blot
analysis of cell lysates and conditioned medium from
the two breast cancer cell lines detected bands corre-
sponding to the molecular weight of approximately 36
KD reported for pro-Nodal [25]. The smaller mature
Nodal (approximately 12-13 KD) was not observed in
either cell lysates or conditioned medium, most likely
due to the instability of this form. Like most TGF-beta
ligands, mature Nodal is capable of forming homodi-
mers; therefore, it is tempting to speculate that the addi-
tional band of approximately 24 KD detected in

conditioned medium by Western blotting (Figure 2B)
could represent a more stable, homodimeric form of
mature Nodal. Further studies will be necessary to
address whether these secreted form(s) of cancer cell-
derived Nodal may affect neighbouring non-Nodal
expressing cells. In a previous study, however, we
demonstrated that when exogenous recombinant Nodal
is added to non-Nodal expressing cells, these cells
increase Smad-2 activation [17]. Also, anchorage inde-
pendent growth that was inhibited in cancer cells trea-
ted with Nodal Morpholino treatment, was rescued
when these cells were treated with recombinant Nodal
protein [16,17], thus supporting the potential for Nodal
paracrine effects.

In the category of patients diagnosed with breast can-
cer (N = 138), the degree of Nodal staining showed a
significant correlation with poorly differentiated (P =
0.008), advanced stage (P = 0.0003) and lymph node
positive (P = 0.009) breast cancer. These observations
are in agreement with previous studies describing Nodal
expression in aggressive melanoma and glioma and
advanced stage endometrial and prostate cancers
[16,17,23-25]. Nodal and Cripto-1 (the co-receptor for
Nodal) have both been observed in different cancer cell
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Figure 4 Nodal blocking antibody reduces human breast cancer cell survival. A dose dependent increase in apoptosis was observed by
flow cytometric analysis with the most significant effect obtained with 4 pg/ml of Nodal blocking antibody in both MDA-MB-231 and MDA-MB-
468 human breast cancer cells. This pro-apoptotic effect was confirmed by the reduction in the expression of BCL2a in both MDA-MB-231 and
MDA-MB-468 breast cancer cells, which was most pronounced with 4 ug/ml of Nodal blocking antibody. (*P < 0.05) (OD unit +/- SD =
densitometric units +/- standard deviation).

lines, including aggressive human breast cancer cells
[17,21]. There is still much debate, however, as to
whether Nodal and Cripto-1 can affect cancer cells
along distinct pathways or are more likely to function
synergistically to propagate downstream signalling
events responsible for tumour aggressiveness. Indeed,
future studies are needed to specifically address these
possibilities. Nevertheless, the present study is the first
comprehensive report demonstrating the clinical asso-
ciation between Nodal expression and progression of
breast cancer in patient tissues.

Particularly curious is the significant correlation found
between higher Nodal expression and non-smoker status
(P = 0.01). Although it is not clear how smoking can
influence the expression of Nodal, it is interesting to
note that tobacco smoke has been shown to have dele-
terious effects on human embryonic stem cells [33].
Thus, one could speculate that since Nodal expression

represents the re-emergence of embryonic signalling,
initiated perhaps in a subset of breast cancer cells that
share certain phenotypic characteristics with stem cells,
it is possible that toxicity from tobacco smoke could
negatively affect Nodal expression in these stem cell-like
breast cancer cells.

It is well established that hormone activity can play a
role during tumorigenesis in a variety of responsive tis-
sues [34-37]. Although the relationship between Nodal
expression and hormone activity during development,
especially in the mammary gland, has not been clearly
defined in rigorously controlled studies, a recent report
on prostate cancer found that Nodal was capable of
reducing the endogenous expression of androgen regu-
lated genes [25]. From this study, one could speculate
that a possible effect of Nodal is to regulate differentia-
tion by promoting cell plasticity, which would eventually
lead to increased aggressiveness in prostate cancer. In
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fact, Nodal has been shown to regulate the plastic,
endothelial phenotype in melanoma during vasculogenic
mimicry [16,28]. Most noteworthy, when Nodal gene
expression is down-regulated in tumour cells, the plastic
phenotype is diminished, and a more differentiated and
less tumorigenic cell phenotype emerges [16,17].

Similar to prostate, hormones play an important role
in the development, differentiation and tumorigenesis of
breast tissue [38,39]. The expression status of ER or PR
in breast cancer represents a useful clinical tool for
prognosticating patient survival and predicting the bene-
fit from specific hormonal therapy [40]. However, not
all breast cancer patients express these hormone recep-
tors, thus highlighting the need for novel biomarkers
that would facilitate universal clinical decisions. Our
study did not detect any correlation between Nodal
expression and ER or PR status, which was available in
102/138 of the breast cancer cases analysed. However,
Nodal was detected in all 138 breast cancer cases,
including the samples from patients in which ER or PR
status was negative or undetermined. Our results sug-
gest that Nodal could represent a novel biomarker
detectable across various stages of breast cancer pro-
gression, with the potential to expand the classification
scheme based on ER, PR or HER2 status.

Previously, we reported that interference with Nodal
signalling can significantly reduce Nodal-dependent
cancer cell activities, such as migration and invasion,
tumorigenicity and anchorage independent growth
[16,17,28,41]. In particular, we showed that it is possi-
ble to significantly reduce Nodal expression in human
breast cancer cells by exposing them to a human
embryonic stem cell conditioned microenvironment
containing a Nodal inhibitor, Lefty [17]. Furthermore,
knockdown of Nodal with anti-Nodal Morpholino can
significantly reduce tumour growth rate and increase
apoptosis in an in vivo orthotopic human breast cancer
xenograft model [41]. Here, we extend these findings
by demonstrating that treatment of human metastatic
breast cancer cells with a Nodal blocking antibody
decreases Nodal expression levels and Smad-2 phos-
phorylation and reduces cell proliferation and increases
apoptosis by reducing cellular levels of pHH3, PCNA
and BCL2a. These treatments also led to reduced
anchorage independent colony formation in soft agar,
further supporting the anti-tumorigenic effect of tar-
geting Nodal. This is in agreement with a previous
study where Nodal blocking antibodies were shown to
inhibit the colony forming ability of human melanoma
cells in soft agar and significantly reduce the ability of
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these tumour cells to colonize in the lungs of Nude
mice [29].

Conclusions

Our results indicate that the expression of Nodal is
associated with advanced stage, invasive human breast
cancer. We also describe the inhibitory effects, with
underlying mechanistic insights, of a Nodal blocking
antibody on human breast cancer cells, extending pre-
vious reports showing target validation of Nodal in
human cancer. These findings suggest a potential role
for Nodal as a novel prognostic biomarker and a pro-
mising target for anti-Nodal therapy in breast cancer.
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