
Introduction

Th e phosphatidylinositol 3-kinase (PI3K) pathway is the 

most frequently mutated pathway in breast cancer, with 

mutation and/or amplifi cation of the genes encoding the 

PI3K catalytic subunits p110α (PIK3CA) and p110β 

(PIK3CB), the PI3K regulatory subunit p85α (PIK3R1), 

receptor tyrosine kinases (RTKs) such as human epider-

mal growth factor receptor (HER)2 (ERBB2) and fi bro-

blast growth factor receptor (FGFR)1, the PI3K activator 

K-Ras, the PI3K eff ectors AKT1, AKT2, and phospho-

inositide-dependent kinase 1 (PDK1), and loss of the lipid 

phosphatases PTEN (phosphatase and tensin homo log) 

and INPP4B (inositol polyphosphate-4-phosphatase, type 

II) (Table 1). PI3K is activated by growth factor RTKs and 

G-protein-coupled receptors (Figure 1). PI3K phosphory-

lates phosphatidylinositol 4,5-bisphosphate (PIP
2
) to 

produce phosphatidylinositol 3,4,5-trisphosphate (PIP
3
). 

In turn, PIP
3
 recruits to the plasma membrane several 

pleckstrin homology (PH) domain-containing proteins, 

such as PDK1 and AKT, which, upon activation, drive cell 

cycle progression and survival. Negative regulation of 

this pathway is conferred by PTEN and INPP4B, which 

dephosphorylate PIP
3
 and PIP

2
, respectively. Akt phos-

phory lates and inactivates Tuberin (TSC2), a GTPase-

activating protein of the Ras homologue Rheb. Inactiva-

tion of Tuberin allows GTP bound-Rheb to accumulate 

and activate the mammalian target of rapamycin 

(mTOR)/Raptor (TORC1) complex, which ultimately 

regulates protein synthesis and cell growth [1]. mTOR 

also couples with Rictor to form the TORC2 complex, 

which phosphorylates and activates AKT at Ser473.

Class IA PI3K isoforms are heterodimeric lipid kinases 

that contain a p110 catalytic subunit and a p85 regulatory 

subunit. Th e three genes PIK3CA, PIK3CB, and PIK3CD

encode the homologous p110α, p110β, and p110δ iso-

zymes, respectively. Expression of p110δ is largely 

restricted to immune and hematopoietic cells, whereas 

p110α and p110β are ubiquitously expressed. PIK3CA 

mutations are the most common genetic alterations of 

this pathway in breast cancer, where ≥80% occur within 

the helical (E542K and E545K) and kinase (H1047R) 
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domains of p110α. Such mutations confer increased 

catalytic activity through diff erent mechanisms [2], but 

both induce characteristics of cellular transformation, 

including growth factor- and anchorage-independent 

growth, and resistance to anoikis [3]. Temporally regu-

lated expression of the H1047R mutant in the mammary 

gland of transgenic mice induces mammary tumor 

formation [4]. Genetic or pharmacological inactivation of 

PIK3CAH1047R expression results in disappearance of 

mammary tumors. However, some of these recur and 

become insensitive to PI3K inhibition via c-myc 

overexpression [5].

PI3K pathway alterations frequently co-occur in breast 

cancer, suggesting that they confer advantages to cancer 

cells by diff erent mechanisms. For example, PIK3CA 

mutations sometimes occur in breast tumors harboring 

PTEN loss or HER2 overexpression [6-8]. p110α is essen-

tial for signaling and growth of tumors driven by PIK3CA 

mutations, RTKs, and/or mutant Ras, whereas p110β lies 

downstream of G-protein-coupled receptors and has 

been shown to mediate tumorigenesis in PTEN-defi cient 

cells [9]. HER2 overexpression and PIK3CA mutations 

are commonly found in both ductal carcinoma in situ 

and invasive breast cancers. However, PIK3CA mutations 

are found at a lower frequency in intraepithelial neo-

plastic lesions. Th is suggests that PIK3CA mutations can 

further augment PI3K pathway activation mediated by 

other oncogenes such as ERBB2 (HER2) [10-14].

Molecular analyses have shown that breast cancer is a 

collection of diseases that generally fi t into three subtypes 

that respond to diff erent therapeutics and exhibit a 

diff erent natural history. Breast cancers that express 

estrogen receptor α (ER) and/or progesterone receptor 

(PR) are hormone-dependent and, as such, respond to 

therapies that inhibit ER signaling by multiple mecha-

nisms. HER2-positive cancers exhibit amplifi cation or 

overexpression of the ERBB2 (HER2) proto-oncogene 

and respond clinically when treated with HER2-directed 

therapies. Triple-negative breast cancers (TNBCs), which 

lack detectable expression of ER, PR, and HER2, have no 

approved targeted therapy and are treated with 

traditional chemotherapy. Th erefore, we will separately 

Table 1. Phosphatidylinositol 3-kinase pathway alterations in human breast cancers by molecular subtype

 Frequency

Gene (protein) Alteration Eff ect on signaling Luminal (ER+) HER2+ Basal (TN) Reference

ErbB2 (HER2) Gene amplifi cation or 

overexpression

Hyperactivation of ErbB2 

signaling (PI3K, MEK)

10% ~100% 0% [30-32]

PTEN Loss-of-function 

mutation or reduced 

expression

Hyperactivation of PI3K 

signaling

29-44% 22% 67% [6,8,104,105]

PIK3CA (p110α/PI3K) Activating mutation Hyperactivation of PI3K 

signaling

28-47% 23-33% 8-25% [6,52,66-68, 

105-107]

PIK3CB (p110β/PI3K) Amplifi cation Unknown 5% of all cases [62]

IGF1R and INSR (IGF-1R, 

InsR)

Receptor activation, 

IGF1R amplifi cation

Activates IGF-IR/InsR signaling 

(PI3K, MEK)

41-48% 18-64% 42% [108,109]

FGFR1 Amplifi cation, activating 

mutation

Hyperactivation of FGFR 

signaling (PI3K, MEK)

8.6-11.6% 5.4% 5.6% [63,110]

RPS6K1 (p70S6K) Amplifi cation Unknown 3.8-12.5% of all cases [111]

INPP4B Reduced expression or 

genomic loss

Hyperactivation of PI3K 

signaling

10-33% 54% 53% [64,112]

PIK3R1 (p85α/PI3K) Inactivating mutation Derepression of catalytic activity 

of p110α

2% of all cases [113]

AKT1 Activating mutation Hyperactivation of AKT 2.6-3.8% 0% 0% [65,66,

106,114]

AKT2 Amplifi cation Hyperactivation of AKT 2.8% of all cases [115]

EGFR Amplifi cation Hyperactivation of EGFR 

signaling (PI3K, MEK)

0.8% of all cases [116]

PDK1 Amplifi cation or 

overexpression

Hyperactivation of PDK1 (AKT, 

TORC1)

22% 22% 38% [117]

KRAS Activating mutation Hyperactivation of PI3K and MEK 4-6% of all cases [118,119]

EGFR, epidermal growth factor receptor; ER, estrogen receptor; FGFR, fi broblast growth factor receptor; HER, human epidermal growth factor receptor; IGF-1R, insulin-
like growth factor-1 receptor; INPP4B, inositol polyphosphate-4-phosphatase, type II; InsR, insulin receptor; MEK, mitogen-activated protein kinase kinase; PDK1, 
phosphoinositide-dependent kinase 1; PI3K, phosphatidylinositol 3-kinase; TN, triple negative.
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review the roles of molecular alterations in the PI3K 

pathway in each breast cancer subtype and their clinical 

implications.

PI3K pathway inhibitors in clinical development

Several drugs targeting multiple levels of the PI3K 

network (that is, PI3K, AKT, mTOR) are in clinical 

development in breast cancer. Th e fi rst group encom-

passes ATP mimetics that bind competitively and 

reversibly to the ATP-binding pocket of p110; some of 

these compounds also bind and inhibit mTOR (Table 2). 

Notably, the pan-PI3K and p110α-specifi c inhibitors are 

equally potent against oncogenic mutants of p110α 

[15,16]. A second group includes allosteric and ATP-

competitive inhibitors of the three isoforms of AKT; 

these have also shown antitumor activity in preclinical 

models [17-19] and recently entered human trials. Allo-

steric inhibitors such as MK-2206 bind to the PH domain 

and/or hinge region in AKT to promote an inactive 

conformation and thus prevent localization (and activa-

tion) of AKT to the plasma membrane [19]. Th e macro-

lide rapamycin and its analogs (rapalogs) complex with 

FK506-binding protein (FKBP12), which then binds to 

mTOR and inhibits the kinase activity of TORC1 but not 

TORC2 [20]. Formulation problems with rapamycin and 

its inability to eff ectively inhibit phosphorylation of 

4E-BP proteins (which are TORC1 substrates that 

promote translation) prompted the development of 

analogs that have shown cytostatic activity in preclinical 

models and clinical trials [20]. Compounds that target 

Figure 1. Diagram of the phosphatidylinositol 3-kinase signaling pathway. Tumor promoters and suppressors are labeled in pink and blue, 

respectively. Nodes targeted by drugs in clinical development are shown in red. AMPK, AMP-activated protein kinase; GPCR, G-protein-coupled 

receptor; GSK3, glycogen synthase kinase 3; INPP4B, inositol polyphosphate-4-phosphatase, type II; LKB1, liver kinase B1; PDK1, phosphoinositide-

dependent kinase 1; PI3K, phosphatidylinositol 3-kinase; PIP1, phosphatidylinositol monophosphate; PIP2, phosphatidylinositol 4,5-bisphosphate; 

PIP3, phosphatidylinositol 3,4,5-trisphosphate; PTEN, phosphatase and tensin homolog; RTK, receptor tyrosine kinase.
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the ATP-binding cleft of mTOR, and are thus active 

against both TORC1 and TORC2 [21], are also in phase I 

trials.

Inhibition of TORC1 relieves negative feedback on 

activators of PI3K (for example, insulin-like growth 

factor-1 receptor (IGF-1R), insulin receptor substrate 1 

(IRS-1), HER3) [22-24], suggesting that direct inhibitors 

of PI3K may be more eff ective. However, inhibition of 

PI3K or AKT also results in feedback upregulation/

activation of several RTKs, which, by providing an input 

to PI3K, may counter act drug action and/or activate 

other oncogenic pathways such as the mitogen-activated 

protein kinase kinase (MEK) pathway [17,25-27]. Th ese 

data suggest that PI3K/AKT/TORC1 inhibitors could be 

combined with RTK inhibitors to induce an optimal 

antitumor eff ect. Consistent with this notion, studies in 

human cancer xenografts have shown that combinations 

of inhibitors targeting HER2 and PI3K, HER2 and AKT, 

HER2 and TORC1, or epidermal growth factor receptor 

(EGFR) and AKT are superior to single-agent treatments 

[17,22,25,26].

PI3K pathway alterations in ER+ breast cancer

Approximately 75% of primary breast cancers express ER 

and/or PR. Such hormone receptor expression typically 

indicates a degree of estrogen dependence for cancer cell 

growth. Treatments for these patients inhibit ER function 

either by antagonizing ligand binding to ER (tamoxifen 

and other selective estrogen receptor modulators 

(SERMs)), downregulating ER (fulvestrant), or blocking 

estrogen biosynthesis (aromatase inhibitors (AIs)). 

Although endocrine therapies have changed the natural 

Table 2. Phosphatidylinositol 3-kinase pathway inhibitors in clinical development

Kinase target Drug Manufacturer Mechanism of action

Pan-PI3K BKM120 Novartis ATP-competitive

 XL-147 Exelixis ATP-competitive

 PX-866 Oncothyreon ATP-competitive

 GDC-0941 Genentech/Roche ATP-competitive

 CH5132799 Chugai Pharma ATP-competitive

p110δ-specifi c CAL-101 Calistoga ATP-competitive

p110α-specifi c BYL719 Novartis ATP-competitive

 GDC-0032 Genentech/Roche ATP-competitive

 INK-1117 Intellikine ATP-competitive

PI3K/mTOR PKI-587 Pfi zer ATP-competitive

 BEZ235 Novartis ATP-competitive

 BGT226 Novartis ATP-competitive

 PF-4691502 Pfi zer ATP-competitive

 GDC-0980 Genentech/Roche ATP-competitive

 XL-765 Exelixis ATP-competitive

 SF1126 Semafor ATP-competitive/peptide-conjugate

 GSK1059615 GSK ATP-competitive

TORC1 Everolimus (RAD001) Novartis Indirect, FKBP12-mediated

 Temsirolimus (CCI-779) Wyeth/Pfi zer Indirect, FKBP12-mediated

 Ridaferolimus (AP-23573) Merck/Ariad Indirect, FKBP12-mediated

TORC1/TORC2 INK-128 Intellikine ATP-competitive

 OSI-027 OSI Pharm. ATP-competitive

 AZD-8055 Astrazeneca ATP-competitive

AKT AZD5363 Astrazeneca ATP-competitive

 GDC-0068 Genentech/Roche ATP-competitive

 GSK690693 GSK ATP-competitive

 MK-2206 Merck Allosteric

 VQD002 Vioquest ATP-competitive

mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol 3-kinase.
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history of hormone-dependent breast cancer, >30% of 

patients with early ER+ breast cancer relapse within 

15 years following adjuvant therapy with tamoxifen, and 

approximately 20% of patients treated with an AI relapse 

within 9 years [28,29]. A mechanism of resistance to 

endocrine therapy involves overexpression of HER2 

[30-32]. However, <10% of ER+ breast cancers express 

high HER2 levels, suggesting that for the majority of ER+ 

breast cancers, mechanisms of escape from endocrine 

therapy remain to be elucidated.

In addition to its pro-survival and growth-promoting 

roles, the PI3K pathway interacts with ER directly [33] 

and indirectly. ER phosphorylation at Ser167 by AKT or 

p70S6K increases estrogen-induced, tamoxifen-induced, 

and ligand-independent ER transcriptional activity 

[33,34]. Additionally, PI3K and Ras contribute to the 

modulation of ER and transcription cofactors [35-45]. 

Th e activation of ER by growth factor RTK signaling is 

reciprocated in a feed-forward fashion, whereby ER 

promotes the transcription of genes encoding receptor 

ligands, RTKs, and signaling adaptors [45-50]. Clinical 

evidence further suggests that ER may activate the PI3K 

pathway. For example, neoadjuvant treatment of patients 

bearing ER+ breast cancer with the AI letrozole reduces 

P-AKT
S473

, P-mTOR
S2448

, and P-S6 tumor levels; these 

reductions have been shown to correlate with clinical 

response [51,52]. Emerging evidence also implicates 

estrogens in the rapid, non-genomic activation of PI3K 

via IGF-1R/insulin receptor (InsR), EGFR, Src, PI3K, and 

MEK [53-56].

PI3K pathway activation has been shown to confer 

anti-estrogen resistance in various experimental models, 

including in PTEN-defi cient cells, and in cells over-

expressing HER2, IGF-1R, or an activated mutant of 

AKT1 [33,44,54]. Tumor cells with acquired endocrine 

resistance have shown upregulation of IGF-1R, InsR, 

HER2, and EGFR levels as well as PI3K/AKT/mTOR 

activation [57-61]. Inhibition of the PI3K pathway 

reverses such anti-estrogen resistance. However, PI3K or 

AKT inhibition relieves feedback inhibition of the 

expression and activation of RTKs, which can contribute 

to drug resistance [17,25,26]. Interestingly, a recent study 

showed that in ER+ breast cancer cells treated with the 

PI3K/mTOR inhibitor BEZ235 or with PI3K siRNA, 

exogenous estradiol prevented drug- and siRNA-induced 

apoptosis [62]. Since most breast cancers that adapt to 

anti-estrogen therapy retain ER, these data imply that 

unopposed estrogen ligands may protect ER+ tumors 

from the therapeutic eff ects of PI3K inhibitors used as 

single agents.

Clinical evidence suggests that activation of PI3K via 

overexpression of HER2 or FGFR1, or loss of INPP4B 

also confers anti-estrogen resistance to patients with ER+ 

breast cancer [30-32,63,64]. Whether other mutations in 

the PI3K pathway correlate with anti-estrogen resistance 

remains to be determined. PIK3CA mutations occur in 

28 to 47% of ER+ breast cancers. Interestingly, such 

muta tions correlate with good long-term outcome and 

lower PI3K and TORC1 activation as assessed by gene 

expression profi ling and immunohistochemistry (IHC) in 

patients bearing ER+ tumors [6,52,65-68]. Despite these 

fi ndings, preclinical evidence indicates that combined 

targeting of PI3K and ER is synergistic [69], suggesting 

that combinations of anti-estrogens and PI3K pathway 

inhibitors will be clinically more eff ective than anti-

estrogens alone.

Th e correlations between PIK3CA mutations, good 

patient outcome, and low PI3K pathway activation 

(measured by gene expression profi ling and IHC) beg the 

need for alternative methods indicative of PI3K pathway 

activation to identify ER+ tumors at risk of recurrence. 

For example, a primary breast tumor gene expression 

signature of PTEN loss, derived from a comparison of 

PTEN-expressing versus PTEN-negative tumors by IHC, 

was predictive of poor relapse-free survival following 

tamoxifen, while PTEN status by IHC was not [8]. Breast 

cancers of the luminal A and luminal B molecular 

subtypes (based on gene expression profi ling) are typi-

cally ER+. However, luminal B tumors benefi t less from 

adjuvant anti-estrogen therapy [70]. Of note, a gene ex-

pres sion signature of PI3K activation, based on tumor 

levels of a panel of phosphoproteins (for example, P-AKT, 

P-p70S6K) in ER+ tumors, was enriched in luminal B 

breast cancers [71]. Th is suggests that luminal B tumors 

have higher PI3K activity, which may contribute to their 

lower response to anti-estrogens compared to luminal A 

tumors [72]. Similarly, we identifi ed a tumor protein 

signature of PI3K pathway activation that predicts poor 

outcome following adjuvant endocrine therapy [58]. 

Th erefore, signatures of PI3K activation may complement 

mutational analyses for the identifi cation of high-risk, 

PI3K-driven, ER+ tumors.

Further rationale for combined inhibition of PI3K and 

ER comes from studies using inhibitors of TORC1 or 

HER2. In patients with ER+ tumors randomized to neo-

adjuvant letrozole with or without the TORC1 inhibitor 

everolimus for 4 months before surgery, the addition of 

everolimus increased clinical response and suppression 

of tumor cell proliferation [52]. In the TAMRAD study in 

patients with metastatic ER+ breast cancer who had 

progressed on an AI, the addition of everolimus to 

tamoxifen improved the rate of clinical benefi t, time-to-

progression, and disease-free survival compared to 

women receiving tamoxifen alone [73]. Most recently, 

results from the phase III trial BOLERO-2 showed that 

treatment with everolimus plus the AI exemestane 

provided a time-to-progression of 10.6 months compared 

to 4.1 months with the AI alone in post-menopausal 
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women with advanced breast cancer who had recurred or 

progressed on prior endocrine therapy [74].

Th e ER and PI3K pathways appear to exist in an 

equilibrium, where tumors with low PI3K activation have 

Figure 2. Inhibition of phosphatidylinositol 3-kinase/mammalian target of rapamycin abrogates lapatinib resistance in HER2+ breast 

cancer cells. (a) BT-474 and SKBR3 cells were serum-starved for 3 days, then treated with or without 1 μM lapatinib or 250 nM BEZ235 for 2 

days. Cells were fi xed, stained using the ApoBrdU kit (Phoenix Flow Systems), and analyzed by fl ow cytometry. Cells were considered apoptotic 

if they exhibited sub-G1 levels by propidium iodide staining, and/or high fl uorescein isothiocyanate (FITC)-bromodeoxyuridine (BrdU) labeling. 

Representative plots are shown, and the percentage of apoptotic cells (mean of triplicates ± standard deviation) is noted in each panel; blue, 

live; red, dead. (b) BT474 and SKBR3 cells were selected for long-term growth in the presence of 2 μM lapatinib to generate resistant cells [83]. 

Parental and lapatinib-resistant cells were treated with or without 250 nM BEZ235 in growth medium (lapatinib-resistant cells were maintained in 

2 μM lapatinib). Media and drugs were replenished every 2 to 3 days. Cell viability was measured after 5 to 6 days by WST1 assay (Roche). Data are 

presented as percentage parental control for each cell line, mean of triplicates ± standard deviation. *P < 0.05 by Bonferroni post-hoc test compared 

to parental control.
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high ER levels, and vice versa [58,71]. Th e inter-

dependence of these pathways is supported by studies 

showing that inhibition of HER2 with the antibody 

trastuzumab or the tyrosine kinase inhibitor lapatinib 

restores or upregulates ER levels or transcriptional activity 

in breast cancer cells and patient tumors. Furthermore, 

treatment with AIs or fulvestrant inhibits the growth of 

HER2+ tumors that had progressed on trastuzumab or 

lapatinib [75,76]. Th ese data suggest that combined inhi-

bi tion of ER and HER2, an RTK that potently activates 

PI3K, may provide more eff ective control of ER+/HER2+ 

tumors. Indeed, two clinical trials showed that the 

addition of trastuzumab or lapatinib to therapy with an 

AI increased progression-free survival and clinical 

benefi t compared to the AI alone [77,78].

PI3K alterations in HER2+ breast cancer

Most patients bearing breast cancers with amplifi cation 

or overexpression of HER2 benefi t from anti-HER2 

therapy. However, most patients with HER2+ metastatic 

disease eventually acquire resistance to trastuzumab, 

lapatinib, and the combination [79-81]. HER2 potently 

activates PI3K via heterodimerization with HER3, and 

other PI3K pathway activating mutations often coexist in 

HER2+ cancers (Table  1). Experimental and clinical 

evidence suggest that mutational activation of the PI3K 

pathway confers resistance to HER2-directed therapies, 

perhaps by providing an additional input to this pathway 

independent of HER2/HER3 dimers. HER2+ breast 

cancer cell lines are highly sensitive to PI3K and mTOR 

inhibitors before and after acquiring resistance to trastu-

zumab or lapatinib [22,82,83] (Figure  2). Th ese data 

suggest that these drug-resistant cells remain PI3K-

dependent, and that patients with trastuzumab- and/or 

lapatinib-resistant disease would benefi t from PI3K 

pathway inhibitors.

Retrospective analyses of cohorts of patients with 

HER2+ metastatic breast cancer have shown that tumors 

harboring PIK3CA mutations and/or decreased levels of 

PTEN have a poor outcome following treatment with 

trastuzumab compared to HER2+ tumors with a ‘wild-

type’ PI3K pathway [84-87]. In addition, a neoadjuvant 

study in patients with HER2+ breast cancer showed that 

both alterations (PIK3CA mutations and PTEN loss) 

were associated with a statistically lower pathological 

complete response rate to trastuzumab with 

chemotherapy. However, tumors with decreased PTEN 

responded to neoadjuvant therapy with lapatinib 

followed by trastuzumab and chemotherapy [88]. Pend-

ing confi rmation of this report, these data suggest that 

PTEN-defi cient HER2+ cancer cells still rely heavily on 

upstream input from HER2 and, therefore, dual blockade 

of HER2 with trastuzumab and lapatinib is eff ective 

against HER2+/PTEN-defi cient breast cancers. A few 

studies suggest that combined targeting of HER2 and the 

PI3K pathway is superior to HER2-directed therapy 

alone. In patients who had progressed on trastuzumab 

and chemotherapy, the addition of the TORC1 inhibitor 

everolimus to trastuzumab and chemotherapy conferred 

a 19 to 44% objective response rate [89-91]. Preclinical 

studies also suggest that because of the reactivation of 

HER3 following inhibition of PI3K/AKT/TORC1 in 

HER2-overexpressing breast cancer cells, PI3K inhibitors 

should be given in combination with anti-HER2 therapy 

in patients with HER2 tumors [22,25,92]. At this time, 

patients with drug-resistant HER2+ breast cancer are a 

subgroup of intense focus in exploratory trials with PI3K 

pathway inhibitors.

PI3K pathway mutations in triple-negative breast 

cancer

Since ER, PR, and HER2 are established molecular 

markers associated with response to targeted therapies, 

ER-/PR-/HER2-negative cancers are loosely grouped as 

TNBCs. Such cancers occur in 10 to 15% of patients, are 

associated with earlier age at diagnosis, poor prognosis, 

and BRCA1 mutations, and are more prevalent in 

African-American and Hispanic women [93]. By gene 

expression profi ling, TNBCs cluster separately from ER+ 

and HER2+ cancers, mainly within the basal-like 

molecular subtype. A recent analysis revealed that 

TNBCs can be divided into six subtypes [94]. Interest-

ingly, the ‘mesenchymal-like’ and ‘mesenchymal stem-

like’ subtypes exhibit enrichment for components of 

growth factor signaling pathways, including inositol 

phosphate metabolism. Growth of breast cancer cell lines 

classifi ed as ‘mesenchymal-like,’ ‘mesenchymal stem-like’, 

or ‘luminal androgen receptor subtype’ was inhibited by 

the PI3K/mTOR inhibitor BEZ235. Cell lines of the 

‘luminal androgen receptor subtype’ exhibit a high 

frequency of PIK3CA mutations. In contrast, PTEN 

status did not correlate with sensitivity to BEZ235. PTEN 

has functions outside of the PI3K pathway, including in 

DNA double-strand break repair. In addition, BRCA1 

mutations impair double-strand break repair and corre-

late with the presence of PTEN mutations [95], and 

PTEN knock-down has been shown to sensitize BRCA1-

mutant cancer cells to poly(ADP-ribose) polymerase 

(PARP) inhibition [96,97]. Th us, it is conceivable that 

PTEN-defi cient cells may respond to combined PI3K/

PARP-directed therapy.

Th e standard treatment for patients with TNBC 

includes mainly DNA-damaging chemotherapy. PI3K 

pathway mutations have been associated with resistance 

to such agents, likely by promoting cell survival. Also, 

DNA damage elicits DNA-dependent protein kinase-

mediated phosphorylation of AKT [98]. Preclinical 

studies in diverse cancer cell types have shown that PI3K 
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inhibitors enhance the apoptotic eff ects of DNA-

damaging agents [99-102]. Clinical trials are ongoing to 

test such drug combinations in patients with TNBC.

Conclusions

Somatic mutations in the PI3K pathway identify cancers 

with aberrant activation of, and potential dependence on, 

this signaling pathway. Th ese attributes may be useful for 

the selection of patients for trials with PI3K inhibitors. 

Indeed, a recent analysis of patients with solid tumors 

enrolled in phase I trials with PI3K/AKT/mTOR inhibi-

tors showed a higher response rate among patients with 

PIK3CA-mutant versus wild-type PIK3CA cancers [103]. 

Th is suggests that tumors with gain-of-function muta-

tions in the PI3K pathway depend on PI3K signaling, and 

this dependence can be exploited in patients with such 

cancers. Th ere is increasing agreement that initial phase 

II effi  cacy studies with PI3K inhibitors in patients with 

advanced disease should be enriched with, if not limited 

to, patients harboring mutations and/or activa tion of this 

pathway. As with other targeted therapies, only a fraction 

of patients will likely benefi t from single-agent PI3K-

directed therapy. PI3K pathway inhibitors are being 

tested in human trials in combination with inhibitors of 

HER2, MEK, and ER. Early clinical data suggest that this 

strategy is feasible and that, as single agents, these drugs 

are well-tolerated. To determine if inhibition of PI3K 

confers a benefi t compared to standard targeted therapies 

alone will require randomized clinical trials.
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