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Abstract

Introduction: Although mammographic density is an established risk factor for breast cancer, its use is limited in
clinical practice because of a lack of automated and standardized measurement methods. The aims of this study
were to evaluate a variety of automated texture features in mammograms as risk factors for breast cancer and to
compare them with the percentage mammographic density (PMD) by using a case-control study design.

Methods: A case-control study including 864 cases and 418 controls was analyzed automatically. Four hundred
seventy features were explored as possible risk factors for breast cancer. These included statistical features,
moment-based features, spectral-energy features, and form-based features. An elaborate variable selection process
using logistic regression analyses was performed to identify those features that were associated with case-control
status. In addition, PMD was assessed and included in the regression model.

Results: Of the 470 image-analysis features explored, 46 remained in the final logistic regression model. An area
under the curve of 0.79, with an odds ratio per standard deviation change of 2.88 (95% CI, 2.28 to 3.65), was
obtained with validation data. Adding the PMD did not improve the final model.

Conclusions: Using texture features to predict the risk of breast cancer appears feasible. PMD did not show any
additional value in this study. With regard to the features assessed, most of the analysis tools appeared to reflect
mammographic density, although some features did not correlate with PMD. It remains to be investigated in larger
case-control studies whether these features can contribute to increased prediction accuracy.

Introduction
Mammographic density (MD) is an important risk factor
for breast cancer. Consistent evidence has emerged dur-
ing the last 10 years that women with a high MD have a
twofold to fivefold increase in risk in comparison with
women with a low MD [1-3].
Several methods of measuring MD have been

described. Subjective methods include Wolfe patterns,
with four categories [4,5]; Boyd classification, with six
categories [6]; and subjective assessment of the percen-
tage density by a reader, with values between 0 and

100% [7]. In addition to these completely subjective
methods, several computer-assisted methods have been
developed, such as Madena and Cumulus [8-10]. Speci-
fically, these computer programs assess MD as the pro-
portion of the area with dense breast tissue in relation
to the whole breast area on a mammogram. These
methods have served to date as the gold standard for
assessing the percentage mammographic density (PMD).
Despite these technologic advances, however, interob-

server and intraobserver variability continue to be
important and as yet unresolved issues. Automated
computer measurement of MD and standardization of
digital mammograms for automated analysis have been
investigated in some studies [11,12]. These methods
mimic the subjective assessment of MD. A method
using fully automated analysis of texture patterns in the
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mammogram might be able to assess and characterize
digital or digitized mammograms and reveal additional
textural features. These might help differentiate between
breast cancer patients and healthy controls.
Several hundred textural features and variants have

been developed and proposed during the last few dec-
ades for various applications in the field of biomedical
image processing, including the characterization of
mammographic lesions for diagnostic purposes [13-18].
Textural features have also been investigated in relation
to distinguishing between mammograms of breast can-
cer patients and controls [19]. These features can be
broadly grouped into statistical, moment-based, form-
based, structural, and spectral features. A detailed
description of each feature group is given in the Meth-
ods section.
The aim of this study was to evaluate a variety of

automated texture features as risk factors for breast can-
cer, by using a case-control study design. In addition,
the textural-feature analysis was to be compared with
semiautomatically assessed PMD.

Materials and methods
Study population and assessment of percentage
mammographic density
The basis for this analysis was provided by a case-con-
trol study (the Bavarian Breast Cancer Cases and Con-
trols), which was designed to investigate genetic risk
factors and prognostic factors for breast cancer [20,21],
and which is part of the Breast Cancer Association Con-
sortium [22-24]. Mammographic density also was
assessed in the cases and controls, as reported elsewhere
[25]. In brief, the cases included in the study were hos-
pital based and age matched with population-based con-
trols from 2004 and 2005. The cases were incident cases
and were referred to the breast center either by physi-
cians after an early-detection examination or by them-
selves. No population-based screening program existed
in this area at that time. The participants completed a
questionnaire providing epidemiologic data during an
interview to obtain information about common epide-
miologic risk factors, such as hormone replacement
therapy, body mass index, and family medical history.
All of the women included provided written informed

consent for participation in the study, and the ethics
committee of the University of Erlangen-Nuremberg,
Germany, approved the research project.
Analogue and film printouts of digital mammograms

were scanned and digitized by using the CAD PRO
Advantage film digitizer (VIDAR Systems Corporation,
Herndon, VA, USA), and the percentage mammographic
density was assessed by using the Madena software pro-
gram, version X (Eye Physics, LLC, Los Alamitos, CA,
USA) [8].

For the present investigation, the digitized mammo-
grams from the study were analyzed by using automated
image texture analysis. More precisely, the image texture
analysis was performed on the delineated breast area,
which is termed region of interest (ROI). Only cranio-
caudal and contralateral images for the cases and mam-
mograms without lesions for the controls were used for
the analysis, and scans of film printouts from the digital
mammograms were treated in the same way as analogue
ones. Characteristic image texture measures were com-
puted and analyzed for a total of 864 cases and 418 con-
trols. In all, 636 of the cases (74%) and 213 of the
controls (51%) had analogue mammograms; all of the
others were digital.

Semiautomated delineation of the breast area
A four-step algorithm for delineating the breast was
developed to automate the process of image analysis of
the breast tissue on the digital and digitized mammo-
grams. In the first step, white stripes close to the image
border are eliminated. After that, an adapted version of
the Otsu thresholding algorithm [26] is used to separate
the breast from the background. This thresholding step
assumes that the mammographic image contains only
two classes of pixels, and it calculates the optimal
threshold separating the two classes in such a way that
their intraclass variance is minimized. This step results
in a binary image containing only foreground and back-
ground pixels. In the third step, a morphologic opening
filter with a circular structuring element is applied to
the binary picture to reduce image artifacts and elimi-
nate falsely classified pixels. As a result, the binary
image consists of several separated foreground compo-
nents, including the breast itself and the x-ray film
labels. In the last step, the largest connected component
is determined, as it is assumed that this segment is the
breast region. All of the other components are discarded
and erased, resulting in an image containing the breast
contour. After visual checking of every delineation (by
KH and CRL), manual correction of the breast segmen-
tation had to be carried out in approximately 10% of the
images.

Image analysis
In total, 470 features were calculated to characterize the
mammographic images in the present study. The fea-
tures were selected on the basis of a study that com-
pared various methods of texture analysis and applied
them to reference images from publicly available data-
bases, such as the Brodatz, Tilda, and VisTex databases
[27,28]. The texture analysis methods chosen for the
present investigation correspond to those that had the
highest recognition rates in the study; they are described
briefly later. They comprise features that are calculated
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only from the gray-level values (first-order statistics) or
from comparison of pixels with defined spatial relations
(second-order statistics).
Statistical features are calculated from the gray-level

values and consist of histograms, gray-level co-occur-
rence matrices (GLCMs), and sum and difference histo-
grams (SDHs). The full spectrum of all 256 gray levels is
divided into 16 categories. The frequencies of the pixels
in each category are called histogram features. In addi-
tion, frequencies are calculated for the sums and differ-
ences of the gray-level values of pixel pairs with defined
spatial relations. These texture features are referred to
as SDHs [29]. GCLMs are constructed by comparing the
gray-level values for two pixels with a defined spatial
relation. Combination frequencies of occurrence are cal-
culated for each possible gray-level value. The frequen-
cies in the GCLMs are used to calculate 13 different
features [30].
Moment-based features are calculated from the pure

gray-level values in the ROI and include mean, variance,
skewness, and kurtosis, for example. These four features
are referred to as central moments (CMs). In addition,
the moment-based features are normalized relative to
the position of each single pixel within the ROI, result-
ing in 16 normalized central moments (NCMs). Hu and
Zernike [31-33] later proposed transformations of the
NCMs to make the results invariant relative to the
orientation of the ROI. This resulted in seven invariant
moments in the Hu method and 49 moments in the
Zernike method.
Form-based features are related to the delineated geo-

metric breast area with a closed boundary. They
describe only the shape of the ROI, without taking into
account the gray-level distribution inside the enclosed
area. These features include area, perimeter, compact-
ness, rectangularity, and circularity. Additional features
are the normalized radial length and Fourier descriptors
to characterize the border shape. Moments based on the
binary picture of the breast versus the background are
also computed, describing the morphologic appearance
of the ROI. Specifically, these features include normal-
ized central moments, Hu moments, and Zernike
moments.
Structural features are used to obtain information

about the structure of the microtexture. Chen et al.
[34,35] proposed computation of 16 features from the
geometric properties of connected regions with similar
gray-level values in a set of binary images, known as sta-
tistical-geometric features (SGFs). Run-length (RL) fea-
tures [36] are a similar approach, combining geometric
and statistical aspects and describing the microtexture
by counting consecutive, collinear pixels ("runs”) with
the same gray-level values. These features are obtained

from a matrix containing the number of runs for each
gray level and are computed for four directions.
Spectral features characterize textured image regions

that show periodic structures, which lead to local maxi-
mums at the respective frequencies in the Fourier spec-
trum. Similarly textured regions thus show similar
frequency spectra [37]. We use the wavelet transform
[38] to decompose an image iteratively into four compo-
nents based on frequency content and orientation. For
each subcomponent, a feature is computed describing
its energy.
For the features based on GLCMs, SDH features, and

structural features, additional features were calculated
that were based not on single pixels, but on coarser
resolutions in the mammogram (0.5 × 0.5 cm and 1 × 1
cm).

Statistical analysis
The cases and controls were matched 2:1 by age at the
time of mammography (within deciles). The study popu-
lation was randomly divided into a training set (433
cases and 210 controls) and a validation set (431 cases
and 208 controls), while retaining the matched nature of
the data.
As many of the 470 features turned out to be highly

correlated, 128 features with Spearman correlations >
0.98 were excluded from further analyses, leaving 342
features used.
Logistic regression analyses were carried out with

these 342 preselected features to identify features that
were associated with breast cancer case-control status.
Analyses were initially carried out within each group of
features (moment-based, form-based, statistical, struc-
tural, and spectral). Later, analyses were done across the
feature groups.
Five hundred bootstrap samples of the same size as

the training set were selected with replacement from the
training set. For each bootstrap sample, a stepwise back-
ward logistic model selection procedure, starting with all
the features of a specific feature group, was carried out
to obtain the best model according to the Akaike infor-
mation criterion. The features retained from each boot-
strap sample were recorded, and a final variable
selection was made by applying a procedure proposed
by Sauerbrei and Schumacher [39] to this setting. In this
procedure, the most frequent features (> 70%) were
selected, and due to correlations among some features,
the feature with the larger frequency of each highly fre-
quent pair of features (> 90%) was chosen. A multiple
logistic regression model using these finally selected fea-
tures was fitted with the training data.
A score of between 0 and 100 (percent) was assigned

to each subject (case or control) in the validation data
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set. The inverse logit of the linear combination of the
subject’s measurements in the validation data with the
regression coefficients and the intercept coefficient esti-
mated by the previously mentioned multiple logistic
regression model was taken as the score value. In other
words, multidimensional data points were mapped onto
a one-dimensional space by applying the regression
coefficients, estimated from the training data set, to the
measurements of the corresponding features in the vali-
dation data set.
The score was used in a simple logistic regression

model for the unadjusted analysis and in multiple logis-
tic regression models for the adjusted analyses. Odds
ratios (ORs) and the area under the curve (AUC) of the
receiver operating characteristic were calculated to com-
pare the predictive strengths of the feature groups. To
study the additional value of the feature groups for pre-
dicting case-control status, these feature group scores
were applied in multiple logistic regression models
along with the well-known risk factors of percentage
mammographic density (PMD), body mass index (BMI),
age at the time of mammography, parity, family history
of breast cancer, and age at first term pregnancy as
adjusting variables. For purposes of comparison, the
adjusting factors were chosen in the same way as in
Manduca et al. [19] and in the previous case-control
study [25].
The same variable selection procedure as described

earlier was used to obtain the strongest features across
the feature groups, starting with a combination of all of
the selected features within the groups. A score was
constructed again (called the final feature score), and its
predictive power was studied by using logistic regression
models.
To avoid overfitting, all model selection procedures

were carried out with the training data, and the models
(particularly the five feature group scores and the final
feature score) were validated by using a separate valida-
tion data set. Repetitive variable selections were carried
out to stabilize the stepwise regression results [40].
All of the tests were two-sided, and a P-value of <

0.05 was regarded as statistically significant. Calculations
were carried out by using the R system for statistical
computing (version 2.11.1; R Development Core Team,
Vienna, Austria, 2010).

Results
The characteristics of the patients included in the study
are shown in Table 1. Cases and controls were age
matched; the cases had a higher BMI (P < 0.00001; t-
test), lower parity (P < 0.01; Wilcoxon test), and had a
family history of breast cancer in a first-degree relative
less frequently (P = 0.03; c2 test). In addition, the cases
had a higher average age at last menstruation (P < 0.01;

t-test) and were receiving hormone replacement therapy
more often (P < 0.00001; c2 test). No significant differ-
ences were found between cases and controls with
regard to the other characteristics.
Table 2 shows the variable selection process, described

in the Methods section, which was used to identify fea-
tures associated with breast cancer case-control status.
From the set of 342 preselected texture features, the
selection process within feature groups yielded 99 fea-
tures (eight moment-based, 16 form-based, 46 statistical,
23 structural, and six spectral), with which five feature
group scores were constructed. Building a final model
across all feature groups starting with these 99 features
resulted in the inclusion of 46 features in the final fea-
ture score (one moment-based, four form-based, 29 sta-
tistical, 10 structural, and two spectral).
Table 3 shows the main results for PMD and the

selected sets of the texture features. The selected fea-
tures within each group were more predictive than
PMD in both the unadjusted analysis and the adjusted
analyses. In the validation data set, the AUCs of the
simple regression models with the feature group scores
as the only independent variable ranged from 0.58
(moment-based features) to 0.72 (statistical features),
whereas the AUC was 0.51 for the PMD model. Conse-
quently, the odds ratio per standard deviation (SD)
change (that is, per interval of length SD) was larger for
the feature group scores (between 1.46 and 2.40) than

Table 1 Characteristics of the study population relative
to case and control status

Characteristic Cases (n = 864)
Mean (± SD)
or count (%)

Controls (n = 418)
Mean (± SD)
or count (%)

Age at mammogram (years) 57.5 (± 10.8) 57.3 (± 10.6)

BMI (kg/m2) 26.1 (± 5.0) 24.6 (± 3.8)

Age at last menstruation {years} 48.7 (± 5.5) 47.5 (± 6.6)

Age at first menarche (years) 13.5 (± 1.6) 13.4 (± 1.4)

Age at FTP (years) 25.2 (± 4.6) 25.6 (± 4.4)

Menopausal status

Premenopausal 221 (30.9%) 105 (26.6%)

Postmenopausal 495 (69.1%) 209 (73.4%)

Parity

No birth 125 (15.5%) 54 (14.3%)

1 to 2 births 507 (62.7%) 202 (53.4%)

≥ 3 births 177 (21.9%) 122 (32.3%)

Family history of breast cancer

No 700 (85.6%) 237 (80.3%)

Yes 118 (14.4%) 58 (19.7%)

HRT ever

No 564 (70.2%) 156 (42.5%)

Yes 239 (29.8%) 211 (57.5%)

For the cases, age is identical with age at diagnosis. BMI, body mass index;
FTP, first term pregnancy; HRT, hormone replacement therapy.
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that of the PMD model (1.05). Including epidemiologic
risk factors such as BMI, parity, family history, and age
at first term pregnancy in the models did not change or
even strengthened the AUCs, and all of the ORs for the
feature group scores remained significant. The AUC of
the fully adjusted multiple models within the feature
groups ranged from 0.67 to 0.74 (again, moment-based
and statistical features, respectively). In this setting, the
AUC for the PMD model (0.66) was again lower than
the AUCs for the feature groups, and was slightly higher
than the AUC for the regression model with risk factors
alone (0.65).
The texture features finally selected across all feature

groups improved the predictive power in all of the ana-
lyses. An AUC of 0.79 with an OR per SD change of

2.88 (95% CI, 2.28 to 3.65) was reached with the final
score on the validation data. Only small differences were
noted between the unadjusted and adjusted analyses.
Additional inclusion of the percentage density did not
lead to any improvement in the model (AUC, 0.79; OR,
2.86; 95% CI, 2.26 to 3.62).
The final score was tested separately in analogue

mammograms and digital mammograms. The AUC for
the analogue images was larger, at 0.84 (fully adjusted
model) than the AUC for the entire data set, whereas
the AUC of 0.76 (fully adjusted model) for the digital
mammograms was smaller than the AUC for the entire
data set.
The distribution of the score in the final model built

from the texture features is shown in Figure 1, and the

Table 2 The process of variable selection

Feature group Total
features

Preselected featuresa Selected features
within feature groupb

Features
finally selectedc

Moment-based features 76 71 8 1

Form-based features 86 74 16 4

Statistical features 130 86 46 29

Structural features 108 90 23 10

Spectral features 70 21 6 2

Total 470 342 99 46

Numbers of features are shown. aPreselection due to high correlations between features. bFeature group scores were constructed with these features. cThe final
score was constructed with these features.

Table 3 Simple and multiple logistic regression models to measure the predictive power of percentage
mammographic density (PMD) and selected features within and across the five texture feature groups, via feature
group scores and the final feature score, respectivelya

Training
data set

Validation data set

Unadjusted Adjusted for age
and BMI

Adjusted for age, BMI,
parity, family history, and

age at FTP

Texture features included AUC AUC OR (95% CI) AUC OR (95% CI) AUC OR (95% CI)

Noneb - - - 0.60 - 0.65 -

PMD 0.53 0.51 1.05 (0.89-1.23) 0.61 1.24 (1.00-1.55) 0.66 1.19 (0.93-1.53)

Moment-based features
(n = 8, group 1)

0.66 0.58 1.46 (1.22-1.73) 0.62 1.43 (1.19-1.72) 0.67 1.41 (1.14-1.75)

Form-based features (n = 16) 0.67 0.59 1.47 (1.23-1.74) 0.64 1.44 (1.20-1.74) 0.67 1.49 (1.21-1.84)

Statistical features
(n = 46)

0.82 0.72 2.40 (1.98-2.90) 0.73 2.28 (1.87-2.78) 0.74 2.36 (1.88-2.96)

Structural features
(n = 23)

0.77 0.65 1.64 (1.38-1.95) 0.68 1.60 (1.34-1.92) 0.71 1.70 (1.39-2.08)

Spectral features
(n = 6)

0.71 0.65 1.67 (1.40-1.99) 0.67 1.57 (1.30-1.90) 0.68 1.60 (1.29-1.98)

Selected features across all feature groups (final model; n = 46) 0.85 0.75 2.65 (2.18-3.21) 0.75 2.55 (2.08-3.11) 0.79 2.88 (2.28-3.65)

Selected features across all feature groups + PMD 0.85 0.75 2.63 (2.17-3.18) 0.75 2.52 (2.06-3.08) 0.79 2.86 (2.26-3.62)

The area under the curve (AUC) of the regression models and the odds ratio (OR) per standard-deviation (SD) change for the feature scores with 95% confidence
intervals are shown. Features were selected as described in the Patients and Methods sections.

AUC, area under the curve; BMI, body mass index; CI, confidence interval; FFTP, first term pregnancy; OR, odds ratio; PMD, percentage mammographic density;
SD, standard deviation. a In the training data, each logistic regression model used selected features as independent variables; in validation data, the logistic
regression models used the feature group scores and the final feature score, respectively, as independent variable. Adjusted analyses with regular risk factors as
additional independent variables. bPrediction only with regular risk factors.

Häberle et al. Breast Cancer Research 2012, 14:R59
http://breast-cancer-research.com/content/14/2/R59

Page 5 of 12



distribution of the PMD is shown in Figure 2. The
mammographic density shows an expected distribution,
many score values of breast cancer patients are at the
higher end of the scale.
The features finally selected are shown in Figure 3.

The absolute value of each feature’s regression coeffi-
cient in the final logistic regression model was plotted
against the absolute value of the feature’s correlation
with PMD. It was noted whether these features were
selected in more than 90% of the bootstrap repetitions
and whether the direction of the risk association was
the same as in the mammographic density.
Some features correlated with risk in the same direc-

tion that they correlated with mammographic density;
an example is shown in Figure 4. Some features did not
correlate with PMD, but had high regression coeffi-
cients. Visual inspection did not reveal any known ana-
tomic characteristics that correlated with the value of
the feature. An example of this type of feature is given
in Figure 5. For some features, the associations with
PMD and breast cancer risk were in inverse directions
(Figure 6). Examples of mammograms with high and
low score values are presented in Figure 7. No correla-
tion was found between the score values and PMD.

Statistical features show above-average representation
in the final model. They make up 29 of the 46 final fea-
tures and provide all of the features that are selected in
more than 90% of variable selection repetitions (black
symbols in Figure 3). Statistical features clustered into
two different groups: one with a strong association with
PMD and lower coefficient values in the final score
model (GLCM and SDH), and the other with a weaker
association with PMD and high coefficient values in the
final score model.
Ten of the 12 features in the first group show a strong

correlation with PMD (Spearman’s r, 0.30 to 0.72). The
one with the highest correlation with PMD, “SDH (0.5
cm) difference of entropies”, played a minor role in the
final score model because of its low regression coeffi-
cient. This feature describes the entropy (a measure of
information) of the difference histogram on a coarse
version of the image. High values indicate an ROI con-
taining a variety of inhomogeneous patterns, whereas
low values correspond to a uniform ROI. Two other fea-
tures from this group, “GLCM, correlation measure type
1”, which is a weighted version of the entropy measure,
and “GLCM, inverse difference moment”, which
describes the distribution of areas with high local

Figure 1 Histogram of the final feature score, based on the 46 finally selected features applied on the validation data set.
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contrast between fatty and dense tissue, played a major
role in the prediction model. In the latter feature, low
values indicate increased local contrast, corresponding
to a lower risk, whereas high feature values indicate the
opposite.
The latter group consists mainly of 15 histogram fea-

tures that together represent the whole spectrum of all
gray scales in the mammogram. Those that refer to gray
levels in the middle range (bin 6 to 8) have the highest
coefficients, are positively associated with PMD, and
have the same direction of association with risk as
PMD. However, the correlation with PMD is rather
weak (Spearman’s r, 0.05 to 0.19).
Features from other groups, such as structural features

or form-based or spectral features, were less likely to be
selected for the final prediction model. They range
much closer to the y-axis in Figure 3, and only some of
them appear to correlate with PMD.

Discussion
In this breast cancer case-control study, a statistical
model was constructed that is able to predict case-con-
trol status by using image-texture analysis features that

were calculated automatically from areas of breast in
digitized mammograms. Adding the percentage mam-
mographic density to a risk model using the automated
texture features did not improve risk prediction in this
study.
As in other studies of automated image-texture analy-

sis [41-45], the texture features examined consisted of
first-order features such as gray-level distributions, the
computation and distribution of the spatial relations of
gray-level values from second-order statistics, one run-
length measure, and spectral frequency measures
obtained from the wavelet transform. In contrast to
other studies, the statistical evaluation used in the pre-
sent investigation also selected additional features
describing the contour and form of the marked breast
area, for example, as well as structural measures from
the statistical-geometrical features (SGFs) suggested by
Chen et al. [34,35]. Specifically, SGFs describe the
microstructure of the breast tissue, providing high con-
trast between the breast and the involuted surrounding
tissue. Whereas Manduca et al. [19] specifically com-
puted the textural measures they used within a con-
stant-thickness region (CTR), which they defined as an

Figure 2 Histogram of the percentage mammographic density (PMD) on the validation data set.

Häberle et al. Breast Cancer Research 2012, 14:R59
http://breast-cancer-research.com/content/14/2/R59

Page 7 of 12



area approximately 160 pixels inside the perimeter of
the breast region, the present study used the complete
breast tissue delineated to calculate the various texture
features. It is not possible on the basis of the present
study to determine whether one of these approaches is
better than the other.
The model-building methods (that is, separate training

and validation data sets and bootstrap resampling proce-
dures, along with stepwise model selection) are compar-
able with those used in an earlier study [19]. Contrary
to that study, multifactorial models were finally used to
predict the case-control status.
To investigate the visual meaning and biologic nature

of the 46 features finally selected, the feature values
were compared with the assessed PMD, and the corre-
sponding mammograms were inspected visually. Fea-
tures that were expected to show similar texture
characteristics, such as gray-level frequencies or GLCM
and SDH, are clustered together in Figure 3. Some other
features are clustered close to the y-axis (corresponding
to a lower predictive value in the final model) and

belong to specific feature groups, such as spectral or
form-based features.
Most of the features finally selected were statistical

features. Some of these (GLCM and SDH) are associated
with PMD. The nature of GLCMs makes it clear why
most of the features obtained may represent the PMD:
variations and differences in intensities and texture in
the image being examined are directly reflected in the
GLCM [29]. The fact that most of the GLCM and SDH
features are clustered together in Figure 3 confirms
what was predicted hypothetically [29].
The other statistical features are gray-level value inter-

vals, representing features that all have a poor associa-
tion with PMD. However, it might be hypothesized that
these features together describe dense and nondense
areas in the mammogram and that they might jointly
provide information that would be similar to mammo-
graphic density.
To assess textural structures at various levels, the sta-

tistical features were computed on three different scales
of the image: the original mammograms and two
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Figure 3 Finally selected features (n = 46). Strength of risk prediction within the final logistic regression model on x-axis (absolute value of
log odds ratio per standard deviation) and the feature’s Spearman correlation with percentage mammographic density (PMD) on the y-axis.
+The texture feature and PMD have the same direction with regard to their association with risk (that is, either positive log OR and positive
correlation with PMD or negative log OR and negative correlation with PMD). •The texture feature and PMD have the opposite direction with
regard to their association with risk (that is, either positive log OR and negative correlation or negative log OR and positive correlation with
PMD). Gray symbols, Feature is selected in fewer than 90% of the bootstrap samples. Black symbols, It is selected in more than 90% of the
bootstrap samples. The dashed line circumscribes a cluster of second-order statistical features, and the continuous gray line circumscribes a
cluster of first-order statistical features. “Static histogram” refers to features describing the relative frequency of gray-level values according to a
given interval (bin). These features are thus first-order statistics describing the gray-level distribution. SDH refers to features calculated from sum
and difference histograms, and GLCM refers to features calculated from a gray level co-occurrence matrix. Both of these are second-order
statistics, describing the gray-level distribution relative to spatial relations between adjacent pixels. SGF refers to the statistical geometric features,
describing the structure of the microtexture. A more-detailed description of all of the features is given in the Methods section.
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reduced versions of the mammograms downscaled to
pixel sizes of 0.5 cm and 1.0 cm per pixel. Interestingly,
the 12 second-order statistical features were selected
from all three image scales. Specifically, six of the 12
features were computed on the full-resolution image,
whereas the other six features were computed on either
of the two downscaled versions. This effect shows that
visual information is assessed based on fine as well as
coarse structures in the breast tissue. The change in the
coarseness can sometimes result in impressive changes
in the association with PMD, such as “SDH - difference
of contrast” (Spearman’s r = 0.07) and “SDH (0.5 cm)
difference of contrast” (Spearman’s r = 0.54). This
might suggest that when one is looking for features that
explain mammographic density, one level of coarseness
may be best related to mammographic density. Similar
observations were made by Manduca et al. [19] by using
wavelet features; the authors showed that feature assess-
ment resulted in higher AUCs when the texture features
were computed on a coarser scale.
As form-based features describe the convexity of the

breast (and hence implicitly the stiffness of the tissue
during compression in the image-acquisition process), it

Figure 4 Example of a feature with the same direction for the
correlation of the feature with breast cancer risk and
percentage mammographic density (PMD). Patients with
mammograms like that on the left had low values for the feature
“SDH (0.5 cm) difference of contrast” and had a low predicted risk
of breast cancer. Patients with mammograms like that on the right
had high feature values, a high risk of breast cancer, and a high
mammographic density. The Spearman correlation with PMD for
this feature was +0.54.

Figure 5 Example of a feature with no correlation with
percentage mammographic density (PMD). Patients with
mammograms like that on the left had low values for the feature
“GLCM inverse difference moment” and had a low predicted risk of
breast cancer. Patients with mammograms like that on the right
had high feature values and a high risk of breast cancer. The
Spearman correlation with PMD for this feature was -0.05.

Figure 6 Example of a feature with different directions for the
correlation with breast cancer risk and PMD. Patients with
mammograms like that on the left had low values for the feature
“SDH (0.5 cm) difference of entropies” and had a low predicted risk
of breast cancer and a high mammographic density. Patients with
mammograms like that on the right had high feature values, a high
risk of breast cancer, and a low mammographic density. The
Spearman correlation with PMD for this feature was -0.72.
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seems that stiffness does play a role in PMD, but only a
minor one. Some structural features were selected that
describe small and large connected areas of breast tissue
and fat, but the quantity, form, and size of such con-
nected regions appear to be less important. Finally, only
two spectral features were included during the selection
process, suggesting that periodic structures appear to be
present in the ROI, but that they play a minor role in
PMD and have almost no effect on the risk score.

Strengths and weaknesses
In addition to its strengths, a large sample size, the
inclusion of a comprehensive set of automatically com-
puted textural features, and robust statistical methods
with strict separation of training and validation data, the
present study also has some weaknesses. The original
case-control study was designed to detect genetic sus-
ceptibility factors for breast cancer, and the mammo-
gram study has a recall bias in the control group. Only
half of the women in the control group had mammo-
grams. This may have been why the detectable effect in
the present study was rather low, with an OR of 2.3
(95% CI, 1.5 to 3.6), in comparison with other published
studies. Moreover, some unexpected distributions of risk
factors appeared in the study, such as the higher fre-
quency of a family history of breast cancer in the con-
trol group. This effect might be explained by volunteer
bias, leading to an accumulation of risk factors in the
group of volunteer controls. Earlier studies by our group
have shown that awareness of the risk of breast cancer

leads to greater willingness among women to address
their own risk of breast cancer, either by obtaining
information about the risk or by taking part in chemo-
prevention studies [46,47]. However, all of these imbal-
ances in the frequency of risk factors were adjusted for.
Trying to translate the use of texture features into risk

assessment for the patients, it is not clear how helpful
this approach will be to correlate this risk assessment
with patient or tumor biology. When mammographic
density is compared with texture features, it appears to
be clear that in the context of risk prediction, mammo-
graphic density is closely associated with a biologic cor-
relate. Although the precise composition of tissue that is
responsible for mammographic density has not yet been
fully understood, several biologic effects can be regarded
as logical. Hormone exposure, for example, increases
breast density and also the risk of breast cancer. Mam-
mographic density changes throughout life and reacts to
hormone exposure. By contrast, the texture features in
the analysis presented here were selected on the basis of
their ability to differentiate between the mammograms
of breast cancer patients and healthy controls, resulting
in a mathematical model that may not be easily antici-
pated by the human brain or its visual functions. The
interaction between image features that results in the
differentiation could be a complex one and definitely
needs further exploration.
Another concern in the present study might be that

digital mammograms were handled in the same way as
analogue ones, as standards for assessing digital mam-
mograms are still pending. However, a recent study
found a high degree of correspondence between textural
features in digital and analogue mammograms [48]. In
the present study, it was found that the final score is
useful in digital mammograms, although their predictive
value is lower than that in analogue images.

Conclusions
The present study has shown that texture-analysis fea-
tures may be helpful in predicting the risk of breast can-
cer. It is too early for conclusions to be drawn from
these findings regarding the feasibility of the method
used here for other study groups. Differences in mam-
mographic imaging methods and in standardizing the
production and processing of images may have led to
results that are highly specific to the present study. A
standardized stock of texture-analysis features that
could be applied independently in other studies is not
yet available.
However, because adding percentage mammographic

density to the final score model did not improve the
model’s predictive power, and as some features appear
to represent mammographic density and others appear
to be independent of it, further research is warranted to

Figure 7 Examples of images with low score values calculated
with the final prediction model and a low risk of breast cancer
(left), and images with high score values and a high risk of
breast cancer (right). Spearman’s rho for the correlation between
the final score and percentage mammographic density (PMD) was
0.02.
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investigate the additional predictive value of these analy-
sis tools.
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