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Abstract

breast cancer in preclinical models.

vitro and in vivo.

Introduction: We have recently synthesized phospho-ibuprofen (P-I; MDC-917), a safer derivative of ibuprofen,
which has shown anti-cancer activity. We investigated its efficacy and mechanism of action in the treatment of

Methods: We evaluated the anti-breast-cancer efficacy of P-I alone or incorporated into liposomes (Lipo-P-1) in
human estrogen receptor-positive (MCF-7) and triple-negative, i.e, estrogen receptor-negative, progesterone
receptor-negative and HER2-negative (MDA-MB231) breast cancer cell lines - as they represent the most frequent
(estrogen receptor-positive) and the most difficult-to-treat (triple-negative) subtypes of breast cancer - and their
xenografts in nude mice. We assessed the effect of P-I on the levels of reactive oxygen nitrogen species in
response to P-I using molecular probes, on the thioredoxin system (expression and redox status of thioredoxin-1
(Trx-1) and thioredoxin reductase activity), on cyclooxygenase 2, NF-xkB and mitogen-activated protein kinase cell
signaling; and on the growth of xenografts with stably knocked-down Trx-1.

Results: Compared with controls, P-| 400 mg/kg/day inhibited the growth of MDA-MB231 xenografts by 266%,
while the growth of MCF-7 xenografts was inhibited 51% byP-I 300 mg/kg/day and 181% by Lipo-P-I 300 mg/kg/
day. In both cell lines, P-I induced oxidative stress and suppressed the thioredoxin system (oxidized Trx-1 and
decreased its expression; inhibited thioredoxin reductase activity). These changes triggered downstream redox
signaling: the activity of NF-kB was suppressed and the Trx-1-ASK1 complex was dissociated, activating the p38
and JNK mitogen-activated protein kinase cascades. Trx-1 knockdown abrogated the anti-cancer effect of P-l in

Conclusion: P-| is safe and effective against breast cancer. Liposomal formulation enhances its efficacy; the effect is
heavily dependent on the induction of oxidative stress and the suppression of the thioredoxin system. P-I merits
further evaluation as an agent for the treatment of breast cancer.

Introduction

Breast cancer is the most frequently diagnosed cancer
and the leading cause of cancer death among females
owing, to a large extent, to the lack of effective and safe
agents [1]. Phospho-ibuprofen (P-I; MDC-917) is a
novel derivative of ibuprofen with significant efficacy
against colon cancer and a favorable safety profile [2,3].
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Our preliminary data indicated that P-I might be effec-
tive in the treatment of breast cancer. Given the need
for new agents for the control of breast cancer, we
undertook a systematic study of the effect of P-I in
breast cancer.

Thioredoxin (Trx), thioredoxin reductase (TrxR), and
nicotinamide adenine dinucleotide phosphate comprise
the Trx system, which is crucial to redox homeostasis
[4-7]. The thioredoxin-1 (Trx-1) isoform of Trx, the
main intracellular antioxidant oxidoreductase [8-10], is
normally in its reduced state (Trx-1-(SH),), defined
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primarily by two vicinal cysteine thiol groups at its
active site (Cys32 and Cys35). When one of its client
cellular proteins is oxidized, Trx-1-(SH), reduces them,
while itself paying the price of becoming oxidized in the
process to Trx-1-S,. Normally, Trx-1-S, is rapidly
restored to its functional reduced status (Trx-1-(SH),)
by TrxR and nicotinamide adenine dinucleotide
phosphate.

The role of Trx-1 in breast cancer is not completely
understood. Oxidative stress and activation of redox sig-
naling pathways accompany breast cancer carcinogenesis
and are correlated with prognosis in breast cancer
patients [11]. As a rapid response molecule to oxidative
stress, Trx-1 modulates redox signaling pathways via
thiol-disulfide exchange with redox-responsive mole-
cules, such as the transcription factors Ref-1 and NF-xB
[9,12,13], MAP3K5/apoptosis signal-regulating kinase 1
(ASK1) [14], and the Trx-1 interacting protein (TXNIP)
[10,15]. The end result of these effects is modulation of
cell kinetics, which can sometimes, as we demonstrate
here, culminate in inhibition of cell growth and/or
induction of apoptosis. Another recently appreciated
consequence of oxidative stress is the induction of endo-
plasmic reticulum stress, which links it to inflammation,
with significant implications for several disorders includ-
ing cancer [16,17].

The level of Trx-1 is overexpressed in human breast
carcinoma compared with normal breast tissue and has
been associated with breast cancer progression [18].
Furthermore, overexpression of Trx-1 or TrxR has been
related to resistance to chemotherapy [19]. All of these
findings underscore the crucial role of the Trx system in
breast cancer and establish it as a target for drug devel-
opment [5,20,21]. In this article, we report the strong
efficacy of P-I against breast cancer and establish the
critical role of the Trx system in mediating its anti-can-
cer effect through changes in downstream redox-respon-
sive signaling pathways.

Materials and methods

Liposome-encapsulated phospho-ibuprofen
Liposome-encapsulated phospho-ibuprofen (Lipo-P-I)
was generated following standard procedures by Encap-
sula NanoSciences LLC (Nashville, TN, USA). The for-
mulation is L-o.-phosphatidylcholine (80 mg/ml), PEG-
2000-DSPE (14.8 mg/ml) and P-I (45 mg/ml). The parti-
cle size is 200 nm. The concentration of liposomal P-I
was determined by HPLC before use [2].

Cell culture and cell viability and cytokinetic assays

We used MCF-7 and MDA-MB231 human breast carci-
noma cell lines, which reflect, to a large extent, the
major features of cancer cells in vivo [22]. Estrogen
receptor (ER)-positive MCF-7 cells are human breast
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epithelial adenocarcinoma cells derived from the meta-
static pleural effusion of a breast adenocarcinoma
patient. This cell line retains several characteristics of
differentiated mammary epithelium, including the ability
to process estradiol via cytoplasmic ERs and the capabil-
ity of forming domes [23]. Triple-negative (ER-negative,
progesterone receptor-negative and HER2-negative)
MDA-MB-231 cells were obtained from a pleural effu-
sion of a patient who had developed a ‘poorly-differen-
tiated tumor tending toward papillary configuration and
tubule formation’, while also having an intraductal carci-
noma [24].

These cell lines were grown as recommended by the
American Type Culture Collection (Manassas, VA,
USA), seeded at 5 x 10* cells/cm? for 24 hours and then
treated as indicated. As previously described [25], we
determined the cell viability by the MTT assay (Roche
Diagnostics, Indianapolis, IN, USA), apoptosis by flow
cytometry following staining with annexin V-FITC/pro-
pidium iodide, the cell cycle after staining with propi-
dium iodide, and cell proliferation by the
bromodeoxyuridine method.

Determination of reactive oxygen nitrogen species

We assayed the following, as previously described [25]:
reactive oxygen nitrogen species (RONS), using the gen-
eral probe 2',7’-dichlorofluorescein diacetate (DCFDA);
superoxide anion (O,") in whole cells, by staining with 5
uM dihydroethidium and analyzing fluorescence using
flow cytometry; and mitochondrial O,’, by seeding cells
in glass bottom culture dishes, staining with MitoSOX™
Red (Life Technologies, Grand Island, NY, US) and
examining them under a Zeiss LSM510 Meta NLO con-
focal microscope (Carl Zeiss Microscopy, LLC, Thorn-
wood, NY, USA).

Thioredoxin redox status assay

After each treatment, 10°cells were lysed in 6 M guanidi-
nium chloride, 50 mM Tris/HCI, pH 8.3, 3 mM ethylene-
dinitrilotetraacetic acid, 0.5% Triton X-100 containing 50
mM iodoacetic acid [26]. After 30 minutes at 37°C,
excess iodoacetic acid was removed using Microspin G-
25 columns (GE Healthcare Life Sciences, Pittsburgh, PA,
USA). Oxidized and reduced Trx-1 were separated by
native PAGE, electroblotted onto a nitrocellulose mem-
brane and probed with anti-Trx-1 antibody.

Thioredoxin reductase activity

TrxR activity was determined in the protein lysate using
a commercially available kit, as per the instructions of
the manufacturer (Cayman Chemical Company, Ann
Arbor, MI, USA). In this assay, TrxR uses nicotinamide
adenine dinucleotide phosphate to reduce 5,5-dithiobis-
2-nitrobenzoic acid to 5-thio-2-nitrobenzoic acid.
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Immunoblotting and electrophoretic mobility shift assay
After each treatment, cell proteins were fractionated by
SDS gel electrophoresis and immunoblotted with anti-
bodies against Trx-1 (AbCam, Cambridge, MA, USA),
B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia 1
(Mcl-1) (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), and ASK1, phospho-p38, phospho-extracellular
signal-regulated kinase (phospho-ERK) and phospho-Jun
N-terminal kinase (phospho-JNK) (Cell Signaling, Dan-
vers, MA, USA) following standard procedures. For the
NE-xB electrophoretic mobility shift assay, nuclear
extracts obtained as described elsewhere [27] were ana-
lyzed using the Gel Shift Assay System (Promega Cor-
poration, Madison, WI, USA), as described previously
[25].

Assay for apoptosis signal-regulating kinase 1-
thioredoxin-1 complex formation

The ASK1-Trx-1 complex was immunoprecipitated
using Protein A/G PLUS-Agarose beads following the
manufacturer’s instructions (Santa Cruz Biotechnology)
as described [25].

siRNA silencing of the thioredoxin gene and generation
of stable Trx-1 knockdown MCF-7 cells

MCEF-7 or MDA-MB231 cells (0.8 x 10°) were trans-
fected with 100 nM Trx siRNA or control siRNA (Dhar-
macon Inc., Chicago, IL, USA) for 72 hours using
lipofectamine 2000 (Life Technologies, Grand Island,
NY, USA). For Trx-1 stable knockdown, we used one
control particle and three Trx-1 shRNA SMARTvector
2.0 Lentiviral particles (Thermo Scientific Dharmacon
Inc., Chicago, USA). Then 1.5 x 10° MCF-7 cells at pas-
sage six were incubated overnight with a 4.5 x 10 titer
of lentivirus particles (0.3 multiplicity of infection/cell)
suspended in growth medium with 3 pg/ml polybrene.
The infected cells were passaged three times in selection
medium containing 1 pg/ml puromycin, and were
assayed for transfection efficiency by immunoblot for
Trx-1 and by flow cytometry for endogenous GFP
expression. Aliquoted positive cells were stored at -80°C.
Three Trx-1 knockdown cell lines (C1, C2, and C3)
were generated; in all in vivo experiments we used cell
line C3 and control cells, designated MCF-7°""""1 and
MCE-7h¢entol regpectively.

In vivo studies

All animal experiments were approved by the Institu-
tional Animal Care and Use Committee. Breast cancer
cells (1.5 x 10°) were xenografted subcutaneously in
both flanks of 5-week-old to 6-week-old female Balb/C
nude mice as described previously [2,28]. Three days
before implanting MCE-7 cells, mice received a 0.72 mg
B-estradiol pellet (Innovative Research of America,
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Sarasota, FL, USA) subcutaneously in their front-back
area. Vehicle, P-I or Lipo-P-I administration (once a
day, 5 days/week) started when the average tumor
volume of MCEF-7 xenografts was 160 mm® and that of
MDA-MB231 xenografts was 100 mm?®. Xenograft
growth inhibition in response to treatment was calcu-
lated by comparing between drug-treated and vehicle-
treated group the difference in percentage increase of
tumor volume from the zero-time value to that at
sacrifices.

Cell death and proliferation in xenografts were deter-
mined by TUNEL and Ki-67 immunostaining, as
described [29]. Cyclooxygenase-2 (COX-2) expression,
NF-xB activation and Trx-1 expression were determined
by immunohistochemical staining following standard
protocols (antibodies from Cell Signaling and Abcam,
respectively) as reported previously [29]. For scoring
from each slide, we photographed three to five randomly
selected fields (200x). For each of these parameters
(TUNEL, Ki-67, COX-2, NF-xB and Trx-1), the number
of positive cancer cells and the number of all (positive
and negative) cancer cells were determined for each
photograph by two pathologists blinded to their identity
and the percentage of positive cells was calculated based
on the average of the values generated by the two
pathologists (maximal variation 4.2%).

Quantitative PCR of Trx-1 mRNA level from Trx-1
knockdown and control MCF-7 xenografts

Total RNA was isolated using TRIZOL reagent (Invitro-
gen) from xenografts. The quantitative PCR of Trx-1
mRNA was determined using SYBR Green PCR master
mix (A&B Applied Biosystems, Carlsbad, CA, USA) in
accordance with the manufacturer’s protocol [30].

Statistical analyses

Results are expressed as the mean + standard error of
the mean. Differences between groups were determined
by the Student’s ¢ test. P < 0.05 was statistically
significant.

Results
Phospho-ibuprofen inhibits the growth of human breast
cancer cells and xenografts
We initially determined the growth inhibitory effect of
P-I on human breast cancer cell lines representing its
major clinical subtypes. The 24-hour values for the con-
centration that inhibits cell growth by 50% (ICs) for P-I
were as follows: ER-positive: MCF-7 = 79 + 5.6 uM;
HER2-positive: AU-565 = 198 + 8.4 uM; and triple-
negative: BT-549 = 127 + 2.3 uM, MDA-MB231 = 28 +
2.7 uM, and BT-20 = 89 + 3.5 uM.

We also determined the cytokinetic effect of P-I on
breast cancer cells and its ability to inhibit the growth
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of breast cancer xenografts. P-I decreased the prolifera-
tion, blocked the G;—S cell cycle transition and induced
apoptosis in MCF-7 cells (Figure 1A, B). Similar results
were obtained with MDA-MB231 cells (Additional file
1). Mice with MDA-MB231 xenografts were treated for
40 days with vehicle or P-I1 400 mg/kg/day, starting
when the average tumor volume was ~100 mm?. At the
end of the study, the tumor volume of controls was 423
+ 64 mm® and that of P-I-treated mice was 157 + 44

? (P < 0.01; Figure 1C). P-I 400 mg/kg/day therefore
inhibited the growth of MDA-MB231 xenografts by
266%.

The method of delivery can affect the pharmacological
effect of a given drug [31]. For example, doxorubicin in
liposomes is more efficacious than free doxorubicin
[32,33]. Such enhanced efficacy is explained by the
enhanced permeability and retention effect, which repre-
sents the preferential uptake of liposomes by tumor cells
due to the leakiness of the vessels traversing a tumor
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[34,35]. We therefore studied the anti-breast cancer
effect of P-1 formulated in liposomes.

Mice with MCF-7 xenografts were treated for 34 days
with P-I 300 mg/kg/day or Lipo-P-I 300 mg/kg/day or
with vehicle, starting when the average tumor volume
was ~160 mm?®. Compared with controls, P-I inhibited
tumor growth significantly, starting on day 29 and conti-
nuing until sacrifice when the tumor volume was 276 +
23 mm® and 195 + 27 mm?, respectively (P < 0.05; Fig-
ure 1D). The inhibitory effect of Lipo-P-I became statis-
tically significant starting on day 8 of treatment. At
sacrifice, xenografts had regressed compared with base-
line, being 14% smaller (137 + 7 mm? vs. 160 + 9 mm?,
P = 0.09, significant for trend). Lipo-P-I was more effi-
cacious than P-I (P < 0.05).

We also determined cell proliferation and cell death in
xenografts using Ki-67 staining and the TUNEL assay,
respectively (Figure 1C, D). In MDA-MB231 and MCEF-7
xenografts, P-I inhibited proliferation (P < 0.05 and P <
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0.05) and increased apoptosis (P < 0.01 and P = 0.08,
significant for trend). Both effects were more pro-
nounced in Lipo-P-I-treated animals (P < 0.01 and P <
0.05, respectively, compared with control).

Effect of phospho-ibuprofen on reactive oxygen nitrogen

species and glutathione levels in MCF-7 and MDA-MB231

cells

RONS are important early mediators of the anti-cancer
effect of modified nonsteroidal anti-inflammatory drugs
(NSAIDs) [36]. Pretreatment of MCF-7 cells with the
antioxidant N-acetyl-cystein (NAC) blocked P-I-induced
apoptosis by 70.2% (Figure 2A), indicating that this
effect is redox dependent. We thus evaluated whether
P-I induces RONS in breast cancer cells using the mole-
cular probes DCFDA (detects > 10 individual RONS
[37,38]), dihydroethidium (detects O,) or MitoSOX Red
(specific for mitochondrial O,).

In cell lines, P-1 concentration-dependently induced
RONS detected by DCFDA, an effect abrogated by pre-
treating the cells with 15 mM NAC (Figure 3B). Oy”
levels were significantly increased in the entire cell
(dihydroethidium probe) and even more so in mitochon-
dria (MitoSox Red; Figure 3C). P-I decreased modestly
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the levels of glutathione, the major intracellular antioxi-
dant [39], and only at concentrations exceeding its 1Csq
for cell growth (Additional file 2).

Effect of phospho-ibuprofen on the eicosanoid pathway

COX-2 is a well-recognized biochemical target of NSAIDs,
explaining part of their anti-inflammatory effects. P-I inhi-
bits the production of prostaglandin E, in NIH3T3 cells, a
mouse embryonic fibroblast cell line [2]. Furthermore,
COX-2 inhibition by NSAIDs is considered one of the
mechanisms by which these drugs prevent cancer [40],
although COX-independent effects are well described
[41,42]. We have shown that COX-2 induction results
from oxidative stress in cancer cells when treated with
NSAID derivatives [41]. However, P-I affected COX-2
expression in vitro in a cell-type-dependent manner. It
suppressed COX-2 expression in MCF-7 cells, while sti-
mulating COX-2 expression and prostaglandin E, produc-
tion in MDA-MB231 cells (Figure 2D, Additional file 2).
The change of COX-2 level was thus independent of
RONS in P-I-treated breast cancer cells. More impor-
tantly, P-I did not significantly change COX-2 expression
in xenografts (P > 0.05; Figure 2E). We therefore conclude
that the anti-cancer effect of P-I is COX-2 independent.
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Phospho-ibuprofen modulates the thioredoxin system in
breast cancer

The Trx system plays a crucial role in maintaining the
redox homeostasis of cells by reducing oxidized pro-
teins; such protein oxidation can occur during oxidative
stress [43]. In view of the increased RONS levels in
response to P-I, we determined the status of Trx-1, the
main isoform of Trx, and of TrxR in cultured breast
cancer cells and in their xenografts in mice.

In MCEF-7 cells after 1 hour of treatment, P-I
decreased the levels of Trx-1 - very modestly at con-
centrations corresponding to 2xICso and significantly
at those corresponding to 3xICs,. Pretreatment with
15 mM NAC restored the level of Trx-1, indicating
that RONS induction is upstream of Trx-1 (Figure
3A). P-T at 2xICs, also promoted the oxidation of
Trx-1, with about one-third of the protein being oxi-
dized. Similar results were obtained in MDA-MB231
cells (Additional file 3). P-I failed to affect TrxR
expression but inhibited its enzymatic activity. In an
in vitro assay - which uses purified TrxR from rat
liver to assess its ability to reduce the oxidized

substrate 5,5’-dithiobis-2-nitrobenzoic acid - P-I sup-
pressed the activity of TrxR (IC5o = 88 uM). Similarly,
the activity of TrxR determined in protein extracts
from MCE-7 cells was suppressed following treatment
with P-I (Figure 3B).

We examined the expression of Trx-1 in MCF-7 and
MDA-MB231 xenografts from the efficacy study men-
tioned above. Immunohistochemistry staining showed
cytosolic and nuclear expression of Trx-1 in both types
of tumors (Figure 3C, D). Compared with controls, P-I
in MDA-MB231 tumors decreased Trx-1 expression by
47.4% (41.5 + 8.2 vs. 789 + 12.9, P = 0.01). In MCF-7
tumors, free P-I had no significant effect on Trx-1
expression, but Lipo-P-I decreased it by 54.1% (33.3 +
14 vs. 72.6 = 7.4, P < 0.05). Of note, the dose of P-I in
animals with MCF-7 xenografts was 300 mg/kg/day and
in those with MDA-MB231 tumors was 400 mg/kg/day.
This may account for the difference in the inhibition of
Trx-1 expression. Although free P-I did not inhibit
TrxR activity in either type of xenograft, Lipo-P-I
reduced the activity significantly by 35% in MCEF-7
xenografts (P = 0.03; Figure 3C, D).
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Phospho-ibuprofen modulates thioredoxin-dependent cell
signaling

NF-xB and mitogen-activated protein kinases (MAPKs)
are major determinants of cell renewal and cell death
[24,25]. The Trx system is intimately linked to these
two signaling pathways. Trx-1 enhances the binding of
NE-xB to DNA by reducing the intermolecular Cys62
-S-S- bond of its p50 subunit [12]. Trx-1 controls the
activation of JNK and p38 by binding to ASK1 [26].
When Trx-1 is oxidized, ASK1 dissociates from it,
autophosphorylates, and activates MAPK cascades. We
thus examined whether the effect of P-I on the Trx sys-
tem modulates these redox signaling pathways.

P-I inhibited NF-xB activation in MCEF-7 cells,
whereas 1-hour pretreatment with 15 mM NAC
restored the NF-xB activity to control level (Figure 4A).
A similar inhibition was observed in MCEF-7 xenografts
(Figure 4B). P-I inhibited NF-xB activation by 32% (P =
0.08 significantly for trend) and Lipo-P-I by 61% (P <
0.05). Both in vitro and in vivo, P-1 suppressed the
expression of Bcl-2 and Mcl-1, two anti-apoptotic pro-
teins transcriptionally regulated by NF-xB [44,45] (Fig-
ure 4C). Similar results were found in MDA-MB231
xenografts (Figure 4D).
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P-I dissociated the ASK1-Trx-1 complex nearly com-
pletely in MCE-7 cells (Figure 5A). Incubation of the
cell lysate with the reducing agent dithiothreitol restored
the complex, indicating that the dissociation of ASK1
from Trx-1 was due to P-I-induced oxidation of Trx-1.
We therefore studied the downstream ASK1-MKK4-
p38MAPK/JNK signaling. In both cell lines, P-I activated
p38 and JNK (increasing their phosphorylation) time
and concentration dependently. However, P-I sup-
pressed ERK activation, particularly at a high concentra-
tion (2xICsp). The total levels of these MAPKs were not
changed by P-I (Figure 5B). In MCF-7 xenografts, P-I
activated JNK and ERK but not p38. In MDA-MB231
xenografts, P-I activated JNK and p38 but not ERK (Fig-
ure 5C). Such differential activation of MAPKs under-
scores their context dependence.

Thioredoxin-1 mediates the anti-cancer effect of
phospho-ibuprofen

To further assess the role of Trx-1 in the anti-breast-
cancer effect of P-I, we silenced the expression of Trx-1
in breast cancer cells using specific siRNA and deter-
mined whether P-I-induced cell death was affected.
Compared with control cells, the induction of apoptosis
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Figure 4 Phospho-ibuprofen inhibited NF-xB signaling in breast cancers. (A) Left panels: NF-xB-DNA binding was determined by
electrophoretic mobility shift assay (EMSA) in nuclear fractions of MCF-7 cells treated with or without phospho-ibuprofen (P-l). 0, control nuclear
fraction incubated with 100-fold molar excess of specific (+S) or nonspecific (+NS) unlabeled oligonucleotide containing the consensus sequence
of NF-kB. ICs, concentration that inhibits cell growth by 50%; NAC, N-acetyl-cysteine. Right panels: Immunoblots of B-cell lymphoma 2 (Bcl-2)
and myeloid cell leukemia 1 (Mcl-1) from MCF-7 cells treated with or without P-I as indicated. Representative images (200x) of
immunohistochemistry staining of activated NF-xB in (B) MCF-7 and (D) MDA-MB-231 xenografts (as in Figure 1) and quantification results are
shown. Immunoblots of Bcl-2 and Mcl-1 from the lysates of (C) MCF-7 and (D) MDA-MB231 xenografts (as indicated) are shown. Lipo-P-I,
liposome-encapsulated phospho-ibuprofen. #P < 0.05; *P < 0.001. Loading control, B-actin.
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Mitogen-activated protein kinase (MAPK) activity was determined by immunoblotting MCF-7 cell lysates with antibodies against phosphorylated
or total MAPKs as indicated. (C) Effect of P-l on MAPK signaling in breast cancer xenografts. Protein lysates from MCF-7 xenografts (upper) or
from MDA-MB231 xenografts (lower) as described in Figure 1 were immunoblotted with antibodies against phosphorylated MAPKs. Loading
control, B-actin. Lipo-P-I, liposome-encapsulated phospho-ibuprofen. Results were quantified and graphed on the right. #P < 0.05; *P < 0.001.

p-JNK p-p38 p-ERK

by P-I 60 pM or 80 pM was reduced by 91% and 87%,
respectively, in Trx-1-depleted cells (Figure 6A). Similar
results were obtained with MDA-MB231 cells (Addi-
tional file 4). As expected [46], there were parallel
changes in the levels of O,". P-I failed to induce mito-
chondrial O, in Trx-1 knockdown cells (Figure 6B).

In vivo, we xenografted nude mice with MCF-7°M"™1
cells (Trx-1 stably knocked down) or with MCE-7%h¢en-
trol cells (control shRNA) (see Materials and methods
and Additional file 5). When the average tumor volume
was 162 mm?® and 168 mm?, respectively, animals were
treated with P-I 400 mg/kg/day or vehicle. P-I failed to
inhibit the growth of MCE-7*""™1 xenografts during
the 24 days of observation. In contrast, compared with
the vehicle-treated group, P-I inhibited the growth of
MCE-75¢ntrel yenografts by 126% (P < 0.05; Figure
6C). The nearly complete suppression of Trx-1 levels in
these tumors was confirmed by immunoblotting and
quantitative PCR (Figure 6D). The effect of P-I on
tumor growth reflects its differential cytokinetic effect.
Compared with vehicle-treated groups, P-I failed to alter
the rates of apoptosis or proliferation in MCE-75M"1
xenografts, whereas in MCF-7°"“°""! xenografts P-I
increased apoptosis by twofold (P < 0.01) and sup-
pressed proliferation by 49% (P < 0.05; Figure 6E and 6
data not shown).

In these tumors, NF-xB activation showed a similar
response to P-I: compared with the vehicle-treated
group, there was no statistically significant change in
MCE-7"""™1 xenografts but there was an 80% reduction
in xenografts expressing Trx-1 normally (P < 0.03; Fig-
ure 6E). The inactivation of NF-xB by P-I requires the
presence of Trx-1. These results strongly support the

notion that the anti-breast-cancer effect of P-I is tightly
modulated by Trx-1, the key molecule to turn on the
redox signaling.

Discussion

Our results demonstrate that the novel compound P-I is
a strong agent against breast cancer, especially when
formulated in liposomes, and establish the critical role
of the Trx system in mediating this effect through
downstream redox signaling.

The effect of P-I against breast cancer is: broad,
encompassing both ER-positive and triple-negative
human xenografts; strong, as evidenced by the tumor
stasis and tumor regression achieved in MDA-MB231
and MCEF-7 xenografts, respectively; and potentially
clinically relevant, as these two cell lines represent the
most frequent and the most difficult-to-treat subtypes of
breast cancer. Our efficacy study also demonstrated
that, in agreement with current understanding [31], for-
mulating P-I in liposomes enhanced its anti-cancer
efficacy.

The anti-cancer effect of P-I clearly reflects its cytoki-
netic effect, which consists of inhibition of proliferation
and induction of apoptosis, both noted in vitro and in
vivo. In keeping with the differential anti-tumor efficacy,
Lipo-P-I had a more pronounced cytokinetic effect than
P-1.

Oxidative stress emerges as a key mechanism of action
for several anti-cancer agents, and we have observed this
with compounds structurally related to P-I [47,48].
Indeed, oxidative stress is a very early change that cul-
minates in cell death via apoptosis and necrosis [49]. In
the two breast cancer cell lines we studied, P-I induced
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oxidative stress and its inhibition by NAC blocked the
effect on cell death.

The Trx system plays a pivotal role in redox homeos-
tasis. P-I had a profound effect on the two protein
members of this system, Trx-1 and TrxR. In cultured
breast cancer cells, P-I drove Trx-1 towards its oxidized
form and reduced the expression of Trx-1 in xenografts.
P-I also suppressed the activity of TrxR, determined by
an assay using purified enzyme and also in cultured and
xenografted breast cancer cells treated with P-I. In con-
trast to Trx-1, the expression of TrxR was not affected
by P-1. Of interest, in MCF-7 xenografts Lipo-P-I (which
was more efficacious in tumor growth inhibition than
free P-I) suppressed Trx-1 expression and TrxR activity
to a greater extent than free P-I, suggesting that this
effect may be part of the mechanism of action for P-I.
These findings substantiate a major suppressive effect of
P-I on the Trx system through effects on Trx-1 and
TrxR.

The effect of P-I on the Trx system had repercussions
on signaling cascades dependent on it, as exemplified by
its effects on NF-xB and MAPK. First, the activity of
NF-xB was suppressed by P-I in both cultured cells and
tumor xenografts. NF-«<B is particularly responsive to
changes in the Trx system through its Cys62 of p50,
whose oxidation renders NF-xB incapable of binding to
DNA [12]. The importance of the inactivation of NF-xB
following treatment with P-I is indicated by the sup-
pressed expression in xenografts of Bcl-2 and Mcl-1,
two anti-apoptotic proteins transcriptionally regulated
by NF-xB [44,45]. The MAPK pathway, also regulated
by P-I, is downstream of Trx-1. ASKI1 is normally
bound to Trx-1, keeping the pathway inactive - but
when Trx-1 is oxidized, ASK1 is released from the com-
plex, activatingthe downstream MAPK cascade [14]. Of
the three main branches of MAPKs, JNK was uniformly
activated by P-I in both cell lines and their xenografts.
The response of the other two varied in a cell-type-
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Figure 7 Effect of phospho-ibuprofen against breast cancer: proposed mechanism of action. In this model, phospho-ibuprofen (P-1)
suppresses breast cancer growth through its dual effect on: reactive oxygen and nitrogen species (RONS), inducing oxidative stress; and the
thioredoxin (Trx) system, inhibiting the thioredoxin reductase (TrxR) activity, oxidizing thioredoxin-1 (Trx-1) and suppressing its expression. These
effects lead to decreased cell proliferation and increased apoptosis, their net result suppressed breast cancer growth or even tumor regression.

the central Trx system.

Specifically, P-l-induced RONS convert proteins from their reduced (Protein-red) to oxidized (Protein-ox) state. Trx-1, Trx-1-(SH),, reduces its
oxidized client proteins - itself, however, being oxidized in the process (Trx-1-S,). TrxR recycles Trx-1-S, back to its normal reduced state. The
shaded areas explain how the effect of P-I on redox signaling (NF-xB and apoptosis signal-regulating kinase 1 (ASK1)-p38/JNK) is controlled by

dependent manner. P-I clearly has a context-dependent
effect on MAPKs.

While the modulating effect of P-I on these two sig-
naling mechanisms that are downstream of the Trx sys-
tem is clear, its direct linkage to the Trx system
required the study of xenografts with permanently sup-
pressed Trx-1. P-I suppress the activation of NF-xB
only when the expression of Trx-1 was intact. Further-
more, its ability to induce apoptosis and suppress prolif-
eration in these xenografts, two effects heavily mediated
by NF-xB and MAPK, was abrogated when the expres-
sion of Trx-1 was markedly knocked-down by shRNA.
Collectively, these data establish the Trx system as an
important mediator of the anti-cancer effect of P-I. Fig-
ure 7 outlines the role of P-I in these interactions.

Our findings indicate the role of the Trx system in
ensuring cell survival in the face of oxidative stress. As
amply demonstrated here, agents such as P-I that paral-
yze this vital control system enhance cell death and
inhibit cell proliferation. The final result of any interven-
tion directed at the Trx system probably depends on
complex interactions beyond the NF-xB and MAPK cas-
cades. Nevertheless, in agreement with work by others
[4,20,50], this system represents an important target for
the development of anti-cancer agents.

Conclusions

The present work establishes P-I as an agent with a
strong effect against breast cancer in a preclinical
model, suggests that the mode of its delivery may be
important for its efficacy, and establishes the Trx system
as a critical mediator of its mechanism of action. The
Trx system, vital for cell homeostasis, emerges as an

important target for the development of novel anti-can-
cer agents.

Additional material

Additional file 1: Cell kinetic effect of P-1 in MDA-MB231 cells. Cell
death (A) and proliferation (B) were examined by Annexin V/PI staining
or BrdU staining, respectively, after MDA-MB231 cells were treated with
or without P-I for 16 hours.

Additional file 2: P-I affect redox status and COX-2 in breast cancer
cells. (A) MDA-MB231 cells treated with P-I for 1 hour were stained with
DCFDA and their fluorescent intensity was determined by flow
cytometry. (B) Glutathione (GSH) content of MDA-MB231 cells treated
with P-I for 3 hours was determined in cell lysates (*P < 0.01). (C) COX-2
was determined by immunoblot in MCF-7 cells treated with P-I.

Additional file 3: P-l oxidized Trx-1 in MDA-MB231 cells. The redox
status of Trx-1 in MDA-MB231 cells treated with P-I for 1 hour was
determined as in Materials and methods. ox, oxidized form; red, reduced
form.

Additional file 4: Trx-1 modulates P-l-induced cell death in MDA-
MB231 cells. MDA-MB231 cells were transfected with Trx-1 or control
SiRNA for 72 hours and then treated with P-I for 16 hours. Cell death was
evaluated by annexin V staining. P-l-induced cell death is shown as the
percentage of annexin V(+) cells over control (*P < 0.01).

Additional file 5: GFP level in stable Trx-1 knockdown MCF-7 cells.
MCF-7 cells were stably transfected with three Trx shRNA (Trx-C1, Trx-C2
and Trx-C3) or control shRNA in SMART vectors containing GFP. The
transfection efficiency was determined by comparing the levels of Trx-1
protein (western blot; upper panel) or endogenous GFP (flow cytometry;
lower panel) in stable cell lines with the wild-type (WT) cell line.

Abbreviations

ASK1: apoptosis signal-regulating kinase 1; Bcl-2: B-cell lymphoma 2; COX-2:
cyclooxygenase-2; DCFDA: 2',7-dichlorofluorescein diacetate; ER: estrogen
receptor; ERK: extracellular signal-regulated kinase; GFP: green fluorescent
protein; HER2: human epidermal growth factor receptor-2; HPLC: high-
performance liquid chromatography; ICso: concentration that inhibits cell
growth by 50%; JNK: Jun N-terminal kinase; Lipo-P-I: liposome-encapsulated
phospho-ibuprofen; MAPK: mitogen-activated protein kinase; Mcl-1: myeloid
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cell leukemia 1; MTT: methylthiazolyldiphenyl-tetrazolium bromide; NAC: N-
acetyl-cysteine; NF: nuclear factor; NSAID: nonsteroidal anti-inflammatory
drug; O, superoxide anion; PAGE: polyacrylamide gel electrophoresis; P-I:
phospho-ibuprofen; PCR: polymerase chain reaction; RONS: reactive oxygen
and nitrogen species; ShRNA: short hairpin RNA; siRNA: small interfering RNA;
Trx: thioredoxin; Trx-1: thioredoxin-1; TrxR: thioredoxin reductase; TUNEL:
terminal deoxynucleotidy! transferase-mediated dUTP nick end labeling.
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