
Introduction

Progress in the ability to assay molecular processes, 

includ ing gene expression, protein expression, and mole-

cular and cellular biochemistry, has fueled advances in 

our understanding of breast cancer biology and has led to 

the identifi cation of new treatments for patients with 

breast cancer. Th e ability to measure biologic processes 

without perturbing them in vivo by using advanced 

imaging methods provides the opportunity to better 

characterize tumor biology and to assess how biologic 

and cytotoxic therapies alter critical pathways of tumor 

response and resistance. Traditionally, imaging has relied 

on structural and anatomic features to detect breast 

cancer and determine its extent (that is, anatomic imag-

ing). By contrast, molecular imaging modalities allow for 

imaging of regional biochemistry and molecular biology. 

Molecular imaging further provides information comple-

men tary to that obtained by traditional, tissue-based 

assay methods. By accurately characterizing tumor pro-

per ties and biologic processes, molecular imaging plays a 

pivotal role in breast cancer science and clinical care in 

diagnosis and staging, assessment of therapeutic targets, 

and evaluation of responses to therapies [1]. Th is review 

describes the current role and potential of molecular 

imaging modalities for detection and characterization of 

breast cancer and focuses specifi cally on radionuclide 

imaging techniques.

Overview of molecular imaging methods applied 

to breast cancer

Most imaging modalities used in clinical practice are 

largely anatomic in nature, using tissue features such as 

size, shape, and density to identify breast cancer. Anatomic 

imaging modalities commonly used for detecting both 

primary breast cancer and metastatic breast cancer 

(MBC) include mammography, x-ray computed tomo-

graphy (CT), ultrasound, and magnetic resonance imaging 

(MRI). Alternatively, molecular imaging measures regional 

in vivo biochemical, cellular, and molecular properties of 

tumors and normal tissues. By targeting underlying 

molecular processes, molecular imaging modalities can 

image biologic processes specifi c to cancer and this may 

aid in cancer detection and characterization and 

complement traditional anatomic imaging methods. 

Table  1 summarizes current molecular imaging modali-

ties that have been used in clinical practice and in human 

research settings applied to breast cancer. In this review, 

we focus primarily on radionuclide-based molecular 

imaging methods but briefl y mention applications of 

other molecular imaging modalities.

Radionuclide imaging relies on the use of imaging 

probes tagged with radioactive nuclei [2]. Position-

sensitive radiation detectors identify emitted photons 

and generate images of regional radiopharmaceutical 

concentration. Radionuclide imaging can be performed 
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by using single-photon-emitting isotopes and is termed 

single-photon emission CT (SPECT), in which images 

are collected and reconstructed as tomographic images. 

Th e most commonly used single-photon radiopharma-

ceutical used for breast imaging is 99mTc-sestamibi (MIBI). 

More recently, high-resolution, small-fi eld-of-view γ 

cameras specifi c to breast imaging, sometimes called 

breast-specifi c γ imaging (BSGI) or molecular breast 

imaging, have been developed [3,4].

Another important class of radionuclide imaging 

procedures uses positron-emitting isotopes and is termed 

positron emission tomography (PET). Compared with 

SPECT, PET off ers the potential for better spatial 

resolution, a more accurate image quantifi cation, and a 

wide range of possible imaging probes. PET has proven 

to be a very useful tool in the staging of advanced breast 

cancer, in assessing response to therapy, and is widely 

used in clinical care in the form of PET-CT. Although a 

wide range of radiopharmaceutical tracers have been 

developed for use with PET, most breast cancer imaging 

to date has been done with 18F-fl uorodeoxyglucose (FDG) 

[5]. FDG is a glucose analog that is transported via 

glucose transporters into the cells, where it is 

phosphorylated by hexokinase in proportion to the rate 

of glucose phosphorylation. Further catabo lism of FDG is 

not possible, because it lacks a hydroxyl group at the C-2 

position. FDG becomes ‘metabolically trapped’ in tumor 

cells at a rate proportional to glucose utilization. FDG 

PET therefore provides an eff ective way to measure 

glucose metabolism. Most PET imaging is performed by 

using devices designed for torso imaging; however, 

dedicated devices designed specifi cally for posi tron 

emission of the breast, termed positron emission 

mammography (PEM), represent a promising breast 

imaging modality [6].

Of other modalities used for molecular imaging, MRI is 

the most widely used in current breast cancer practice 

[7]. MRI relies upon the interaction of atomic nuclei with 

radiofrequency signals in the presence of strong magnetic 

fi elds and can generate high-resolution, three-dimen-

sional images with excellent soft tissue contrast. In 

current clinical practice, MRI is most often used for 

anatomic imaging; however, with a more detailed analysis 

of contrast enhancement kinetics or the use of contrast 

agents that are more molecularly targeted or both, MRI 

can be used to measure physiologic and molecular pro-

per ties [8-11]. Magnetic resonance methods can also be 

used to measure the regional concentration of specifi c 

biochemical species (for example, products of metabo lism 

or membrane lipids, often termed magnetic reso nance 

Table 1. Molecular imaging for breast cancer

Modality Indication Advantages Disadvantages

Radionuclide imaging

Positron emission tomography  Detection Wide range of molecular imaging probes Limited spatial resolution (improved

 Response evaluation Tracer imaging without perturbing with use of non-contrast computed

 Tumor characterization biologic system tomography)

   Some radiation exposure

Positron emission  Detection More sensitive for smaller tumors Increased radiation dose

mammography Tumor characterization Higher spatial resolution Visualization of posterior lesions

   Variable uptake of 

   18F-fl uorodeoxyglucose (FDG) in small 

   and less metabolically active tumors

Breast-specifi c gamma imaging Detection More sensitive for smaller tumors Associated with radiation exposure

  Heavy compression of breast tissue  Best combined with anatomic imaging

  not required (mammography) for optimal screening

   Longer imaging time

   Some radiation exposure

Magnetic resonance

Magnetic resonance imaging  Tumor characterization Quantifi cation of tumor perfusion Confi ned space

(MRI), especially dynamic   and tumor capillary permeability Contrast design limited by need for

contrast-enhanced MRI and    magnetic atom

targeted contrast agents   

Magnetic resonance spectroscopy Tumor characterization Can measure wide range of molecules Limited spatial resolution

  No contrast necessary Challenging to obtain high-quality 

   spectra in routine imaging

Ultrasound, especially with  Detection Highly portable, inexpensive Operator dependence

contrast enhancement Tumor characterization Molecular microbubble agents possible Contrast agents confi ned to vascular 

   space thus far

Optical imaging Tumor characterization Inexpensive, highly portable, and does  Limited depth penetration, challenging

  not necessarily require a contrast agent spatial localization, and operator 

   dependence 
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spectroscopy (MRS) or magnetic resonance spectro-

scopic imaging) [12]. For example, increased levels of 

choline in breast cancer versus normal breast tissue can 

be measured by MRS, and changes in choline levels with 

treatment can provide an early indication of therapeutic 

effi  cacy [13].

Other molecular imaging modalities that have been 

tested in breast cancer include optical imaging and 

contrast-enhanced ultrasound. Optical imaging relies on 

visible light to generate images that refl ect breast tissue 

properties [14]. Optical imaging can also employ 

molecularly targeted optical contrast agents for a more 

specifi c delineation of molecular features. Pilot studies 

suggest that optical imaging methods (for example, 

diff use optical spectroscopy) can provide an early readout 

of treatment effi  cacy [15], and larger, multicenter trials of 

optical imaging are under way. Th ough currently used as 

a largely anatomic imaging method in breast cancer, 

ultrasound can provide molecular information through 

the use molecule-labeled microbubble contrast agents 

[16]. Molecularly targeted contrast ultra sound is largely 

at the preclinical stage of investigation; however, some 

early trials of target ultrasound contrast agents in 

patients are under way.

Radionuclide molecular imaging for primary breast 

cancer detection and diagnosis

Anatomic imaging is widely used in breast cancer 

screening and detection, and mammography is still the 

gold standard. While anatomic techniques continue to 

evolve with improvements in spatial resolution and 

image quality (examples include computer-aided detec-

tion and digital mammography as well as other anatomic 

imaging methods such as MRI and ultrasound), 

molecular imaging may provide a more specifi c targeting 

of breast cancer tissue and greater contrast between 

tumor and normal tissue. We briefl y review studies that 

use radio nuclide methods for primary breast cancer 

detection and diagnosis.

Single-photon radionuclide breast imaging

Th e most commonly used single-photon radio pharma-

ceutical used for breast imaging is MIBI. MIBI is a 

cationic compound whose uptake and retention in the 

breast tumor are dependent on regional blood fl ow, 

plasma, and mitrochondrial membrane potential [17,18]. 

MIBI retention in tumors may also be aff ected by the 

effl  ux transporter, P-glycopotein [19]. Early breast 

imaging using MIBI used standard nuclear medicine γ 

cameras and was termed scintimammography. A meta-

analysis by Liberman and colleagues [20] on the diag-

nostic accuracy of scintimammography found a sensi-

tivity of 85%, a specifi city of 87%, a positive predictive 

value of 88%, a negative predictive value of 81%, and an 

accuracy of 86%. Th e primary limitations of this approach 

were poor detection of breast lesions of less than 1 cm, 

lower sensitivity in non-palpable lesions, and some false-

positive uptake in benign breast lesions, infl ammation, 

hematoma, and fat necrosis. Scintimammography gener-

a ted early interest in clinical breast cancer diagnosis, but 

the problems noted above limited its clinical use [21].

More recently, high-resolution, small-fi eld-of-view γ 

cameras specifi c to breast imaging, sometimes called 

BSGI or molecular breast imaging, have been developed 

[3,4]. With the use of breast-specifi c γ cameras, lesions of 

less than 1 cm and non-palpable and in situ carcinoma 

can be visualized [4]. Because the uptake of MIBI is inde-

pendent of breast density, BSGI may serve as a valuable 

imaging technique for women with mammographically 

dense breasts. In one study, 1,007 patients with hetero-

geneously or extremely dense breasts by mammography 

were screened with mammography and BSGI. Th e 

addition of BSGI to mammography signifi cantly increased 

detection of node-negative breast cancer in dense breasts 

by 7.5 per 1,000 women screened over mammography 

and was able to detect cancers as small as 0.4  cm [22]. 

Limitations to BSGI include the long imaging time (four 

10-minute images), the radiation dose associated with 

injection of the MIBI, and the uncertain ability of BSGI to 

detect breast microcalcifi cations [23]. Th rough optimi za-

tion of detector technology and inno vative noise reduc-

tion algorithms, it is anticipated that the dose of radiation 

required for BSGI could be com parable to that associated 

with a screening mammogram. BSGI may have a role in 

the evaluation of patients for whom breast MRI is 

contraindicated. Finally, although MIBI is the principal 

radiopharmaceutical used with BSGI to date, a number 

of other radiopharmaceuticals that target other facets of 

cancer biology are in development [23]. BSGI has a 

limited role in clinical practice; however, it is being 

actively investigated in clinical trials for breast cancer 

detection and characterization.

Positron emission tomography breast imaging

Compared with SPECT, PET off ers the potential for 

better spatial resolution, a more accurate image quanti-

fi cation, and a wide range of possible imaging probes. 

Th e combination of PET with CT yields co-registered 

molecular and anatomic images and the opportunity to 

image molecular biology and anatomy simultaneously 

[24-27]. Although several radiopharmaceutical tracers 

for use with PET exist, only two are approved in the US 

for clinical use in cancer: FDG and 18F-fl uoride, the latter 

of which is used primarily for bone imaging. Almost all 

clinical cancer imaging performed currently is done 

using FDG. Because accelerated glycolysis is a key feature 

of many cancers (including breast cancer), FDG generally 

has high tumor uptake compared with back ground in 
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most normal tissues (including the normal breast), 

making it an attractive agent for cancer detection [5]. 

Studies have suggested that the degree of FDG uptake in 

breast cancer is variable and correlated with several 

phenotypic features such as histologic type (higher 

uptake in ductal versus lobular cancers), tumor histologic 

grade (higher uptake in higher grade), steroid receptor 

expression (higher uptake in steroid receptor-negative 

tumors), and indices of cellular proliferation (higher 

uptake in the more proliferative tumors) [28,29].

Early studies using whole-body PET imaging devices 

showed that FDG PET has high sensitivity and specifi city 

for the detection of larger, palpable breast cancers [30]. 

Overall, the sensitivity of FDG PET using devices 

designed for whole-body imaging to detect primary 

breast cancer was 64% to 96%, specifi city was 73% to 

100%, positive predictive value was 81% to 100%, and 

negative predictive value was 52% to 89% [30]. However, 

sensitivity for smaller and non-palpable lesions was more 

limited, as was the detection of low-grade or non-invasive 

cancers [31], which are of signifi cant importance for a 

breast cancer detection modality. Th ere has therefore 

been fairly widespread agreement that whole-body FDG 

PET does not have a clinical role in detecting primary 

breast cancer, nor is it an alternative to histologic 

sampling to establish or exclude a primary breast cancer, 

because of the well-documented inability of FDG PET to 

consistently demonstrate small and low-grade lesions 

[31].

Positron emission mammography breast imaging

To overcome the limitations of whole-body FDG PET, 

dedicated devices for positron emission imaging designed 

to image the breast only, often termed PEM, have been 

developed. Th e advantages of PEM over whole-body 

FDG PET include higher spatial resolution, reduced 

attenuation, and possibly lower radiopharmaceutical 

doses [6]. By mounting the positron detectors on a 

mammography unit, anatomical and molecular images 

are co-registered in a fashion analogous to PET-CT 

(Figure  1). Th e correlation of mammographic and PEM 

images allows for PEM-guided biopsy [32].

PEM allows for detection of breast lesions as small as 

2  mm and small foci of ductal carcinoma in situ. Th e 

results of a multicenter study examining the effi  cacy of 

PEM reported 91% sensitivity and 93% specifi city [33]. 

Th e reported limitations of PEM include a radiation dose 

that is higher than that of a mammogram [34], potential 

diffi  culty imaging breast lesions that are in a posterior 

location, the variable uptake of FDG in small and less 

metabolically active tumors, and false-positive fi ndings 

from prior biopsy [33,35]. In a large trial of patients who 

had newly diagnosed early breast cancer and who were 

undergoing conventional imaging, PEM, and MRI, 

conventional imaging plus PEM depicted additional 

disease in 14% of patients, which is not signifi cantly 

diff erent from the detection achieved with conventional 

imaging and MRI (15%, P = 0.26). PEM showed improved 

specifi city compared with MRI and may be less likely to 

prompt unnecessary biopsies and may be an alternative 

for individuals who cannot tolerate MRI [36]. Currently, 

PEM uses an approved radionuclide tracer, namely FDG, 

but is not considered a routine diagnostic modality; 

however, clinical trials to better defi ne its clinical role are 

ongoing.

Breast cancer staging and response evaluation

Most FDG PET performed in current clinical practice is 

performed as whole-body PET-CT, largely for staging 

and response evaluation. Early studies demonstrating 

abnormal FDG uptake on PET in metastatic axillary 

lymph nodes of patients with breast cancer [37,38] 

prompted a prospective multicenter trial to evaluate the 

ability to stage the axilla with FDG PET before surgery 

[39]. Th e results of this study, which included patients 

with earlier-stage disease of the type more typically found 

with modern screening methods, were disappointing. 

Overall, FDG PET was 61% sensitive and 80% specifi c for 

axillary metastases. Th is trial and subsequent studies 

showed that sensitivity of FDG PET for axillary 

metastases in early-stage breast cancer was not suffi  cient 

to preclude tissue sampling, usually performed with 

sentinel lymph node mapping and biopsy, which is highly 

sensitive for even microscopic foci of tumor. Th ere is 

currently no clinical role for routine FDG PET axillary 

Figure 1. Demonstration of invasive breast carcinomas with 
18F-fl uorodeoxyglucose (FDG) positron emission mammography 

(PEM). Images were made with dedicated breast PEM (Naviscan 

system; Naviscan, San Diego, CA, USA). PEM images show a 23-mm 

infi ltrating ductal carcinoma in the right breast on medio-lateral 

oblique (MLO) view (a) and a left breast 12-mm infi ltrating ductal 

carcinoma also on MLO view (b). Images are courtesy of James 

Rogers, of the Swedish Cancer Institute, and Lawrence MacDonald, of 

the University of Washington.
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staging in women with newly diagnosed, early-stage 

breast cancer. Owing to the low likelihood of distant 

metastases and the not insignifi cant rate of false-positive 

fi ndings in low-risk patient populations, whole-body 

FDG PET or PET-CT is not recommended for systemic 

staging in breast cancer patients with early-stage disease 

[40].

Although FDG PET or PET-CT is not recommended in 

the staging evaluation of patients with early-stage breast 

cancer, numerous studies have supported the role of FDG 

PET and PET-CT in regional and systemic staging for 

patients with locally advanced breast cancer (LABC) 

[41-43]. In the setting of LABC, the risk of axillary and 

internal mammary node metastases is higher, as is the 

risk for occult sites of malignant disease which may aff ect 

therapeutic recommendations. FDG PET can also be 

useful in assessing cancer spread to the internal 

mammary node chain. In patients with LABC, FDG 

uptake in the internal mammary nodes is frequently 

demonstrated (25%) and such uptake is predictive of both 

the likelihood and pattern of treatment failure [44]. A 

recent, randomized clinical trial evaluating the role of 

regional nodal radiation (including internal mammary 

nodes) in patients treated with breast-conserving surgical 

therapy showed improvement in disease-free survival 

with comprehensive nodal radiation [45]. Such fi ndings 

emphasize the importance of identifi cation of regional 

nodal disease in breast cancer.

FDG PET-CT is an accepted and reimbursed staging 

tool for patients with recurrent, suspected, or docu-

mented stage IV disease and in these settings has been 

shown to be both sensitive and specifi c for accurately 

deter mining the extent of disease [21,46-49]. It is impor-

tant to remember that the CT obtained for attenuation 

correction in a clinical PET-CT is not necessarily the 

same as a dedicated, diagnostic, contrast CT that is 

breath-held.

Serial FDG PET has been widely studied as a method 

for assessing tumor response to neoadjuvant chemo-

therapy by using comparison with histopathology assess-

ment of response from the pathology specimen as the 

gold standard. Studies evaluating change in FDG uptake 

early in the course of neoadjuvant therapy demonstrate 

that early declines in FDG uptake are predictive of 

pathologic response to therapy [50-52]. Molecular imag-

ing by FDG PET may serve as an early predictor of 

chemotherapy response and, perhaps more importantly, 

accurately identify those tumors with lack of response, 

which is clinically relevant as the number of options for 

systemic therapies increases.

Molecular imaging modalities, primarily FDG PET, 

have also been used to evaluate response to therapy in 

metastatic (stage IV) breast cancer. Similar to obser-

vations made in the setting of neo adjuvant chemotherapy, 

disease response is typically accompanied by substantial 

declines in FDG uptake by PET, typically 50% or more 

from pre-therapy baseline values [53,54].

Th e standard approach for response evaluation in MBC 

continues to rely on anatomic imaging and changes in 

tumor size by using standard criteria such as Response 

Evaluation Criteria in Solid Tumors (RECIST) and 

anatomic imaging, mostly CT [55,56]. Th e vast majority 

of clinical trials in MBC rely on RECIST to assess 

response and often have eligibility that is dependent on 

measurable disease by RECIST. While this approach 

works well for some disease sites like the lungs and liver, 

size-based anatomic imaging response for soft tissue 

disease and, particularly, bone metastases remains chal-

len ging and an opportunity for incorporation of mole-

cular imaging modalities. Treatment stratifi cation based 

on metabolic response by PET (PET Response Criteria in 

Solid Tumors, or PERCIST) has been proposed [57] and 

awaits validation but is an important advance in 

molecular imaging.

A particularly vexing clinical problem for breast cancer 

clinicians is the evaluation of response of bone 

metastases [58]. Bone is the most common site of breast 

cancer metastasis. Bone metastases may be detected by 

bone scintigraphy and MRI, which depict tumor sites 

largely on the basis of the tumor’s eff ect on adjacent 

bone. However, in the setting of serial imaging to assess 

response, these techniques, particularly bone scinti-

graphy, can be problematic because of a lag in response 

and potential for ‘fl are’ or transient increase in uptake in 

response to successful therapy [59]. Patients with bone-

only or bone-dominant MBC are often excluded because 

of the lack of measurable disease.

Early studies have evaluated the role of serial FDG PET 

as an accurate means for assessing bone metastasis 

response as glucose metabolism measured in the bone 

metastasis itself might provide a more direct assessment 

of treatment response. Th e earliest studies showed that 

changes in FDG PET during therapy correlated with 

changes in serum tumor markers [60] and that percentage 

change in standard uptake value (SUV) predicted time to 

progression, a more robust clinical endpoint. Addition-

ally, a higher initial SUV predicted a shorter time to 

skeleton-related events such as pathologic fracture, 

hypercalcemia, or need for radiation [61]. Th e combina-

tion of metabolic and anatomic features using PET-CT 

provides even greater insight. Tateishi and colleagues 

[62] showed that duration of response in bone-dominant 

MBC was associated with a decline in FDG PET SUV and 

an increase in sclerosis (a sign of bone ‘healing’ in 

response to therapy) as assessed by CT.

Breast cancer bone metastases present with a mixture 

of phenotypes ranging from osteoblastic to osteolytic 

lesions. Whereas FDG PET is a sensitive measure of 
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osteolytic bone destruction, bone scintography using 
99mTc-methylene diphosphonate (MDP) or 18F-fl uoride 

PET, which measures bone mineral deposition, is a 

preferred method for detection of osteoblastic lesions 

[63] and may off er some advantages for measuring 

response of these lesions, which can be diffi  cult to 

visualize on FDG PET. Measurement of bone turnover 

kinetics by dynamic 18F-fl uoride PET has been shown to 

be feasible and off ers the opportunity for quantitative 

assessment of bone metastasis response to therapy [64]. 

Th e prospective evaluation of the combina tion of 18F-

fl uoride and FDG PET imaging may allow for validation 

of these imaging modalities as biomarkers for bone 

metastasis response that can be validated as endpoints 

for clinical trials (RECIST-like criteria for bone 

metastases) and shed light on the physiology of the breast 

cancer cells and their eff ects on adjacent bone turnover 

and thus may provide insights into novel therapies for 

bone metastases. Both FDG and 18F-fl uoride PET are 

approved tracers with increasing use in clinical response 

evaluation in the setting of MBC, especially in the setting 

of bone-dominant disease.

Molecular imaging for breast cancer 

characterization

Molecular imaging is ideally suited to measure in vivo 

tumor biology related to basic molecular and cellular 

processes such as metabolism, biosynthesis, cell proli-

fera tion, and cell death. Th is use of molecular imaging to 

elucidate mechanisms of tumor response and resistance 

and translation of observations from preclinical systems 

to patients is among the most exciting applications of 

molecular imaging. Given the diffi  culty in assaying some 

of these processes by tissue sampling, molecular imaging 

provides a unique and quantitative measure of important 

properties that may be assessed only in vivo. Molecular 

imaging thus can play an important role in directing 

breast cancer treatment by identifying regional target 

expression, documenting drug delivery, and measuring 

early pharmacodynamic responses to targeted therapy 

[65]. Selected examples of molecular imaging applied to 

understanding in vivo tumor biology, protein expression, 

and the tumor microenvironment are reviewed in this 

section. We emphasize that, although they have 

undergone preliminary testing in humans, almost all of 

the methods outlined in this section are investigational 

and have been tested only in small, single-center studies. 

Th e path to a more widespread availability and possible 

clinical use involves a number of steps that include 

commercialization of radiopharmaceutical production, 

rigorous prospective clinical trials, and regulatory 

approval. Below, we describe the current status of each 

example as well as any progress toward a more wide-

spread availability.

Tumor perfusion is one of the earliest physiologic 

properties to be measured by molecular imaging, and 

advances in methodology have led to increasingly 

quantitative approaches. Measurement of freely diff usible 

imaging probes such as 15O-water by PET is a robust 

quantitative measure of tumor blood fl ow. Studies by our 

group have shown that breast tumor blood fl ow and 

metabolism in LABC as evaluated by 15O-water and FDG 

dynamic PET imaging are highly variable and that 

declines in blood fl ow and metabolism are predictive of 

response and survival in patients receiving neoadjuvant 

chemo therapy [66-68]. Th e studies suggested that 

changes in perfusion were highly predictive of response 

and subse quent relapse and were confi rmed by other 

studies using dynamic contrast-enhanced MRI (DCE-

MRI) to measure perfusion changes [8,69,70]. Combined 

metabolism/perfu sion imaging also found that LABC 

tumors with pre-therapy fl ow-metabolism mismatch 

(high ratio of metabolic rate of FDG to blood fl ow) were 

most resistant to therapy, predicting a low likeli hood of 

pathologic complete response and a high likelihood of 

early disease relapse [66,67]. In multivariate models, PET 

measures of predicted relapse and survival independently 

of other established prognostic measures, including 

pathologic complete response and post-therapy nodal 

status, and other investigators have confi rmed the 

predictive value of metabolism/perfusion imaging in 

breast cancer and other tumors [71].
15O-water is an investigational tracer with a very short 

half-life (2 minutes) that requires an on-site cyclotron 

and rapid transit to the imaging site. Other modalities 

that provide measures of regional perfusion include 

DCE-MRI (often used to measure the eff ect of anti-

angiogenic agents) [9,10], Doppler ultrasound [72,73], 

and optical imaging [15]. Agents for specifi c imaging of 

angiogenesis (for example, 18F-galacto arginine-glycine-

aspartate (RGD) peptide) have also undergone early test-

ing in humans [74]. Combining measures of metabolism 

and perfusion (for example, FDG PET and DCE-MRI) 

may be useful to evaluate the eff ect of anti-vascular 

therapy combined with chemotherapy (Figure 2).

Breast tumor metabolism has also been widely studied 

with molecular imaging. Besides glucose metabolism 

measured by FDG PET, other PET pharmaceuticals can 

be used to measure other aspects of metabolism, includ-

ing regional oxygen consumption using 15O-O
2
 inhalation 

and lipid metabolism using agents such as 11C-choline 

[5,75]. MRS can also evaluate tumor metabolism by 

measuring concentrations of specifi c metabolites. Promis-

ing studies have used MRS to measure regional choline 

levels to characterize breast tumors [12]. For example, 

Moestue and colleagues [76] reported on distinct 

patterns of choline metabolism which are associated with 

diff erent gene expression profi les in luminal and 
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basal-like breast cancers, and serial choline levels 

measured by MRS provide an early indicator of treatment 

response [13].

Aberrant cellular proliferation is a fundamental pro-

perty of cancer, including breast cancer [77]. Historically, 
14C- and 3H-thymidine have been important methods for 

measuring cellular proliferation through tissue sampling 

dating back more than 40 years [78]. More recently, Ki-67 

(MIB-1) has provided a method of assessing breast tumor 

proliferation by immunohisto chemistry and is commonly 

used in clinical practice [79]. A decline in Ki-67 assessed 

in serial breast tissue samples is an established prognostic 

marker, particularly in the setting of neoadjuvant 

endocrine therapy for breast cancer [80,81]. Early studies 

demonstrated the feasibility of PET imaging to measure 

cellular proliferation using 11C-thymidine [82]; however, 

the short half-life of 11C (approximately 20  minutes) 

requires an on-site cyclotron and limits a more 

widespread availability. More recent work using 

thymidine analogs labeled with 18F (half-life of 

109 minutes), specifi cally 18F-fl uorothymidine (FLT), has 

undergone considerable advances in recent years. FLT 

PET appears promising for measuring early eff ects of 

therapy on breast cancer growth [83,84] and has been 

validated against an in vitro assay of proliferation [85]. 

Currently, the American College of Radiology Imaging 

Network is completing a multicenter neoadjuvant imag-

ing trial that will evaluate the relationship between FLT 

uptake parameters and pathologic complete response of 

the primary tumor to neoadjuvant chemotherapy in 

patients with LABC [86]. FLT PET is also still an investi-

gational tracer; however, a commercial supply network 

for FLT in the US and a National Cancer Institute-held 

(NCI-held) investigational new drug (IND) will lead to 

greater use in clinical trials and possible clinical use.

Th e ability to measure the expression of specifi c 

proteins that are gene products associated with breast 

cancer has led to important advances in breast cancer 

treatment. Examples include the archetypes of ‘targeted 

therapy’, the estrogen receptor (ER), a target for endo-

crine therapy [87], and human epidermal growth factor 

receptor 2 (HER2) [88]. Molecular imaging has also been 

applied to measuring specifi c protein expression [89,90]. 

Advantages of imaging include its non-invasiveness, the 

ability to measure receptor expression in the entire 

disease burden, and the potential for serial studies of in 

vivo drug eff ects on the target. Most of the work in this 

area of breast cancer research has been done for steroid 

receptors, particularly ER. Th e most successful ER 

imaging radiopharmaceutical is 16α-[18F]-fl uoro-17β-

estradiol (FES) [91]. FES has binding characteristics 

similar to those of estradiol for both the ER and the 

transport protein SHBG (sex hormone-binding globulin) 

[92,93]. Regional estrogen binding is readily quantifi ed by 

FES PET, and FES uptake has been validated as a measure 

of ER expression in breast tumors against ER expression 

assay of tissue samples by immunohistochemistry [94]. 

FES uptake is readily visualized and quantifi ed in primary 

Figure 2. Targeting tumor vasculature: sunitinib. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) (left) and 
18F-fl uorodeoxyglucose (FDG) positron emission tomography (PET) images (right) before therapy (top) and after 1 week of sunitinib (bottom). 

DCE-MRI studies show gray-scale images with color-coded regional perfusion (signal enhancement ratio, or SER) superimposed. Red indicates high 

levels of perfusion, and blue indicates lower levels. DCE-MRI and FDG PET with kinetic analysis were used to monitor breast cancer response to 

neoadjuvant sunitinib and metronomic chemotherapy.
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breast cancer and MBC [95]. FES PET can identify 

heterogeneous ER expression [96] (Figure 3). Th e level of 

FES uptake has been shown to be predictive of response 

to endocrine therapy, and early increase in FDG uptake 

after administration of an ER agonist (metabolic fl are) 

can also predict response to therapy [97,98]. Serial FES 

PET can also measure the pharmacokinetic eff ect of 

drugs on estradiol binding to the ER, yielding insights 

into determinants of drug effi  cacy, and has potential as 

an important tool for elucidating mechanisms of 

endocrine resistance [99]. FES is also an investigational 

tracer but is poised to be incorporated into multicenter 

cooperative group trials.

Molecular imaging also provides a unique opportunity 

to image the tumor microenvironment, which is 

challenging by more invasive means. Tumor hypoxia is an 

important factor mediating cancer aggressiveness and 

therapeutic resistance [100,101] and has gained renewed 

interest in the setting of increased use of anti-angiogenic 

therapies and with an improved understanding of 

aberrant patterns of breast tumor metabolism. Tumor 

hypoxia has been widely studied by imaging, mostly with 

PET and the agent 18F-fl uoromisonidazole (FMISO) 

[102,103]; however, other PET hypoxia probes have been 

developed and tested [104]. Th ese are all investigational 

agents; however, there is a commercial supplier for 

FMISO in the US and an NCI-held IND facilitating its 

use. Other hypoxia imaging methods based upon MRI 

and optical approaches are in earlier stages of develop-

ment but also appear promising [105].

An increasingly frequent application of molecular 

imaging to breast cancer treatment is as a pharmaco-

dynamic measure of response to targeted therapy. Many 

biologically targeted anti-cancer agents can directly or 

indirectly aff ect the pathways of glucose metabolism, 

transport, and glycolysis, resulting in decreased FDG 

uptake in tumors with therapy [65]. Molecular imaging 

modalities, particularly FDG PET, are increasingly incor-

porated in phase I trials as changes in FDG uptake may 

provide early evidence of drug activity for many agents in 

development, such as insulin growth factor pathway 

(IGF1R) inhibitors, phosphatidylinositol 3-kinase (PI3K), 

mammalian target of rapamycin (mTOR) inhibitors, and 

others in which surrogate response biomarkers are not 

available or require tissue sampling that is not always 

feasible [106]. With the wide array of tracers capable of 

imaging of protein expression, tumor proliferation, 

tumor vascularity, and cell death, molecular imaging is 

perfectly poised as a surrogate response biomarker.

Conclusions

Breast cancer is a common disease in women and a 

leading cause of death. Molecular imaging plays an 

impor tant role in the detection, diagnosis, staging, and 

response evaluation of breast cancer. As breast cancer 

diagnosis and therapies become increasingly molecular 

and individualized, molecular imaging will play a 

progressively more important role in breast cancer 

clinical care. Molecular imaging techniques off er exciting 

potential to translate tissue-based, genomic discoveries 

to the clinic and to further the development of new 

therapeutic agents for breast cancer.
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